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Summary. — It is shown for the two-dimensional sealar Yukawa inter-
action, that the renormalized perturbation series has at least a finite
radius of convergence when regularized (cut-off in space-time and mo-
mentum space). This is accomplished by writing down the explicit renor-
malized series, studying some of its associated combinatorics, and applying
Caianiello’s standard arguments on the unrenormalized series (¢). The
result extends to any super-renormalizable theory of the gyy form.

1. — Introduction.

One of the most important open questions in a purely perturbative approach
to quantum field theory involves the convergence of the usual Gell-Mann—-Low
series. Even if one regards quantum electrodynamics (Q.E.D.) as a semi-phe-
nomenological set: of rules, one cannot regard the theory as giving well-defined
results until either convergence of the renormalized series or some substitute (1)
is proven.

While there are a large number of very nice results for convergence of non-
relativistic (Rayleigh-Schrodinger) perturbation theory (**) all the mathe-

(*) This paper was written with partial support of the Air Force Research and
Development Command under Contract No. AT 49(638)-1545.

(**) N.S.F. Predoctoral Fellow.

(*) A suitable substitute might be some additional principle which picked out one
function from the many with the perturbation series as its asymptotic expansion.

(?) T. Karo: Perturbation Theory for Linear Operators (New York, 1966).

() Unfortunately, a large number of competent theoretical physicists seem unaware
of this; see e.g. K. GOTTFRIED: Quantum Mechanics, I (New York, 1966), p. 361.
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matically suitable results in the relativistic (Feynman) case are of a negative
nature (¢).

The earliest mathematically complete results proved that cubic and quartic
scalar boson couplings yielded divergent series (°). As FRANK () has remarked,
this is not surprising: the analogous nonrelativistic problem, namely a har-
monic oscillator with z* or &* perturbation does not have a convergent pertur-
bation theory either. Besides the fact of divergence, nothing is known about
the exact nature of the series; for example, it is not known if it is an asymptotic
expansion, nor if the exact solution () has only an isolated singularity at zero
coupling. In fact, these questions are open even in the corresponding nonrelativ-
istic problem (°).

Divergence of the perturbation series for Dirac particles in a static external
(nonquantized) electromagnetic field is a result contained implicitly (*°) in
Schwinger’s work ('), where an exact solntion nonanalytic at zero coupling
is to be found. The exact nature of the divergence has been studied somewhat
by OGIEVSKI (?) who showved that the perturbation series is Borel summable
to the correct answer. On the other hand, CAprri ('*) has shown that electro-
dynamics in an external field of compact support in space and time has a con-
vergent perturbation series.

For the case of a theory with fermions there are no definitive results, but
there is a rash of half-solutions which generally can be regarded as evidence
for convergence or divergence at one’s whim (this paper falls solidly into the
half-solution class). The earliest statements about these theories remarked

(4) In fact the best text in the field—J. BJORKEN and 8. DRELL: Relativistic Quantum
Mechanics (New York, 1964) and Relativistic Quantum Fields (New York, 1965)—settles
for ignoring the problem rather than trotting out many conflicting partial answers.

(%) C. A. Hurst: Proc. Camb. Phil. Soc., 48, 626 (1952); W. TmirriNG: Helv.
Phys. Acta, 26, 33 (1953); A. PETERMAN: Helv. Phys. Acta, 26, 291 (1953).

() W. FrRaNK: Ann. of Phys., 29, 175 (1964).

(7) Assuming there is an exact solution—which seems likely, at least for ¢*in two
dimensions, given the recent work of GrLiMM and JAFFE (*).

(®) J. GLiMM: Commun. Math. Phys., 5, 343 (1967); 6, 120 (1967); 8, 12 (1968);
M.LT. preprints; A. JAFFE: Thesis, Princeton University (1965); A. JAFFE and
R. Powers: Commun. Math. Phys., 7, 218 (1968); A. JAFFE and J. Gummm: M.IT.
preprinta.

(%) There are however recent results of C. BENDER and T. T. Wu: Phys. Rev., Lett.,
21, 406 (1968), which are of a highly questionable mathematical nature. These results
indicate severe nonanalyticity at zero coupling.

(2%) This was first explicitly remarked in B. L. IoFrE: Doklady Akad. Nauk. 8SE (N.8.),
94, 437 (1964).

(1) J. ScHWINGER: Phys. Rev., 82, 664 (1951).

(%) V. I. OGieveski: Doklady Akad. Nauk. SSE (N.8.), 109, 919 (1956).

(13) A. Capri: Univ. of Alberta preprint.
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that barring cancellations due to alternating signs, one would get divergence as
in a @* theory. Of course, the Pauli principle predicts large cancellations and
for this reason, this problem is qualitatively different from the scalar case. The
first person to control these cancellations was CAIANIELLO. As a by-product
of his elegant formulation of the Gell-Mann-Low series in terms of Haffnians
and determinants (1), he proved that a Pyp theory (**) cut-off in momentum
space and ordinary space-time (') converges in at least a finite circle (V7).
Two years, later, YENNIE and GARTENHAUS (1), using nothing but the bounded-
ness of fermion creation operators, proved the convergence of the cut-off
series in the entire plane (**). Shortly thereafter, CATANIELLO and BuUCCA-
FURRI (*) were able to obtain the Yennie-Gartenhaus result through the use
of rather elaborate estimates within the Caianiello formalism (3!). There are
more recent results on the problem (%3224 ttem) hyut none go significantly fur-
ther than the classics.

Our brief summary of the classic arguments on convergence vs. divergence
would be incomplete without a mention of the often-quoted article of DysoN ().
He argues that the series for Q.E.D. cannot converge becaunse for imaginary
values of the charge, the Coulomb force is attractive between like particles and
80 the vacuum is unstable under decay into a large number of pairs. It cannot
be emphasized too greatly that this argument must be considered unacceptable
for the problem at hand. The perturbation series at unphysical values of the
coupling (**) is unphysical and as a result cannot be treated by physical argu-
ments. A simple parable to show that the uncritical use of physical arguments
will lead one astray can be obtained from a A*az* perturbation to a harmonic
oscillator p®+ z* in nonrelativistic quantum mechanics. One might conclude
from physical grounds that since the potential misbehaves for all negative A,

(1) E. R. CA1aNIELLO: Nuove Cimento, 10, 1634 (1953); 11, 493 (1954).

(**) This would include both scalar and pseudoscalar Yukawa interactions as well
as Q.E.D.

(*¢) Such a theory is called regularized.

(1) E. R. Ca1aNIELLO: Nuovo Cimento, 8, 223 (1956).

(*) D. R. YENNIE and 8. GARTENHAUS: Nuovo Cimento, 9, 59 (1958).

(1%) Actually, they proved that the ordinary connected graph sum is the ratio of the
two entire functions and hence meromorphic.

(*) A. Buccarurel and E. R. CAIANIELLO: Nuovo Cimento, 8, 170 (1958).

(3!) The cut-off methods used by Caianiello-Buceafurri are very different from those
of Yennie-Gartenhaus; it is difficult to compare them, but those of the latter appear
to be less stringent.

() W. FrANK: Journ. Math. Phys., 8, 194 (1967).

() W. FRANK: Ann. of Phys., 29, 217 (1964).

(*) F. GUERRA and M. MaRINARO: Nuovo Cimento, 42 A, 285 (1966).

() F. DysoN: Phys. Rev., 85, 631 (1952).

(%) A conclusive way of seeing that an imaginary charge is unphysical is to remark
that it leads to a non-Hermitian Hamiltonian.
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that the eigenvalues cannot be analytic at A= oo. Nevertheless they can be
shown (**) to be analytic there.

Another physical argument favoring divergence of the perturbation series
for Q.E.D. is due to FRAUTSCHI (**) and makes very clever use of renormali-
zation group techniques. FRAUTSCHI only proves that the infinite momentum
value of the «scalar photon propagator, » d (**), cannot be continuous at zero
physical charge, i.e.

lim [limd(e*, ¢*)] 5 Jim 20, ¢*) -

However, it requires a rather loose sense of mathematical propriety to use this
to make any predictions about the finite ¢* behavior.

In order to explain the motivation behind studying the model we will treat,
we explain the CATANIELLO proof of convergence (17) in a little more detail. Ra-
ther than deal with the expansion of the Green’s function (*) as the sum of
all connected diagrams, he used the expansion as the ratio of all diagrams
(connected or disconnected) to the vacuum diagrams (see, e.g. (*), Chap. 17 ) In
this form, even the intermediate states obey the Pauli principle and 8o « max-
imal » cancellations are to be expected. But one pays a price for using this

form. Connected vacuum diagrams diverge linearly in the space-time volume '

and disconnected vacuum diagrams diverge with a higher order. For this
reason & cut-off of the space-time integrals is needed, at least initially (**). In
addition, one must introduce the standard momentum-space cut-off to control
ultra-violet divergence. Once this has been done one proves convergence easily;
one takes the Caianiello determinant-Haf¥nian formulae (discussed in Sect. 3)

and applies Hadamard’s inequality (*?) for an nXn matrix:
1) |det (a,)| <n™*(mgx|a,|)" .

If one now wishes to remove the momentum-space cut-off, one must first
renormalize the series. But renormalization is typically accomplished by a

(37) Private communication from K. SYMANZIK via A. DICKE and A. 8. WIGTHMAN.

(#) 8. C. I. FrauTscai: Progr. Theor. Phys., 22, 882 (1959).

(**) d is defined so D,, = (g,,/q%)d + ¢« gauge terms».

(®) By Green’s funotion, we mean a vacuum expectation value of a time-ordered
product of fields.

(®) In this paper, we will not deal at all with removing this cut-off. Hopefully,
by using the fact that the sum of the vacuum diagrams is the exponential of the sum
of the connected vacuum diagrams, one could isolate the volume dependence in & con-
venient form and eventually eliminate the volume cut-off from the Green’s function
formulae. Admittedly, this is a rather optomistic hope.

(1*) J. HapaMARD: Compt. Rend., 86, 1500 (1893).
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partial suppression of certain diagrams and these modifications will destroy
some of the cancellations (3*) that led to Hadmard’s inequality. The first step
in any attempt at a proof of convergence based on successive removal of Ca-
ianiello’s cut-offs must be to examine whether renormalization is « sufficiently
gentle » to avoid destroying the cancellations needed for convergence. In this
paper we show that for a Yukawa interaction in two-dimensional space-time
renormalization does not destroy the convergence of the regularized series in
some neighborhood of zero coupling constant. I initially hoped that this would
just be a first step in the complete removal of the ultra-violet cut-off but this
hope has not been realized.

It is my belief that this model is the natural place to try to settle the ques-

~ tion of convergence. This belief is predicated on the fact that the theory is

super-renormalizable (8.R.), that is, there are only a finite number of primitive
divergences and these can be explicitly eliminated to yield closed formulae. The
use of S.R. theories is not really new to the problem; in his proof of divergence
of ¢* HURST (°) used the 8.R. property of that theory. However, because there
are no four-dimensional 8.R. theories with fermions, there has been no previous
work on convergence of specifiic renormalized theories arising from local fer-
mion Lagrangians.

It is an idea presented forcefully by WIGHTMAN that the natural place to
try to understand many of the questions of quantum field theory is in two
dimensions, where the standard Lagrangians with the exception of the Fermi
type (*) are 8.R. In fact, the S.R. property of the ¢* and Yukawa interactions
is nsed decisively in the important recent work of JAFFE and GLiMm (3) which
seems to be leading towards the first examples of nontrivial local fields obeying
the Wightman axioms! These results of JAFFE and GLIMM, if they ever reach
complete fruition, may solve the question of convergence of the perturbation
series by obtaining the actual answer in some form—the answer may then be
examined directly for singularities at zero coupling.

‘We remark that while a proof of divergence for our theory would be ex-
tremely indicative for the four-dimensional theories, a proof of convergence
would not necessarily indicate convergence in the four-dimensional case ().
However, a convergence proof would have «fringe benefits » far outweighing
this disadvantage. For, if one could prove convergence, one would have
candidates for the Green’s functions of an interacting field. It is a well-

(3%) To see that llations are responsible in (1), one need only remark that the
formula is false for permanents.
(*) That is, & 9,7, v, P,»* v, interaction; however, this theory is at least renor-
lizable in two di i while it is nonrenormalizable in three or more dimensions.
(%) Since the four-dimensional non-8.R. theories are apparantly not as well-behaved
as the two-dimensional S.R. theories,
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known fact (3¢) that the axioms for a field are expressible in terms of the vac-
uum expectation values and the folklore of axiomatic field theory assures us
that this should carry over to the time-ordered vacuum expectation values
as well (). Thus, to prove that one actually had a field, one would only have
to verify certain properties, most of which are immediate ().

Finally, we briefly summarize the content of the remaining Sections.

In Sect. 2, the renormalization is carried out explicitly for the theory under
consideration—the two-dimensional scalar Yukawa interaction.

In Sect. 8, we present the combinatorics necessary to replace Hadamard’s
inequality.

In Sect. 4, we prove the convergence of the regularized renormalized series.

And in Sect. 5, we discuss the significance of the result for the unregularized

problem.

2. — Explicit renormalization of the theory.

We treat a model with Lagrangian

(% %—ﬂ: ’) + PV —m)y:+ g :9pe:,
with ¢ a scalar field and y a spinor Dirac field in two di-
mensions. Our metric is chosen so that a*=aj—a} and
our y-matrices follow Wightman’s conventions (**). Our
@ Lagrangian will eventually have pi—> oo with p*=
j— ,ll:+ 8"3 («l)_

Simple power counting shows only two primitive di-
a b vergent diagrams (Fig. 1). We can elimitate 1 a) from the
Fig. 1. ratio of all diagrams divided by the vacuum diagrams by
simply suppressing it, since all disconnected diagrams
cancel out anyway (‘!). However 1 ) requires a mass renormalization. Let us

define n(p) by requiring 1) to have the value

(i) e = O

(3%) A. S. WicHTMAN: Phys. Rev., 101, 860 (1956); R. F. StrREATER and A. 8.
WicHTMAN: PCT, Spin and Statistics and All That (New York, 1964), p. 117.

() D. RueLLE: Nuovo Cimento, 19, 356 (1961).

(%) The only difficult property to verify would presumably be positive definiteness.

(3) Cargése Lectures in Theoretical Physics, LEvy Ed. (New York, 1967), p. 219,
eq. (4.53).

(4) u will still differ from the physical mass by a finite renormalization.

(*!) Dropping this ecan be viewed as an infinite renormalization of the vacuum

energy density.

$
2 —_—
@) T
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when the « external » lines have momentum p and we include their propaga
tors; thus

i) — oy [ LF P i
@ —ia(p) = —(—14) f(27r)’T (yk m+1eyk+yp m-l—w)

This may be computed with a Pauli-Villars regularization in a series of steps
almost identical to (*), Vol. I, p. 155. The end result is

n(p)= g’log( )+m(p),

where M is the regularization mass and

1

g‘ J dzlog[l—— z(l—z)]

4) 7 (p) =

Explicitly (42)

Ga)  mip) = B[ 5(p) are sm(g’;)—l], it 0<pr<dms,
(62) =§{Sm1°g[2% (1+S(p>)]—1}—r"—' Sy, i pr>ame,
(Be) [S(p) log[‘/ L (1+ S(p))]—l} if p*<0,
where

4m?
5d =1 =
(6d) S(p)= }1 P |

The renormalization is now easy; we first symbolically sum all the divergent
bubbles, i.e.

®e :m+ﬁN©VW+W\QA/©\/V\,+'-- ,

(42) There is really an e in (4) which determines the sign of the imaginary par{
of (5b).
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Using (2), we find

L N
‘ T pr— i —al(p) +de”

If we write u?= uj + Su? with Sut= (— g}/2n) log (M?/m?) < 0 (**) and fix u*
a8 finite (*°), we see

(7a) ———

We will call - —— — the « aérated propagator ». It is clear that a simple re-
duced graph formulation will now describe the complete renormalization. We
throw away all diagrams containing either 1 a) or 1 b) as a subgraph and in the
remaining graphs we replace the ordinary propagator by the aérated propa-
gator. That the result is a formal summation followed by renormalization of
the original series is evident (*).

We remark that since the aérated propagator is dependent on g,, the renor-
malized series is no longer strictly a power series and its region of convergence
(if any) is no longer necessarily a circle.

The z-space form of the aérated propagator is, of course

joow —oy= [ 3% expl—ik-(o'—2)] — L+
) dge—a= [ OF el el g

If we put the system in a box of volume V with periodic boundary conditions
and restricted our system to a finite number of boson modes, we would have

frreo(p =S 1 : o_dl’_ exp[— ipz,]
(70) Ao (z) l-és 7 oXP [tk..x;]_;[ O P (p, ) T %

where k.= 2znn/V.

(#%) u*< p} in accordance with general considerations of H. LEAMANN: Nuovo Ci-
mento, 11, 342 (1954), eq. (32).

(44) Actually all that is clear is that the series of linked diagrams, {.e. the ordinary
Feynman series, is properly described. In faoct, it can be argued that by dropping

a0

diagrams like those in Fig. 2 we have not treated the vacuum graphs properly. Since
all the physics is in the linked diagrams and the vacuum amplitude drops out anyway,
the argument over treatment of the vacuum amplitude is fruitless.

Fig. 2.

‘a
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We will later need a lemma.-
Lemma 1. Let V and B be fixed, and let us fix a compact subset D of the
complex plane. Then, there is constant C such that for all x and for all g, in D,

we have
‘Z(’r.l.o.)(m),<0_

We do not include a proof of Lemma 1, as it is tedious but reasonably
straightforward. Moreover, Lemma 1 will only be needed for a side remark.

8. — Algebraic considerations.

We now embark on a proof that the regularized form of the renormalized
geries above converges in a neighborhood of g,= 0. The basic formula we
use is that of Gell-Mann-Low (see (*), eq. (17 .22)) as written by CATANIELLO (),
namely ’

(8)  <OIT[F5,(®) Ya,(¥1) .- Poy(@0) Yy (Yn)plhs) - @(:)]|0) =

Ty oo T
K, cananl "’lt ...t,)
By Byiaysns '(yx-u.’/n{ 1

Koo

We will show that K,, has a finite radius of convergence and will sketch in
Sect. 4 how the argument would have to be modified to cover the kernels with
external lines. Before renormalization, K,, is just the sum of all vacuum
graphs; it can be written

©®  Ke=3 "(‘2‘;1‘;)!'" f f A9, .. @gan[1 ... 2m] (; ::)=

=5 ot oy 3 (20).

M=

[1...2m] is the Haffnian Y [4,5,] ... [imjm] With the sum over all possible sets
By ceny b} Juy oee G Wi 3 < oo < 8 < Jy; oor; im < jm and all i’s and j’s distinet
and where
(10) [1]=id,(y:—y,) -

- 2m is the determinant
1...2m
(11)

1...2
1. zZ)= 2 e m)1a(L) (2) .. (2matzm)
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where a,,, is the set of all permutations on 2m letters. We have

|8, =90 i#j
(12) (i) = o
0 1=

(The «'s are spinor indices and |dy, is meant to include a sum over a; = 0, 1.)

The effects of the renormalization are twofold. The change to the aérated
propagator just changes (10). The dropping of all diagrams with bubbles (i.e.
1 a) and 1b)) is equivalent to dropping certain terms in the determinant, namely
those terms corresponding to permutations with 2-cycles in their decomposi-
tion into disjoint cycles. This follows from the direct analysis of the total
9m-th order term of (9) as the sum of all Feynman diagrams of order 2m (%%).
To summarize, we replace (9), (10) and (11) by

@) Kou=3 (_:zlz)mml!f...fdyl...dy,,,,[12]’ [2m—1 2m] (i z:),

M=l
where

(10 Y = idy.—9))

is the aérated propagator (7b) and

(11) (1 2'")’ = 3 (sgna)(1a(1))(2a(2) ... (2ma(2m))

1..2m o0

with @ the set all permutations on 2m letters whose decomposition into disjoint
cycles contains no 2-cycles.

We call the object defined by (11') a « bubblessian ». The prime conside-
ration of this Section will be to find an analogue of Hadamard’s inequality for
the bubblessian. We first find an expression for a bubblesian in terms of deter-
minants:

Theorem 1. (the bubblessian formula)

1..n) 1..n JURUTURE b R SN
a3) (1 n) = (1 n) +,§,(")(")(1 3

—n
)+
.

o) e
)=y

L AU & G S
e g(%h)(]l"x) wee (B G ) () (1 ?, ;-; » :)‘f‘ )

(45) A Buccarurer and G. Faxo: Nuovo Cimento, 13, 628 (1959).
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with k=0, 1, ..., [n/2]; here Y is the sum over all sets of distinet numbers
k
Brn ey By Jrg ooy Ju With <o < By 8 <<Jij oeij < jx- The lagt symbol in (13)

means to delete all the i’s and j’s from the determinant.

Proof. We first consider the term with k=1 above. If we expand the
determinant, we see that every term is of the form

(#7) (ji) (ln(l)) (2(512)) (mc(n)) (sgn )
where 7 is a permutation of 1, we; By ey 3y ey m. This is the same as
(17'(1)) (27(2)) .. (27(2)) ... (na'(m))(— 1) (sgn),

where 7'(k) = n(k), if k+#1,j and n'(é)=j, #'(j)= i. Thus, if a a' on n let-
ters has exactly one 2-cycle its contribution to the determinant above is sub-
tracted off by the k=1 term. However, & permutation with two 2-cycles
is subtracted twice, etc. A similar analysis of the k-th term of (13) shows it
is (—1)* times those terms in the determinant coming from a permutation with

at least k 2-cycles. If &' has exactly m 2-cycles and m >k, it will appear (7;:)

(, distinet times (1¢) in the k-th term of (13). Thus =’ will be weighted by a
factor of

3 (Z‘) (—1r=(@—1)"=0

if m> 0. As a result, the right-hand side of (13) will be precisely the sum of
all contributions to the determinant coming from permutations with no 2-cycles,
i.e., just the bubblessian.

Theorem 2. (Hadamard’s inequality for bubblessians)
' 1...m\'
o ()

(compare with formula (1)).

A ..
<(F)" tmax e
: ]
Proof. Without loss of generality, we may assume that max |(¢j)] = 1.
Then, by theorem 1,
1... };n
1... ;,,n

(4%) We can pick the k 2-cycles (t,7,), ..., (fxjs) from the m 2-oycles in this many
ways.

/2

il
< 3 4 (k)(n— 20",

k=D

e

Loom\l om_
(15) ’(1 n) s kgo g“'xh) we ()]




210 B. SIMON

where 3f (k) is the number of terms in Y. We have used the ordinary Hada-
]
mard’s inequality, (1), to obtain (15).

_n " n
But # (k) (2k)(2k).., for (2k
numbers iy, ..., x5 ju, -+ , je and (2k)!! = (2k —1)(2k —3) ... (1) is the number

of ways of pairing the 2n numbers off. Thus

is the number of ways of choosing the 2k

; (1 n)" oAl @R

1..n) <& @R (n—2k)! kit

T a1 [ (n—k)!
_g,k!(n—k)!i[(n—zk)!

o h(0) <o 5() (- )

(n—zk)m—'] <

In the above we have used

(n—k)!
(n—2k)1

— k!
(n—2k)Vr ((T”—_zik))_' (n)v—* =

= (n)m2 ("_:lf)(n—k-l) (n—zk + 1)<”.,. .

n n

We remark that the methods used to probe Theorems 1 and 2 are not de-
pendent on the fact that 2-cycles are involved. If one were analyzing a 3-di-
mensional Yukawa interaction (which is also S.R.), one would have to delete
bubbles with two or three Fermi lines; however, an analogous analysis for a
modified determinant missing two- and three-cycles would be possible.

The method above also enables us to understand some of Frank’s remarks
on « point loop renormaliztion » (¢2*2?), PLR is related to the fact that in (11)
we set (jj) = 0. This is important since §(0) is not defined. However if we re-
gularize the theory 8(0) becomes finite and nonzero. Frank’s « augmented
S-matrix » includes these diagonal terms () and PLR is the removal of them.
In (*) and () FRANK has two distinct arguments to show that if one can majo-
rize the augumented S-matrix, one can majorize the ordinary 8-matrix. We
can produce a third argument by using the analogue of theorem 1 with 1-cycles.
Eliminating the 1-cycles is equivalent to setting the diagonal terms equal to 0.
Theorem 1 with 1-cycles then lets us express the ordinary S-matrix element

(*”) Including these corresponds to failing to Wick order the interaction Lagrangian.

)

CONVERGENCE OF REGULARIZED, ETC. 211

in terms of the augmented, in fact if

8(0) 8(@, — ) ... S(@,—a,)
8(x; — ) 8(0) e Blmy—w,)
[<(8(0))~,
i
S(xe—az) S(@a—my) ... 8(0) i
then the analogue to Theorem 1 shows
0 Sz, —x,) ... S(z,—z,)
8z, — x,) 0 o S{x.—z,)
<(2800).
S(xn—2z,) S(r,—x) ... 0

This is just eq. (1) of (*2).

4. — The proof of convergence for the regularized series.

The next step is to regularize the theory. This is done by introducing two
cut-offs

A) A space-time cut-off.
B) An ultra-violet cut-off.

As we have remarked before, cut-off A) is essential if eq. (8) is to make
sense. On the other hand, the series in (8) after renormalization makes sense
without cut-off B), but we will need B) to prove convergence.

The effects of 4) are twofold. First, the integrals in (9') now only extend
over a finite region. Secondly, we replace the z-space form of the propagator
with a Fourier sum rather than transform (see eq. (7¢)).

Cut-off B) can be realized in two « natural » ways: B1) we can cut off the
propagators to be uniformly bounded in z-space. B2) We can restrict all
Fourier sums to a finite number of modes. Lemma 1 shows that condition
B2) will imply B1). In the classic arguments of CAIANTELLO (7-%°) for the
unrenormalized series Bl) implies convergence in a neighborhood of zero

coupling and B2) implies entirety of the kernels K, and Ky, :]t . For the

case of the renormalized series, we will show that B1) still implies convergence




212 B. SIMON

in a neighborhood. However, the standard arguments for entirety from B2)

do not appear to carry over to this case.
The proof of convergence is easy. If Bl) is true so that

i) 1< B; |GDI<F
then the m-th term of (9') is bounded by

(l%l')'% (V' T)tm B (%")" Fom

The factor of (9m/2)™ comes from using Theorem 2 on the bubblessian; VT is
the volume of the space-time box and the factor of 2'™ comes from the sum over
gpinor indices. If we let x = 9(VT):BF?, then (9') is majorized by

d mﬂl -
_gom"’ [gol™™ .
This series converges for [g,| < (ex)~* and thus (9') converges in a finite circle.

Let us sketch briefly the modification necessary to prove convergence for

the K, mlt . The renormalization does not eliminate all permutations with

2-cycles b-ut only those with 2-cycles between «internal indices ». Theorem 1
will hold for this new object if the sums over i and j are only over those «in-
ternal indices ». The remaining part of the proof now holds with obvious mo-
difications.

As we have already remarked, the proof of entirety does not go through.
This is due to the last term in the bubblessian formula (13). This last term
contains (2m)!/m!2™ factors (for n = 2m) each of order Fr» For large m,
3m!/m!m!2m~ 2= and thus this term alone is enough to prevent entirety unless
we can better control it. However, since there are no determinants we cannot
use Hadamard’s inequality or the improved estimates of Bucca.furri-Caisf-
niello (**). One might think of trying to prove these improved estimates di-
rectly for bubblessians; but their proof depends heavily on the symmetry of
determinants (**), a symmetry not shared by bubblessians. The last term of (13)
also prevents one from using the argument of YENNIE-GARTENHAUS () to
obtain entirety (**). It should be remarked however that there are cancella-
tions between different terms in (13) and these cancellations have been ignored.
Tf one could control them, then entirety might be provable.

(**) Through their use of Arnaldi’s theorem. . .
(%) Although the Yennie-Gartenhaus argument and Theoﬂ.am 1 will provide an
alternate proof of convergence in a neighborhood of zero coupling.
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5. — Diseussion of results.

Let us briefly recapitulate. We showed for a two-dimensional scalar Yukawa
interaction that renormalization could be accomplished by replacing the boson
propagator with a modified form (7) and by replacing the determinant in
Caijanello’s kernels by a modified object called a bubblessian. We then showed
that a modification of Hadamard’s inequality holds for bubblessians (Theorem
2) and used this to prove convergence of the regularized, renormalized series
by a method analogous to Caianiello’s 1956 approach (V7).

The arguments used will hold just as well for a two-dimensional pseudo-
scalar Yukawa interaction or for two-dimensional Q.E.D. (*)—the only dif-
ference is that , will not have as simple a elosed form as (5). The discussion
following Theorem 2, makes it fairly evident that the convergence argument
will go through for any S.R. theory with only {yyp interactions.

The significance of this result for the question of convergence of the unre-
gularized series is unclear. On the one hand, the rearrangements of renormal-
ization do not destroy convergence, on the other hand, the rearrangements
may destroy entirety (7). It can be argued (%2) and with much merit that this
convergence is to be expected even while the actual series diverges: there is
an unphysical model of GUERRA and MARINARO () which requires renorma-
lization and which is exactly solvable. For this model the actual answer is
nonanalytic at zero coupling while the regularized renormalized perturbation
series converges. However, this model involves a nonlocal field spread over
all space-time. Thus in a very rough way, this model is analogous to a static
external field problem, while local quantum theories are analogous to the
compact support problem. If there is any validly in this analogy, it is dangerous
to drawn conclusions from the Guerra-Marinaro model for the general case (53).

Then, the question of convergence of nonregularized fermion theories is
about as unsettled as it was before this discussion. But, to end on an optomistic
note, let me reiterate my belief that the problem can be settled by study of one
of the 8.R. theories.
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the problem, for his patience, advice and aid. I should also like to thank Prof.
E. R. Ca1aNieLLo for an enlightening correspondence on this paper.

() Because we are in a box, infra-red divergences will not appear.

(1) Since our radius of convergence (ze)* goes to zero as the ultra-violet cut-off
goes away, if this is an estimate of the real radius of convergence, convergence is doomed.

(°3) E. R. CAIANIELLO: private communication.

(**) However, the Guerra-Marinaro model does indicate that any proof of convergence
will have to use the rapid fall-off of the boson Feynman propagators in spacelike direotions.




