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We discuss the ground state energy, E(g), of  some anharmonic oscillators p2 + x 2 _ 1 + P(x, g), where P(x, g) is a 
polynomial in x and g. Included is an example with a convergent perturbation series converging to the wrong answer 
and counterexamples to Dyson's argument on instability implying the divergence of perturbation theory and to the as- 
sertion that terms lower order in x to the same order in g do not effect the asymptotics of  the perturbation coeffi- 
cients a n as n ~ oo.  

In this note, we want to remark on the behavior 
of  the ground state energy, E(i)(g), of two ,1 model 
hamiltonians, 

H(1) (g)=p  2 -  1 + g - 2  ((gx+ 1)2 - 1 ) 2 - 2 g x  , (1) 

H(2)(g) = p2 _ 1 + x 2 (g2 x2 + 1)2 _ 3g2x2 . (2) 

Note that as g $ 0 these both become harmonic os- 
cillators since expanding the polynomial gives 

H(1)(g) =p2  + x  2 - 1 +g2x4  + 2gx 3 -  2gx ,  (1') 

H(2)(g) = p2 + x 2 _ 1 + g4x6 + 292x 4 - 3g2x 2 . (2') 

We are interested in the behavior of  E(g) at g = 0 
and the associated Rayleigh-Sch65dinger perturba- 
tion series ,2  ~,a(ni)g2n. The results which we prove 
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*~ We express the hamiltonians in such a way that H = p2 + 
g-2f fgx)  + h(gx). We are indebted to S.B. Treiman for 
suggesting example (2) to us when we described exam- 
ple (1) to him. 

+2 Explicitly, one obtains the coefficients by using the usu- 
al series with V = H(g) - (p2 + x ~ _ 1) and then collect- 
ing all terms of a given order in g. 

below are very simple and unexpected: 

(I) 0 < E(1)(g) < C exp( -Dg-2 ) ;  

C , D > 0 ,  a(n 1 / = 0 ,  

(II) E(2)(g) = 0, a(n 2) = 0 .  

These results are in striking contrast to many of  
the heuristic arguments and expectations of  eigen- 
value perturbation theory; in particular: 

(1) For H (1), the Rayleigh-Schr6dinger series is 
convergent but to the wrong answer since E(1)(g)> 0. 

(2) There is a celebrated heuristic argument of 
Dyson [3] ,3 on the divergence of the perturbation 
series in QED: he notes that for e 2 < 0, there is no 
decent physical theory since the vacuum is unstable 
under breakup into a large number of pairs. Since 
power series converge in circles and there is no 
reasonable answer for e 2 < 0, one expects divergence 

,3  The argument has also been used to predict divergence 
of the series for the simplest anharmonic oscillator p2 + 
x 2 + g2x2, see Gottfried [2]. A rigorous proof of diver- 
gence in this case is contained in Bender and Wu [2], 
who count Feynman diagrams. A different proof  based 
on analiticity properties is found in ref. [4]. 
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for all e2. In the above examples the systems are 
formally unstable +4 for suitable g. 

(3) Our analysis below shows that while the series 
for the ground state energy E(2)(g) is convergent, 
the series for the corresponding eigenvector, g2(2)(g), 
is divergent at least in norm sense ,s  

(4) Lipatov and then the Saclay group have re- 
cently [ 5 , 6 , 7 ]  made a rather beautiful analysis, 
based on path space saddle points; of the asymptot- 
ics of the Rayleigh-SchriSdinger and Feynman series, 
an, for anharmonic oscillators and related quantum 
field theories. In discussing the effects of  renormali- 
zation, it is argued that terms which are lower order 
in the field to the same order in g will not affect 
the asymptotics so that for the formal study of  asymp- 
totics, one can ignore the effects of  renormalization. 
This has been questioned for renormalizable theories 
but not for super renormalizable theories. The above 
examples show that lower order terms can indeed af- 
fect the asymptotics of  the an'S in super renormaliz- 
able theories, for the series obtained by dropping 
the last terms in hamiltonians (1) and (2) surely ,7 
grow at n!. Since the significance of  our examples to 
the Lipatov analysis is the most important conse- 
quence of  our examples, we discuss it further below. 

Next, w e  turn to the proof  of  the assertions (I) 
and (II). One first needs to prove that the series 
~a(i)g 2n is asymptotic to the function E(i)(g). For 

I-1 (2), which is a single-welled oscillator, this follows 
from the most standard analysis (see, e.g., the paper 
of  Simon [4]), Since the potential in H (1) has a sec- 
ond minimum near x = _ g - l ,  where V(x) ~ 1, the 
analysis is not  quite standard; however the proof of  
the asymptotic nature of  the series for the double 
well in ref. [8] carries over with no change. Thus, 

*4 When g2 is negative, the potential is no longer real. The 
instability is indicated by the fact that the numerical 
range of H(g) (i.e. the set of expectation values 
(qJ, H(g)gJ) with I1~ 11 = 1) is all complex numbers. 

,s However, one can normalize ~2 (~) so that the power se- 
ries for x fixed, s2(2)(g' x) does converge. 

¢6 Earlier, Bender and Wu [6] have computed the asymp- 
totics of the simple x 4 oscillator. 

,7 In ref. [7], the an'sresulting when the last terms in eqs. 
(1) and (2) are dropped are computed within the Lipatov 
framework obtaining n! growth. Moreover, the first 78 
terms for eq. (1) with the -2gx dropped are explicitly 
computed and the numbers confirm the n[ growth. How- 
ever, we do not have a rigorous proof of n[ growth. 

the assertions about E (i) imply those about a (i). 
The assertions about E(i)(g) depend on the fact 

that 

/_/(i)(g) = [A(i)(g)] ,A(i)(g), 

where 

A(1)(g) = d/dx + x + gx 2 , (3) 

A(2)(g) = d/dx + x + gx 3 . (4) 

This shows that E(i)(g) >~ 0 and E(i)(g)= 0 if and 
only if the solution ~7(i)(g, x)  of A(i)(g) ~7(i)(g, x)  = 
0 is square integrable. In case (2), ~(2)(g, x) = 
exp ( 1 x2 _ ¼ g2x4) is square integrable showing 
that E(2)(g) = 0; 7 (2) is the ground state. The solu- 
tion rl(1) which we normalize by: 

1 ~/(1)(g, x) = exp (-½ x 2 - ½gx 3 + g g - 2 ) ,  (5) 

is not  square integrable at _0% so E(1)(g) > 0. How- 
ever, ~(1)(g, x) obeys 

1 --d-dr/(1)(g,, x = 1 ,  
zl(1)(g, x = --if) = 1 ,  dx - g - )  = 0 .  (6) 

Pick a function ~0 which is C °o with compact support 
so that ~(0) = 1, ~o'(0) = 0 and let ~g(X) be the trial 
function 

~g(X) = @l)(g, x ) ,  x >1 - l / g  , 

= ~ x  + l /g ) ,  x < ~ - l / g .  

Then (•, H(1)(g)~) = [IA(1)(g)~ 112 = O(g 2) but 
(~O, ~) =O(exp(+½ g-2 ) ,  so the bound E(1)(g) <~ 
Cexp(-Dg -2)  follows from the variational principle. 
This concludes the proofs of  assertions (I) and (II). 

To return to the discussion initiated in point (4) 
above, we begin by noting that the fact that the po- 
tential in (2) is a single well is somewhat deceptive. 
For under the change g -+ ig, H(1) becomes: 

//(3) = p2 + x 2 _ 1 + g4x6 -- 2g2x 4 + 3g2x 2 

= A (3)(g)*A (3)(g),  

with A(3)(g) = d/dx + x - g2x3. Again, as in exam- 
1 pie 1, rl(3)(x) = e x p ( - l x  2 + ¼g2x4 + z g  -2 )  is not 

square integrable, but since r/(3)(+I/g) = 1, 
(d/dx)r/(3) (+l/g) = 0, we have that 0 < E(3)(g) < 
D '  exp( -cg-2) .  The potential in/_/(3) has three wells 
at x = 0, V(x) = 0, and at x ~ +l/g, V(x) ~ 3. If  
the lower order term (i.e. the last term in each H) is 
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dropped, we have degenerate wells of  the type dis- 
cussed in ref. [7], i.e. multiple saddle points. Since 
the Lipatov method considers all complex g, even 
example 2 has a multiple saddle point.  Moreover, in 
each case, there is a degeneracy of  expected states: 
In case (1), the limiting eigenvalues for the well at 
x = 0 are 2n and for the well at x = - g - 1 ,  they are 
2n + 2. In case (3), the limiting eigenvalues at x = 0 
are 2n, at x = +_g-l, they are 4n + 4. These features 
suggest that asymptotic degeneracy of  excited states 
might be necessary for the kind of phenomena dis- 
cussed here but  this is not  necessar,, For example, 
if H(g) = A(g)*A(g) with A(g) = d/~z + x(xg - 1) × 
(xg + 7r), then E(g) = 0; the asymptotic eigenvalues 
are 27rn, 20r + 1)(n + 1) and 27r(Tr + 1)(n + 1) and 
no state is asymptotical ly degenerate. However, all 
the examples that one can construct of  the form 
H(g) = A(g)*A(g) with A(g) = d/dx + xQ(xg), Q a 
polynomial,  have the proper ty  that H(g) = - d 2 / d x  2 + 
g--2 V(gx) + W(gx) with V having a double minimum 
for suitable arg g, i.e. degenerate saddle points. This 
suggests it might be possible to ignore lower order 
terms unless these are multiple saddle points. Indeed 
Brezin and Zinn-Justin [11] , s  have analyzed our 
model (1) and find that in the Lipatov analysis if 
one properly treats the second zero eigenvalue pres- 
ent in the gaussian approximation,  then the leading 
3KK!  which is present when the 2gx term is dropped 
is cancelled by oscillations along this zero mode 

direction. 
We should mention another "appl icat ion" of  the 

upper bound E(g) <~ Cexp ( - D g - 2 ) ;  indeed, it was 
this application that  led us to consider these 
hamiltonians originally in connection with our work 
[8,10] on the Stark effect in atoms. In this connec- 
tion, one of us discovered [9] that the operator 
p2 + ex has no spectrum (1) if e is not  real. How- 
ever, it  appeared that a "memory"  of the spectrum 
shows up in that [[(p2 + ex - z ) - l l [  diverges as e 
0 so long as z is to the right of the line arg z = arg e. 
We came across example (1) in studying the rate of 
the divergence of  (/)2 + ex - z ) - l .  c learly,  one need 
only consider ( i e - l p  2 + ix - w) -1 ,  and then by  uti- 
lizing the invariances, x ~ x - a (conjugation with 

,8 We are grateful to them for their comments and interest. 

eipa); x ~ c~p 2 + x, p ~ p (conjugation with ei~p3/3); 
and x -~ Xx, p -~ ~ . - lp  (conjugation with e iD , D = 

On X)½ [xp + px]),  one need only consider (gp2 + 
ix - l /g)  -1  as g ~ 0.  Finally, taking p ~ (p + l/g), 

x -~x, and then x ~ - p ,  p ~ x, we are left to consider- 
ation of  (d/dx + x + gx2) -1 .  Thus the divergence of  
(p2 + ex - z) - 1  as e -~ 0 is directly related to the low- 
est eigenvalue of H(1)(g)! The net result ,9 is that  (p2+ 
ex - z) -1  diverges at least as exp(+a/e) as e ~ 0! 

Finally, we cannot resist remarking on one fea- 
ture of  the hamiltonian (1) which leads to rather 
speculative possibilities. Namely, (1) is a combination 
of a tunnelling hamiltonian together with a small ex- 
plicit symmetry breaking; such combinations are be- 
lieved to occur in the real world. Perhaps the rather 
striking cancellations also occur in a quanti ty of  
greater physical interest than the ground state ener- 
gy of an anharmonic oscillator. 

.9 One does not need to make all the above changes to ob- 
tain this result. One need only translate x to make z real 
and then try a trial function ~ (t7) = exp (-ie -1 (½p3 _ zp)) 
cutoff about one of the two points p = +-x/~ in 11(/72 + ex 
-z)~(p)ll; see ref. [9]. 
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