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Abstract. We extend the analysis of Paper I from two body dilation analytic
systems in constant electric field to N-body systems in constant electric field.
Particular attention is paid to what happens to isolated eigenvalues of an
atomic or molecular system in zero field when the field is turned on. We prove
that the corresponding eigenvalue of the complex scaled Hamiltonian is stable
and becomes a resonance. We study analyticity properties of the levels as a
function of the field and also Borel summability.

1. Introduction

Our goals in this paper are to extend the formalism developed by Herbst [16]
(which describes complex scaling in the presence of constant electric field) from
two body systems to N-body systems, to recover the beautiful results of Graffi and
Grecchi [13] on Borel Summability of the hydrogen Stark problem within this
framework and to extend these summability results to multielectron atoms. Some
of our results were announced in [17]. Subsequently, Graffi and Grecchi [37]
developed a different formalism which allows a discussion of certain N-body
systems in electric field. Their analysis appears to require that all particles have
charges with the same sign. Moreover, their method does not reduce to ordinary
complex scaling when the electric field is absent. However, since they need only
treat strictly sectorial operators, their method has some technical advantage over
ours.

While it is probable that with some extra effort, we could handle quadratic
form perturbations and non-local potentials, we will use the operator class of
Aguilar—Balslev-Combes [2, 8] and restrict to local potentials. As usual, let
H=L*R"), t=— 4, wO)f) (r)=e*"2f(e%) for O real and H_ , = D(¢) with the graph
norm. Notice that u(f) is bounded from &, to itself.
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Definition. Fix ¢>0. A self-adjoint multiplication operator, ¥, on L*(IR") is said to
lie in C} if and only if:
(1) D(V)>D(t), so V can be viewed as an operator in £($H, ;,9).
(i) Asan operatorin (9, ,,9), V is compact, i.e., V(t+ 1) ! is compact from
HtoH.
(i) V(O)=u@)Vu@®) ' as an L(H.,,H)-valued function has an analytic
continuation from fe(— oo, o) to {0||[Im6| < ¢}.

Aguilar and Combes [2] developed the complex scaling theory for —A+V
with Ve C?f and Balslev and Combes [8] the corresponding multibody theory
(neither were restricted to multiplication operators). Let é be a fixed unit vector in
R*. The Aguilar-Balslev—Combes theory does not extend to — A+ V(x)+ fé-x
and, at first sight, it appears hopeless to try to extend complex scaling to this
setting because of the singular nature of é-x. However, Reinhardt [24] boldly tried
calculations for this problem and this motivated [16]. While we will freely use
technical lemmas from [16], let us summarize its results to put those in this paper
into perspective. Fix Ve Cy'; f=0. For 6 with Imfe[0,7/3) and Im0 < ¢, let

ho(0)= —e™ 24+ fePé-x

WB)=hy(0)+V(0).
Then:

(1) For Im6>0, hy(f) and h(f) are closed operators on D(f)nD(é-x) and
ie~°hy(0), ie"’h(0) are generators respectively of contraction and exponentially
bounded semigroups. For =0, the operators are essentially self-adjoint on
D(t)nD(é -x).

(2) For Im0>0, a(hy(0)) is empty and o(h(9)) is purely discrete, ie., isolated
eigenvalues of finite algebraic and geometric multiplicity. In this region, o(h(6)) is 0
independent and in the lower half-plane.

(3) For fixed z with Imz>0,

: -1 __ _ -1
lmglgglqo (hO)—2)" ' =(O=0)—2z)"".

(4) If z<0 is an eigenvalue of t+ V of multiplicity d, then for all f sufficiently
small and 0 with Im 00, h(0) has at most d eigenvalues near z and their combined
multiplicities is exactly d.

All these results are from [16] except for two. First, it is not noted there that
ie °h(0) generates an exponentially bounded semigroup. This follows from the
analysis of ie”°h,(6) in [16], the quadratic estimates there [16] and the theory of
perturbation of semigroups [22]. The self-adjointness of (0 =0) follows from ideas
of Faris and Lavine [12]. Secondly, (3) was only proved in [16] under an extra
hypothesis. Here is a general proof of (3): By the result of Faris and Lavine [12],
(MO=0)—1z) [¥] is dense. Since for ne.#, [h(O)—h(O=0)]n—0 as 6—0 we need
only show that ||(h(f)—z)~ ! is uniformly bounded if Imz>0, Im6>0, and |6} is
sufficiently small. We will show that there is an E,>0 so that for Im¢>0 and
sufficiently small, the numerical range of h(6) lies below the line { — E, + ¢°s :seR}
and by sectoriality considerations this will complete the proof. By the unitarity of
u(0) for 0 real it thus suffices to show

Im(n, (h(ie) + Eg)e ™ "n) <0 (1.1)
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for o> 0 sufficiently small. Choose o, >0 with o, <Min{¢, 7/3} so that sina= ot/2
and sin30=0/2 for ae[0,x,]. Since e V(0) (t+1)~* is compact and analytic in
Im0|<¢ we can choose [[V(0)e %(t+E)"'| to be as small as we like for
ImOe[ —oy, o], [ReH] <1 by taking E large enough. For E, large enough we can
thus obtain the bound

;l%V(l'oc)e“i°‘(t+E0)“1 <172, ae[—og 0] (1.2)

by a Cauchy estimate. (1.2) implies (by integration)
(V(iw)e ™™= VO) (t+Eq) ™ =lol/2;  ae[—og, 0] (1.3)
and by interpolation
I(t+Eq) ™ 2(Viioe ™~ V(O) (t+Eo) ™2 S0/25 e[0,0]. (1.4)
Thus

Im(y, Vlia)e ™ *n)=Im(n, (V(iz)e ™ — V(0)n) < %(17, (t+Eohn). (L.5)
Hence for ae[0,u,], (1.5) gives
Im(n, (h(i)e ™™+ Ege ™ *)n) < (11, { —tsin3a+ %(t +Ey)—E, sinoc} 11)

which is <0 by our choice of «,.

We emphasize the condition above that Imf< /3, since at Imf=mn/3 the
spectrum is again continuous on account of h(in/3) being unitarily equivalent
(under x— —x) to —e™3h,(0=0). Also the convergence in (3) is definitely not
norm convergence, nor does it hold for z with 0> Argz> — .

In this paper, we wish to consider operators on L*(R"") of the form:

M=
M=

Vi) -+ f

1 i

N
= 2 @m)7 A+ Y Vr—r)+ g
i=1 j ;

i<j i

1

it

or the slightly more general operators that arise from removing the center of mass
motion from general N-body systems. The extension of properties (1)-(3) to this
setting will be fairly easy: the only real restriction other than the obvious one that
all potentials lie in some C}’ will be that certain requirements on the ¢;’s and m;’s
are necessary for (2) to extend — for example, in the above case where there is an
infinite mass particle we need to know that there exists no non-trivial breakup into
two or more clusters each of which is neutral. We will accomplish this in Sect. 2.

The extension of property (4) will not be so easy for the following reason. In
[16], the resolvent equation (h(0)—z)™ ' =(hy(0)—2z)" ' (1+V(0) (hy(6)—2)" )~ !
was used extensively. A key role was played by the fact that the numerical range of
ho(0) was precisely {(Z+y)e” 2 +xe’:y20, xeR} =K with X =infspec(h,(0=0,
/' =0)),1.e, zero. This equality for X is true because for f =0, h,(6) is normal so that
its numerical range is the convex hull of its spectrum. For N-body systems, the
natural replacement of the resolvent equation is a Weinberg—van Winter or other
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N-body equation with compact kernel. This will involve operators H () built out
of subsystems and we will need a bound on (H,(0)—z)~ ' uniform in small f for
z¢ K where K is the above set with X now the lowest threshold of H(f =0). Because
H (0, f =0) is not normal, the numerical range of H,(6) will not lie in K in general,
even though K contains the convex hull of the spectrum of H(6, f=0), so the
bound on (H () —z)~* will be more subtle to obtain. In Sect. 3, we will show how
to obtain a bound of the form:

I(H 0, /)=2)" | =C,[dist(z, K)—&] ! (1.6)

for all z with dist(z, K)>e. Here C, is an ¢ dependent constant and (1.6) will only
hold for |f] < F(6,¢). (1.6) will follow from an estimate

JexpLtie”*Hyf0. )11 = C.exp | Retie2)+ 5

t). 1.7)

(1.7) will be proven by developing an equation for the semigroup analogous to the
Weinberg-van Winter equation; indeed it will just be the inverse Laplace
transform of that equation.

Once we have the estimate in (1.6) the stability method of Avron et al. [4]
exploited in [16] will yield stability in the N-body case for eigenvalues below the
lowest threshold. Indeed, we will be able to obtain a resonance eigenvalue in a
sector of the complex plane. Specifically, so long as all potentials lie in C} with ¢
sufficiently large (e.g., Coulomb potentials), we will know that for any non-
degenerate eigenvalue, E,, of H{@=0, f=0), there will be an eigenvalue, E(f), of
H(0, f) for f small, real and positive and any 0 with 0<Im6<=/3. Then E(f) is
analytic in regions of the form {f|0<|f|<R;, —7/2+d<argf <3n/2—45}. We will
also obtain analogous results for some degenerate eigenvalues E,. In particular,
this will allow us to recover the Graffi-Grecchi result [13] on Borel summability
of the Stark eigenvalue in Hydrogen and a similar result in atoms and molecules.
We also relate the width of the resonance to the growth of the coefficients in the
perturbation series. These results on analyticity of eigenvalues may be found in
Sect. 4. The necessary estimates to complete the proof of Borel summability can be
found in Appendix A. In Sect. 5, we describe falloff properties of eigenfunctions.

It is known that for hydrogen in a non-zero (real) electric field, the
(unscaled) Hamiltonian has no eigenvalues, i.e., imaginary parts of resonance
energies are non-zero. This is a result of Titchmarsh [32]; see also [1, 3]. So far as
we can determine, their proofs do not extend to multielectron atoms. In [17], we
announced a result to the effect that discrete eigenvalues of atoms turn into
resonances whose imaginary part is necessarily non-zero. Unfortunately our
method of proving this last fact ran into certain technical difficulties in the
multiparticle case. Since we feel the basic scheme which relies on ideas of Balslev
[7] and Simon [25] may be sound and since the difficulties illustrate our
ignorance of certain questions in operator theory, we describe the method for two
bodies and some of the problems in extending to N-bodies in Sect. 6.

In Appendix C, we describe some basic estimates which we found and which
one of us has used elsewhere [28].
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We refer the reader to [43] where the subject of Schrddinger operators with
electric fields is reviewed. The Weinberg—van Winter semigroup analysis of this
paper is replaced there by a simpler technige.

It is a pleasure to thank S. Graffi, V. Grecchi, E. Harrell, and W. Reinhardt for
valuable discussions.

2. Basic Spectral Analysis

We want to consider N+1 particles in v dimensions with masses m,, ...,my,; and
charges q;, ...,qy ;- The basic Hamiltonian in a constant electric field —|f|é (é a
unit vector in R") is thus:

- N+1 N+1
Ho(lf)=— 21 (2?rlj-)_14‘,~4-lj"lé'(.Z1 quj)‘ 2.1)

We begin by discussing removal of the center of mass motion, a subject already
explained briefly in [5]. As usual we define

N1
g1
R=M"" ) my;
j=1
N+1
M=} m;
Jj=1

and let { be a generic symbol for a linear function of the r;—r;. Also as usual the
basic Hilbert space, H= L*(IR*V ) is factored as

52551\4@5

with $c,, = L*(R") functions of R and $=L*(R*™) functions of the {’s. H,(|f])
factors as:

Ho(f)=HSM @1+ 1@H,(f]).

where
H{M=—(2M)™ ' Ag +|f1é-(QR) (22
with
N+1
Q= ';1 q;-

The exact formula for H(|f]) will not concern us.
For later purposes, we note the condition that all the electric field terms are
absorbed in HGM.

Proposition 2.1. H(|f|) is independent of |f| if and only if q;/m;=Q/M for all i.

Proof. One clearly has independence if and only if

N+1

OR= ) qy,.
j=1
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The formula for R completes the proof. []

The operator on L*IR™) obtained from (2.1) by suppressing 4,,, and
dn+1Ty+; Will also be denoted by Hg(|f]). In that case, we say that “my,, is
infinite”.

For 0 complex and # real, we also introduce the symbol H,(|f], 6, #) for the
object obtained by removing the center of mass from

N+1 N+1

H(f],0,n)=—e 2 '21 @2m)~ A+ fle"e%- Zl qr;. (2.3)
i= i=

Given N(N +1) potentials V;,€ C}, the Combes class of Sect. 1, we identify V;
as a function of r;—r; (if my, ; = oo Vi n+1 1s a function of r;) and let for [Im0)| <¢

V)= 3. V(0

i<j

H(f)=H,(fD+V
H(lf1,0,m)=H(lS1,0,m) + V(D).

The reason for including an # in the above is to allow f=|f|e™ to be non-real
when we consider analyticity properties in f.

Theorem 2.2. (a) H(|f|) is essentially self-adjoint on S (R*N).
(b) The operator

Lo(f1,0,m)=ie™""H(|f1,0,n) (2.4)

defined on D(— A)nD(é- Y q( Ar;—R) = is closed and the generator of a contraction
semigroup so long as |f|>0 and Re(ie 3" ") >0, ie., 0<3ImO+n<m.
(c) The operator

L(f1,0,n)=ie”"""H( f1,0,n) (2.5)

defined on & is closed and the generator of an exponentially bounded semigroup so
long as |f]>0, 0<3ImO+yn <= and |ImO| <, the angle in C{f.

(d) Hy(1f1,0,%) and H( f1, 0, n) are holomorphic families of type (A) as functions of
0 and f=|fle™ in the region

(0, N0<3Im0+n<m, Im0] < ¢, |f] >0} =2. (2.6)

Proof. (a) This follows from the Faris-Lavine theorem; see [12] or [22; Sect. X.5].

(b) This is a restatement of results of Herbst [16]; see Theorems I1.1 and IL.3
of that paper.

(c) By hypothesis, V(6) is an H (] f| =0)-bounded operator with relative bound
zero. By the quadratic estimates, Proposition I1.4 of [16], it is automatically also
H(|f1,0,n)-bounded with relative bound zero. Moreover, it is easy to see that
H(|f],0,n) has numerical range in a half-plane. Thus the claimed results follow
from standard ones in the perturbation theory of semigroups; see e.g. [22].

(d) This follows from the definition of type (A4) family [18, 23] and the fact that
in the region in question, H and H,, are closed on the fixed domain, 2. []
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Definition. We say a system of charges and masses (q,7,),....(qy4 1> My41) 1S
ineffective if and only if there is a non-trivial decomposition D={C,, ...,C,} of
{1,..,N+1} so that Q,/M,=0Q/M for all « where Q,= ) ¢;; M,= ) m; If

jeCqy JjeCo
My, =00, we say the set is ineffective if and only if there is a non-trivial
decomposition {C,,...,C;} of {1,...,N+1} with N+ 1 in C, such that Q,=0 for
o> 1. If the system is not ineffective, we call it effective.

Note that a system with one positive and the remaining charges strictly
negative with the same charge to mass ratio is always effective even when the
positive charge has infinite mass. Notice also that since gy, , drops out if
my ., =00, we can take a set of fixed charges and m,, ...,my and take my,, to
infinity so that the limit is ineffective even though the approximates are effective.
Given the theorem below this says there is an instability of essential spectrum as
my,, goes to infinity which is associated to the instability of this spectrum as

1f1-0.

Theorem 2.3. Let (0,|f|e™) lie in the region & and suppose that the masses and
charges are effective. Then H(|f],0,n) has purely discrete spectrum.

Proof. We describe the details for my , ; + co. The modifications if my , ; =0 are
easy. For a given decomposition D of {1, ..., N+ 1}, we define H, in the usual way
by dropping all ¥; with i and j in distinct clusters. As usual, there is a

1

decomposition H= X) Hc. ®H,

Hp= ) [H(C)®I1+[h,®I], 2.7)

CueD

where $, are functions of the internal coordinates of C, and $,, are functions of
differences of center of masses of clusters. In (2.7) the symbol [A®I] indicates the
tensor product of operators 4 on one of the factors and I on all other factors. Each
factor is different: $, for H(C,) and 9, for hy,.

Since L, L(C,), /, all generate exponentially bounded semigroups, it is easy to
see that

e—tLD — [@e“"“‘c“)}@e”"" .
a
Moreover, hy, is just what results from removal of the center of mass from
hp= —e‘zez(ZMa)_lAa+Ifle””eeé-(ZQaRa).
a a

By Proposition 2.1, and the effectiveness hypothesis, ki, still has a non-zero electric
field term and so by Proposition IL.2 of [16].

lle™?| <exp(—Ct?)
for C>0. Since [le ") <P for some B(x), we see that
[ lee o) dt < oo

for all z in C. Thus, (H,—z)~ ! is an entire function.
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By Theorem 2.2, one can go to a region in the complex plane where the
perturbation series in V(6) for H converges and make the necessary rearrange-
ments to obtain Weinberg-van Winter equations for H, i.e.,

(H—2)"t =D(z)+‘I(Z)(H—z)_1.

Since D(z), I(z) are made up of (H,—z)~ s, they are entire functions. Moreover, by
the quadratic estimates (Proposition 114 of [16]), and the hypothesis on V;;, I(2) is
compact in the region of perturbation series convergence and so in the whole
complex plane. Thus, in the usual way, (H —z)~! is meromorphic with finite rank
residues, i.e., H has purely discrete spectrum. [].

For ineffective charges and masses, the essential spectrum may not be empty
but one can still identify it. The following theorem is proved in Appendix B:

Theorem 2.4, Suppose n=0, 0 <Im60 < Min(¢, n/3), | f| >0 and suppose the charges
and masses are ineffective. Then

O-ess(H(lfla 0))=U{/11 + '~-+;1k+€_29‘u} ,

where the 1, are discrete eigenvalues of H(C,), £=0 and we run only through those
decompositions D={C,} with Q,/M ,=Q/M.

By an argument identical to that given in the Introduction for the one-body
case we have

Theorem 2.5. Fix n=0 and |f|. Then for Imz>0
s-im (H(f],0)—2)" "= (H(f)—2)"".

Im6,0,6—0
Remark. One can also obtain a result of this genre on the limit of the resolvent as
|f110 but as we will prove a stronger result in the next section we don’t write that
down here.
In the usual way one obtains:

Corollary 2.6. For n=0, 0<Im60<Min(¢,n/3), we have o(H(|f],0))C{z:Imz=<0}
and the point spectrum of H(|f|,0=0) away from a, (H(|f|,0))NR is identical to
O-disc(H(IfL 6))(—\IR.

ess

3. A Semigroup Weinberg—van Winter Analysis

In this section we will find it convenient to be more systematic in our notation. We
denote the operator appearing in (2.3) by H,(f,6) where f=e"|f]. An operator
without a tilde as usual has its center of mass removed. We write

H(f,0)=H,(f.0)+V(6)
L(f,0)=ie”"e™"H(f,0)
H(0)=H(0, 0)
5 =info(H(0))
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and introduce the sets
KO)={Z+ie 2+ pu:2=0,u>0}
K(n,0)={z+xe%™":ze K(0), xeIR}
K, (n,0)=ie" e °K(n, )
Fo={n,0):Im0| <$,0=n+Imb=n,0<y+3Imb<n}.

Note that if |Im ] < 7/2, K(6) contains the convex hull of the spectrum of H(8).
The conditions 0 <#+ 3 Im6f <z, [Imb| < ¢ are natural because if we also demand
|f1>0(f =|fle'™ then H(f, ) satisfies the quadratic estimate of [16] and H(f, 0) is

analytic. The additional condition 0 <# + Im 6 <= guarantees that K(», 0) is a half-
plane. Thus if (y,0)e.¥, with O<n+Imf<n

K(n,0)={Z +xe%e"+u:xeR, u=0} (3.1)

while with n +Im6 =0 (respectively n), K(#, ) is the lower (respectively upper) half-
plane.

Also note that if (n, 0)e %, then |Im0| <n/2.

Our goal in this section is to prove the following:

Theorem 3.1. Fix a compact subset &, of 50 {(n, 0):0<n+1Im6<n}. Then for any
&, >0 there is an f, >0 and a C_ < oo so that

IH(f,0) -2 =C,,
(n,0) e, and
Rel[ie " %z— X +¢,)]=0. (3.2)

Theorem 3.1 follows from

so long as 0<|f] < f,

£1°

Theorem 3.2. Fix a compact subset & of #,. Then for any £ >0 there is an F,>0 and
a C,<co so that if 0<|f|<F, (4,0)e &

e E00) < éee—t(i(n,ﬂ)—a) , (3.3)
where X(n,0)=Re(ie "e~ °X)=inf{Rez:ze K,(1,0)} .

Proof of Theorem 3.1. Given & >0 and %, as in Theorem 3.1, choose
e=3inf{sin(Im0 +n)e "**:(n, 0)e &, }. Then if z satisfies (3.2) and (3, 0)e ¥,

Re(Z(n, 0)—ie Me~92)=Re(ie” Me~ %X — 2))
zee” Re%in(ImO+n)=2¢.

Thus for (y,0)e ¥, (we choose & =%,) and 0<|f|<F,

SONH (L0 —2)" ] =

w
J’ e—-t(L(f,O)—zie‘i"e“’)dt
0

e—tRe(E(n, 0)—zie~ e~ 0 — s)dt
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Theorem 3.1 which is needed for subsystem Hamiltonians in the next section,
says essentially that as long as we take an extra ¢ width and |f] small, we can
control the norm of the resolvent outside the region of sums of the form p+ 24 with
p in the convex hull of o(H(0)) and lea(e™e’x). It is thus a replacement for
numerical range arguments of [16] which are possible when N =1.

Before beginning the proof of Theorem 3.2 we will need some further notation.
Since we will be taking |f|—0 in the operator L(f,6) we introduce

L'(n,0)=ie" e "H(0).
By convention L(0,0)=L(n,0). In addition we will need
H,=H(0,0)
r=E—
W, (¢)=multiplication by exp(a ]/sz:-l)
We begin with two technical lemmas:

Lemma 3.3. Suppose & is a compact subset of {(|f], 1, ):0<3ImO+y<mn, Im6)|
<@} and J is a subset of the pairs {(i,j):1Si<j< N+ 1}. Define for o;;e[ 1, 1],
W)= [] W) and L(f,0,0)=W(e) L(f, O)W(—a) with domain C(R*Y). Then

@@, j)eJ
there is an E>0 so that for all (|f],6,n)e S and all o;€(—1,1)
@ L( £.0,a) is closable. Denote its closure by L( f 0,a).
(i) L(f,0,0)+E is maximal accretive.
(iii) If pe D(W(—a)), e V0D HY(W(—a)) and

e—tL(f,G)w(_a)qS:W(_d)e~tf,(f,0,a)¢ (34)
(iv) ||Hye "HS00) < Ctmtet®,

Lemma 3.4. Suppose Be C})\. Then as 510

exp(—81/r2+ 1)BO) (— 4+ 1) 1L By (— a4+ 1)
uniformly on compacts of {0:]Im0| < ¢}.
We leave the proof of Lemma 3.4 to the reader.

Proof of Lemma 3.3. We first show that under the stated conditions, E can be
chosen so that L(f, 6, o)+ E has numerical range in the right half-plane : First note
that (p, = — iF})

W(a)p,W(—a)=p, +ig.r),
where

gk(r)_ Z ak}rkj/l/ rkj Z o(Jkr k/l’ r1k+

(k, HeJ

Thus
W@)H,W(—a)=H,— Z|gk[2/2mk+iZ(pk'gk+gk'pk)/2mk:Ho+G(a)>
k k
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where
Glo)= — ;lgklz/ka-i— % Y o((pm) — (p/m) ¥/ /124 L.

U, ke

We have
W) (H, + V(0)e*?) W(~a)= H,+ V(0)e** + G(a).

Because of the compactness and analyticity of Vij(e)(—AH—l)‘l, we have
lim | V(0) (Hy+A)~ =0 uniformly for 6 in compacts of {#:[Im6|<¢}. In

A=

addition, lim | G(e) (H,+4)"'||=0 uniformly for o in compact sets. Thus there

A=

is a 4,>0 such that for 8e D={0:(|f], #, 0)e &} and ael—1,1] all G, j)ed

|Lm(¢, W(ar) (Ho + V(0)e + o) W(— o))l
<tany Re(, W(ar) (H, + V(0)e* + o) W(—0)),

where y=Inf{n+3Im0,7—(y+3Im0):(|f],%, 0)e F}. In fact, if

c(d)=  sup ] I(Gle)+e>V(0) (Ho+2) 1|

0eD,a,je[— 1,1

we need only take A, so that c(1y)/1—c(A,)Stany. Thus W(a) (H,+ V(0)e?’
+ 1) W(—a) has numerical range in a sector between the angles +y. Now

L(f, 0,0) =ie™ %™ "W(a) (Ho + V(0)e*’) W(—a) +il f1X
N+1
with X=é-< > qiri—QR) so that
i=1
L(f,0,0)+ Agie 3%~

has numerical range 'in the right }Nlalf—plane if y£3ImO+y=m—y. If we take
E=sup{Re(lyie e~ "):(|f],0,neS} then L(f,0,0)+E has numerical range
in the right half-plane for all (|f],%,0)e . Let

Lo(f,0)=ie~%e""H (f,6).
From [16], CZ(RY) is a core for L(f,0). Consider the operator
M(a, A)=(L(f.0,0) — Lo(£,0) (Lo(£0) +4) "

with domain (L(f, 0) + 1) CR(R*Y). By the quadratic estimate of [16], M extends to
a bounded analytic operator valued function of & which approaches zero in norm
as A—o0. This has the consequence that Z(f,0,a)+E is maximal accretive with
domain equal to Z(L,(f,0)) and that

(A+L(f,0,a)) !

is analytic in a for Rea;;e(—1,1) and A>E. [Here we use the fact that W(a) is
unitary for & imaginary.]
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We have proved (i) and (ii). To show (iii), first note that for fixed ¢, e ~**/:%-%) jg
analytic in a for Rea;;e(—1,1) so that for ¢, pe CZ(R™) both sides of

(W™ ey, e 098y = (1p, e LU0~ () ) (3.5

are analytic in o, equal for o imaginary and thus equal for «;e(—1,1). By a
limiting argument (3.5) holds for ¢pe Z(W(—a)) and thus e ™%/ 0 “)(l)e DW(—a))
and (3.4) holds.

To prove (iv) we consider the operator

I(t)=%(t)e LS00+ H (3.6)

where %(t)=exp(i| f1X1). If pe CL(R*™) we can differentiate x(¢)=1I'(t)¢ to find the
evolution equation

dx(t)
— =~ AWx() (3.7)
with
A@W)=2(1) [ie™ 3%~ "Wi(a) (Hy +e> V() W(—a) + A]U(—1). (3.8)

Now A(t)—1 is sectorial for large enough 12>0, with numerical range between
n/2— 0 and —n/2+ 6 uniformly for (|f1,7,0)e & and o;;€(—1,1) if 4 is chosen large
enough for some 6 >0. In addition estimates of the form

lAB A~ sc,;  tse[0,1]

<c,; tse[0,1],Rez=0

d
‘;i—t {A®) (z+A(s) ™1}

are easy to prove if 4 is large enough with ¢, independent of (| f], #, 0)e S t,se[0, 1],
z in the right half-plane.

Under these conditions Tanabe [31] and Sobolevski [29] have investigated the
solutions to (3.7). Tanabe’s method is outlined in Yosida [36] where it is shown
that

lAOT @) Sc ™5 te[0,1], (3.9)
where the constant ¢, depends only on ¢, and the angle 6. Since we have
1Ho% (=)A< c;
uniformly in the relevant region we find
|Hoe™"F-00 D) = | Ho(— 1) A()) ™A@ T ()]
Syt te[0,1].
This demonstrates (iv). []

We now have the bounds necessary for a discussion of the terms which will
appear in our Weinberg—van Winter semigroup expansion.

Lemma 3.5. Suppose & is as in Lemma 3.3. Let S=(Dy.,, ..., D,) be a string of
cluster decompositions (where D, has ¢ clusters and D, , refines D,). Denote by Ly,
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the operator L(f,0,a) with all interactions V,,(0) between different clusters of D;
removed. Let P (t)=exp(—tLp ) and suppose ||P(t)|| S ce”, for all (|f1,n, O)e Z.

Suppose f;, j=k,...N are multiplication operators with |B(H,+1)""
=7y;< 0. Then for each ¢ >0 there is a C,< co independent of B; so that for all t;>0

“PN-!—l(tN+ l)ﬁNPN(tN)BN—I"‘ﬁkpk(tk)”
N N+1 —(1—1/ng) N+1
<el i) (5 oo
i=k ji=k =k

for all (f|,n,0)e #. Here ny=N+2—k.
Proof. We write the operator under consideration as

N-k
( 11 ) [(1+HoY™Py, ity +Hy)' 0T Dime)

j=0

{(1 +HO)—(1 -+ 1)/nk)ﬁN_j(1 +HO)—(J'+ 1)/nk} (1 +HO)(N—k+ 1)/"kPk(l-)

and estimate the result as a product of norms.

By interpolation [[(1+H,) *B,1+H o)t <y, for xe[0,1]. In addition since
Lemma 3.3 holds for the adjomt of Ly(f,0,a) as well as for L,(f,0,a) we have
((A+H)P O] +Pt)(1+H, WEet™ for te[0,1], and thus again by
interpolation

I(L+ HoV POl + 1P ) (L+ Ho)[| St~

if xe[0,1] and 0<t<1. Thus
I(L+HoY Py (L +Ho)' ™7 1 S (L4 Ho)*P(t/2)I| | P(¢/2) (1 + Ho)' 1|
Scr~ @ tmds <1, xe[0,1—1/n,].
If t =1 we can estimate for the same x
(1 +HolPy(0) (1 +Hg)' ™ ™ < cexp(yt)
and thus for any ¢>0 the latter norm is bounded by
dgt™ 71 expl(y +e)t]

for some d,. Combining the above estimates results in (3.10). []
In our semigroup expansion we will have to deal with integrals of operators
like the one we estimated in Lemma 3.5. The next lemma controls these integrals.

Lemma 3.6. Under the hypotheses of Lemma 3.5. let
F(s)= [dty, .. dtd(t+ ...+ ty s —5)Pyy ity ) By BiPultid s

where s>0 and the integral is a strong integral. Then for each ¢>0 there is a C,
independent of B; so that

N
|FI=C, ( il y,.) expls(y+2)] G.11)

and if pe C3(R™™), F(s)¢ is Holder continuous uniformly on compacts of (0, T] for
any T>0.
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Proof. From Lemma 3.5

N+1

N (1= 1/mo)
|F(s)]| §C8<H yj)fdtN+1...dtk5(tk+ N —s)( Hk tj) exp(s(y +¢)).
Jj=k j=

The change of variable ;=4 gives

N+1 —(1—1/me)
jdtNH...dtk(S(tk—i—...+IN+1—S)(1_[ tj)

ji=k
N+1 —(1—1/mx)
:jdANH...d/lk(S(/lk-l—...+2N+1—1)(H /1}.) —c
j=k

with ¢ < oco. Thus (3.11) follows with C,=cC,.
To prove the Holder continuity we write

F(s+A)¢= j dtyyy- Al Pyyy(ty )Py

stAZt+1+t...FtiIN+120

Ps+A—ty,y-. =l )P

= j' diy .y dty  Pyygltye ).

stAZtr 1t FINE1I2S
Pls+A—tyiq.. =l y)P
+ F(s) (P ()~ D)+ F(s)g.

Thus using (3.11) and Lemma 3.5

[(F(s+4)—F(s)oll=c j diyyy--dby g

SHAZtkr1F o FINFIZSS
N+1 —(1—1/nx)
( I1 ti) (S+A=tyyy o=ty ) TR Ly, B
j=k+1
for se(0, T7.

The first term can be estimated using Holder’s inequality by the expression

dty, ...diy, 11)1/‘1

|
stAZte+1t...FIN+12S
N+1 —-a\1/p
-(jdtk...dtN+15(s+i—tk...~tN+l)(1_[ tj) ) ,
ji=k

where a=p(1—1/n)<1,and p~ ' +¢q~*

constAY(s+A)"™

=1. The above expression is bounded by

for some m. This gives the required Holder continuity. [

We can now prove the semigroup analog of the Weinberg—van Winter
expansion. This expansion was discussed by Weinberg in [35] where the equation
for resolvents is derived.
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Proposition 3.7. Let P(t)=e 2% where D is a cluster decomposition and
suppose 0<3ImO+n <z and |ImbB) <. Then for t>0

e 0= Y (=5 ey dt 0+ oty —OPp | (Eysy)
S=(DN+15-» Dy)
BNP o (ENBY— 1 - BRPp(t) (3.12)

where B3 =ie~%e™"X'V,(0) and X' is the sum over all pairs (i,j) with i<j which
connect the two clusters in D, which are joined together in D,.

Remark. If we write P(t)=e~ "L and D(t)=[sum of terms on RHS of (3.12) with
S disconnected], we can rewrite (3.12)

P(t)=D(t)+ jI(t—s)P(s)ds (3.12a)
0
or
P=D+1I%P,
where
I(s)= Z (—1)"""“jdt,Hl...alt2

S=(Dn+1,...,D1)
Sty s o tiy—8) Py (tyy )BY---BS -
In some applications it may be helpful to invert (3.12a) and use
P=(1—1Ix%)"'D
but we will deal directly with the expansion (3.12).

Proof. For — Rez sufficiently large we have the usual Weinberg—van Winter
expansion

(Z—-L(f, 9))_1= Z (Z“LDNH)_I.B}S\J(Z‘_LDN)_lﬁi—y--ﬁi(z_lq)k)—l~

S=(DnN+1,--» Di)

Denoting by G(¢) the difference between the left and right sides of (3.12) we have by
(3.13)

z (p, G(t)p)e~**dt =0

for — Rez sufficiently large and hence (y, G(¢)¢)=0 for almost all t>0. By the
continuity result of Lemma 3.6, G(t)=0 for all t>0. [
We now begin to consider f—0. We denote L,(0,0) by Ly(n,0).

Lemma 3.8. Suppose &, is a compact subset of {(1,6):0<3Im0+n<m, |Im6| < ¢}.
Suppose S=(Dy 41, ... Dy), i.e., S is connected. Then as |f]|—0

N+1
j( dtj>5(t1+...+tN+1—r)e"N*'LDN»l‘f"”ﬁﬁ...ﬁie”lLDL(f"”
j=1

N+1
- f(n dtj)é(fl+-~~+tN+1—t)e"”*‘L"’””‘""”ﬁﬁ--ﬂfe"‘Lb“”"” (3.14)
j=1

uniformly for te(0, T] and (n,0)e &, for any T>0.
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Proof. Let F(t, f,6) be the operator on the left hand side of (3.14) and F'(t, 7, ) the
operator on the right. Lemmas 3.4 and 3.6 show that if all potentials V, (6)
appearing in each f are multiplied by W,,,(— ) to give S ;, the resulting operators
Fy(t, f,0) and Fi(t,n, 0) converge in norm to F(t, f,6) and F'(t,n,6) as 60 uniformly
in the region 0<|f|<1,0<t =T (1,0)e &,. [Note that by Lemma 3.3, L,, (. 0)+ E
is accretive for some E independent of (1, 8)e %,.] Hence we need only show that
for a fixed § >0

I }1'130 I Fyt, f,0)— Fit,n,0)]| =0

uniformly in (t,%,0) for 0<t<T, (y,0)e ¥,. We first write each ﬂi 5 as a sum of
potentials (which include decreasing exponentials factors) and consider operators
G,(t, f,0) and G(t,n, 0) resulting from keeping one potential from each 3 ;. Since S

is connected, the product of potentials in G(t, f,6) contains a factor [[ W, {(=9)
(i, j)ed
where Jissuch thatc ) [r, {2 ). [r;. We change e 752,09 to 745019 ope at
() i>j
a time using the du Hamel formula

e tilp,(f,0) — ,—t;Lp,(n,6) _ llf| fdsldszé(t —8;— Sz)e—leD,(f,O)Xe~ssz,(n,6)
J

where X =é-(Xq;r;— QOR). We thus write G,(t, f, 0)— G5(t.n, 0) as —i|f] times a sum
of terms of the form

N+2 N+2
f( 1_[1 dtj)5 (t_ Z tj) Py oty )0y 1 Py (tys )0 Po(ty), (3.15)
i= j=1
where one of the o's is X and the rest are of the form ie™"e™ "W, (—0)¥;(6) for
some (i, ), while P (f)=e~""?:% or "9 for some D.
We need only show that a term like (3.15) is uniformly bounded as |f|—0 and
(1,0) and ¢t vary over &, and (0, T] respectively. We use Lemma 3.3 to move all

W,/’s past operators P,(t,) to the point where X occurs. Since |[X [[ W(—d)| <
@i, et

the expression (3.15) is uniformly bounded using Lemma 3.6.

Lemma 3.9. Let & and X(n, 0) be as in Theorem 3.2. Then given any ¢>0 there is a
C,.< o0 so that if (n,0)e S

”e—tL’D(n,ﬂ)” écse—t(f(n,ﬂ)—s). (3.16)

Proof. As in the proof of Lemma 3.3 we can choose E >0 so that if (,0)e & the
numerical range of Lj(y,0)+E lies in the sector {z:|argz|<m/2—7v/2} where
(n,0)e S implies y<n+3ImO<n—y for some y>0. Thus for 0t <1, [|e L0
<ef, and we need only prove (3.16) for = 1. In this case we write

1L 1o, , -
e ILD("’9)=—'2-E1_[3 t(Z—LD(n>9)) ldz7

where I' is the contour shown in Fig. 1. Since o(H(0))CK(0) for any cluster
decomposition D and inf{Rez:zeie e "K(0)}=2(y,0), I surrounds the spec-
trum of Ly, 0).
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Fig. 1. The contour I

The resolvent (z— Lj(n,0))~* is uniformly bounded for ze I, LI} and (y, 0)e ¥
by sectoriality and this gives the bound

{ e (z—Lpyn,0) 'dz

Iryurls

<const | e ®*|dz|<const. (3.17)
ryurs

It is easy to show that if C is a compact subset of {(z,6):zeC, |Im6| < ¢} then for
any 6>0

sup{[|(z—H(0) ™ '|| :d(z, o(H (0)) Z 6, (z,0)e C} < 0. (3.18)
Here d(z, A) is the distance from z to the set A. Since for ze I, d(z, a(L,(n, 0))) = ¢ for
all (n,0)e &, we have
sup{ll(z— Ly(n,0) " || :ze 1, (n,0)e '} < 0.
Thus
J e "z Ly, 0)dz

I

and (3.16) follows from (3.17) and (3.19) since 2(n,0)<0. [

<const e~ GO —ex (3.19)

Proof of Theorem 3.2. Our proof proceeds by induction on [C], the number of
particles in a cluster C. Let L(f,0) denote the operator
ie‘i"e”e(z (—4;2m)e "+ Y Vi (0)+ fe' Y qiri~é)
ieC szeJC ieC
and LE(f,0) the same operator with center of mass removed. e % is an
operator on L*(R*I€I= ), Similarly HE(f, 0)= — ie"e’ L°(f, §). Let

3¢ =infa(H(0,0)).
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If |C|=1, the result is trivial. Now assume the result for [C| < N. We will prove it for
|C|=N +1. Thus suppose that if 0<|f|<F,, (n,0)e &
e 0 < ¢y (e) explte/4(N + 1)) exp(—t2(n, 0)).
Then if D={C,,...,C,} with k>1 we have
lle =9l <, (¢) explte/4) exp(— (1, )

because the sum of the X¢’s is at least X. From Lemma 3.6 we thus have for each
disconnected string S=(Dy, 1, ..., D))

N+1 N+1

je_tN+1LDN“(f’0)ﬁ]SV'--ﬁie—tkLDk(f’e)é (t__ Z t) H dt
J J

j=k =k

=c;(e)exp(—1(2(n, 0)—¢/2)). (3.20)

We now write the Weinberg-van Winter expansion (3.12) as the sum of two
terms

e SO F (1, f.0)+ F,(t, £,6),

where F, is the sum over all disconnected strings and F, over connected strings.
Similarly

e—tL'('i:o) :Fl(t’ 1, 9) +F2(t& 1, 9) .

Writing e MO =(F (1, f,0)+ F,(t,1,0)) + (F,(t, ,0)— F,(t,n,6)) we bound
F.(t, ,0) using (3.20) and F, (t,#,0) using Lemmas 3.9 and 3.6 to get

lle™ ™M < cy(e)exp(— [ 20, 0)—&/2]) + | Fo(t, )= Fyt,m 0 (3.21)
for all t=0 and (5,0)e . Now let
y=Max{1,c,(e)}
T=(4log(2y))/e.

Lemma 3.8 implies that we can choose F,>0 with F,<F, so that if 0<|f|<F,,
(n,0)e & and te(0, T] then

IF (¢, £, 0) = F5(t,n, 0)|| S pe~120nO=e121,
Under these conditions (3.21) then gives
o™ M0 < 2pe tn0~e/21, (3.22)
Setting ||e "MV 9| =expo(t), (3.22) is equivalent to
o(t) £log(2y) — t(2(n, 0)— ¢/2)
so that for te[T/2, T]

2 €
<= A
o0)/t= Tlog2)+ 5 2(n,0)
and thus by the choice of T
o)tse—2(n,0); te[T/2,T]. (3.23)
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n
Using the inequality [le™®* @S0 < TT e~ 529 we find
=1

ot + ...+t )/t +...+t)= il (ot ))/t) (t/ty + ... +1,).

Applying (3.23) for ¢,e[T/2, T] gives
o(t)/t=e—2(n,0) (3.24)

for te [%7:, nT} for all n and thus we get (3.24) for all t=T/2. Using the uniform

bound [le V9| < from Lemma 3.3 for t< T/2 gives

”e—tL(f,e)” < C‘Se"’[z("’e)—'ﬂ

for all >0, all |f| with 0<|f|<F,, and all (4,0)e&%. [

4. Stability, Analyticity, and Borel Summability of Resonances

In this section, we begin by combining the estimates of Theorem 3.1 with the
stability method of Avron et al. [4] to obtain stability of eigenvalues of H(|f|=0)
turning into resonances of H(|f|, 6,#). By using the fact that we can allow =0 and
the freedom to vary 6, we will obtain analyticity of the resonance energies for fin a
fairly large region near f=0. Even in the two body case, these results are new,
except that for the special case V' =r"!, Graffi and Grecchi [13] obtained the same
result that we do with rather different methods. Indeed, their work motivated our
discussion in this section. We finally turn to the consequences of our analyticity
results for Borel summability recovering the result of Graffi-Grecchi for hydrogen
[13] and proving new results for multielectron atoms. In the non-degenerate case
or the case where degenercy is broken to first order, we obtain formulas linking the
asymptotics of the Rayleigh-Schrodinger coefficients as n— oo to the asymptotics
of the widths as f 0.

Definition. R, ={(n,0)|0=iy, yeR, |y|<¢; n, y obey (4.1-2)} where
O<p+3y<m, 4.1)
O<n+y<m. 4.2)

The conditions (4.1) and (4.2) are natural for the following reasons: (4.1)
implies that we are in a region where for [f]|>0 H(|f],0,#) is analytic. (4.2) implies
that a neighborhood of any real E; < X, =info, (H(|f]|=0=0) will lie in the region
of z obeying (3.2) for ¢ sufficiently small and H an H. Given these facts and
Theorem 3.1 the following result is very easy ; its proof is just the same as that of
[16] for the case =0, N=1 and is based on [4]. For this reason, we only sketch
the details.

Theorem 4.1. Let E, be a discrete eigenvalue of H(|f| =0, 0=0) of multiplicity n. Fix
R compact in R,. Then, there exists ¢ and F,>0 so that for (n,0)e &, and |f|<F,,
H(|f1,0,n) has at most n spectral points within the disk {E||[E—E,|<¢}=C, each is
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an eigenvalue of finite multiplicity and the sum of their multiplicities is exactly n. As
If1L0 each of these eigenvalues converges to E, uniformly for (n,0)e #,.

Proof. Let R(|fl,0,n;z)=(H(f],0,n)—z)" . We rearrange the Weinberg-van
Winter equation used in Sect. 2, to read

R=D+RI,

where D, I depend on |f],0,n and z. This version of the Weinberg-van Winter
equation follows from the one in Sect. 2 for R(|f],0, —#;Z) by taking adjoints.
D and I above then have a slightly different meaning. Since E, <X, we can find
¢ and F, so that (i) E, is the only spectral point of H(| f|=0=0) within the disk C.
(i1) For any non-trivial D, (Rp(|f1,0,n7) —z)~ ! is uniformly bounded for ze C, (1,0)e %,
and |f|<F,. To obtain (ii), we use Theorem 3.1 and X <infspec(H,(|f]=0=0)).
(iif) E, is the only point zeC where 1—I(]f]=0,0) is not invertible, for all 6
with (n, 6)e £, for some 7.

By (ii), we find that D and I are uniformly bounded in the above region. Thus,
since I converges in norm to I(|f|=0) as | f]]0 in the region where the perturbation
series converges uniformly for (n,0)e %, (each term converges), I converges in
norm uniformly for ze C, (, 0)e Z, by the Vitali theorem. It follows that for some
F,, (1—1) is invertible for |f|<F,, ze 0C and (y,0)e #,. Moreover,

R—D=DI{1-1)""

converges in norm since I is compact and norm convergent and D is strongly
convergent. Since § RdE/2mi is a spectral projection and § DAE/2ni=0 by
oC acC

analyticity, we get norm convergence of spectral projections. Since the disk C can
be shrunk this yields stability. [

Definition. A discrete eigenvalue E of H(| f|=0=0) with spectral projection P will
be called normal if there exist mutually orthogonal projections Q,, ...,Q, each

N+1 N
commuting with H(|f|=0=0), X=¢- ) ¢,(r,—R) (X=é- Y q;r; if mNH:oo)
j=1 j=1
3

and {U(0)|0 real} so that (i) RanPCRan (Z Qj). (ii) For each j, PO XPQ; is an
1

operator on the finite dimensional subspace Ran(PQ;) with distinct eigenvalues.

In practice, the Qs are projections onto vectors with certain quantum
numbers under a symmetry commuting with dilations and leaving H and X fixed,
usually rotations of some kind. Condition (ii) says that on each symmetry
subspace, any degeneracy is removed in first order. This removal of degeneracy
will prevent non-analyticities possible when one has a degenerate eigenvalue of a
non-self adjoint operator like H(6+0).

Examples. 1. If E is non-degenerate, i.e., dim P =1, it is automatically normal (take
/=1and Q=1).

2. Suppose that v=3 and all potentials are rotation invariant and that the
rotation group acts irreducibly on RanP. Let Q; be the projections on the
eigenvectors of é- L. Then each PQ; is rank 1 so (ii) is automatic. E is thus normal.
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3. Let H(|f|=0=0)=—A—1/r. Let E=—1/4N*(N=1, 2,...). Then E has
degeneracy N2. By using “parabolic quantum numbers”, see [15], one can label
these N2 states with quantum numbers m=0, +1, +2,...and k,g=1,2, ... so that
m+k+g—1=N (all values allowed). m is just the eigenvalue of L, so after
restricting to suitable symmetry subspaces we have labels k=1,2, ..., N—m, and
q=N—m—k—1. The eigenvalues of PQ,, x PQ,, are exactly 3(k—g)N (Lemma 6.4
of [15]) which are distinct for the different values of k on a fixed m subspace. Thus
all these eigenvalues are normal.

Theorem 4.2. Let H,=H(|f|=0=0) be an n-body Hamiltonian with pair potentials
in CYf and let E, be a normal discrete eigenvalue of H , with multiplicity £. Then there
exist for any 6>0, an R;>0 and ¢ functions E (f), ..., E/f) analytic in {f||f|<Rj;;
—min(¢, )+ d<argf <n+min($,5)—0)} =K; so that

(i) For 6 small with Im0>0 and |f| small, the E(f|) are precisely the
eigenvalues of H(|f],0,n=0) near E,.

(i) If each two body potential is invariant under r,— —r,, then for each j, there is
a k (not necessarily distinct from j) so that for |f| real and positive '

E(=I/D=EJSD. (4.3)

(iii) In the region K, each E,(f) has a (Rayleigh-Schrédinger) perturbation
series asymptotic to all orders.

Remarks. 1. Even if E, is not normal, it should be possible to prove that (i), (ii)
hold.

2. In the case where all E, eigenvectors have the same parity which will hold in
most atoms, j=k in (4.3). Of course, in hydrogen, where the E’s are labelled by
quantum numbers m, k, g as above, E,, , (—|f)=E, , (+]f].

3. In an appendix, we prove a detailed bound on the errors in the Rayleigh-
Schrodinger series, viz:

N

Ek(f)" Z aﬁfn

n=0

SCYYNFHN +1)! 4.4)

Proof. Let H(|f],0,n)I RanQ ;= H (| 1,0, 1) and suppose the eigenvalue E, of H(|f]
=0=0) has multiplicity m; Then by the usual dilation analytic machinery for
f=0, H(|f]=0,0) has E, as a semisimple eigenvalue of multiplicity m; By our
stability result, Theorem 4.1, H (|1, 0,7) has exactly m; eigenvalues (total algebraic
multiplicity) near E, for small |f| and they all converge to E, as |f||0. By a
theorem of Kato [18, p. 443] these eigenvalues E,(f,0) (f=|f le™) can be written

where the p;, are the eigenvalues of Q jP(H)Xe"P(H)Qj[RanQ ; where
PO)=Qmi)"" ¢ dzz—H(f]=0,0)""

z—Eo|=¢
and ¢ is sufficiently small. By the usual dilation analyticity arguments the ;, are
the eigenvalues of Q;PXPQ ;I RanQ (P=P(0)) and thus by assumption, they are
distinct. An analysis of Kato’s argument [18, p. 4437 combined with our stability
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1)+}/:Jt

q+y:0

7]+3};=Jt
n+3y=0 Q

7 axis

Fig. 2. The region %,

argument shows that (4.5) holds uniformly in any region of the form

K;={(f,0)lfI<Fz5<Argf+Im0<n—0,0 <Argf+3Im0O<zn—4,[Im| < p
<n—06,|Im0|<¢p—2o},

where >0 is arbitrary and Fj is suitably chosen. Because of (4.5) and the fact that
the uy, k=1, ...,m; are distinct we can write the spectral projection for eigenvalue

E.(f.0 -
#lf:0) as Py(f,0)=Qm)" | (z—H/If1.0,arg )" dz,

where I'; is a circle surrounding E;(f, 6) and no other [of radius=O(|f])]. P;(/.0)
is thus analytic in regions of the form Kj as is

E(f.OP;(f,0)=@2mi)~" rf 2(z—H{(f,0,arg /)" 'dz

and thus E,(f,0) shares this analyticity property. By the usual arguments E,(f, 0)
is independent of 6 and thus relabelling we have /=) m ; functions, E(f), analytic

o J
in U {fI(f,0)eK;}. In case ¢ >3, the allowed region £, is shown in Fig. 2.
0,|Imé| < ¢

The extreme values of n occur at the points A=(y=3%, y=—%) and B=(y=—13,
n==%).

If ¢ <%, the given region must be sliced with the strip |y| <¢. The extremes lie
on the lines n+y=0 and y+y=m= and on the lines y= + ¢, respectively — .
In either event, we obtain analyticity in region K, by choosing 6 suitably. (iii)
follows by the use of the standard theory of stable perturbations once we know
that degeneracy is removed at first order.

To prove (ii), let V be the map (Vf) (r;)= f(—r;) and note that

VH(f1.0=0.=5V "' = H(70=01=7.
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where A f=(Af) with f the complex conjugate of f. Thus for f >0 and small, the
set {E,(if),...,E[if)} is invariant under complex conjugation. Hence for each j

e

there is a k so that E(— f)— E,(f) holds on a determining set (contained in the
positive imaginary axis) and thus for all f in | ) K, In particular we obtain
43). O 9>0

Given the above analyticity result, the bound (4.4) and Watson’s theorem [34,
147 in its sharpest form [20, 30] we obtain:

Theorem 4.3. Let E,(f) be one of the eigenvalues given by Theorem 4.2. and let

0

Y a,f" be its formal asymptotic series. Then for suitable R >0, the Borel transform

n=0
B(z)= ), a,z"/n!
n=0

defines an analytic function in the region
{zl|z|] < R}u {z|5—min(¢,%) <argz <3+ min(¢,3)} .

In particular, if ¢ =5, B(z) is analytic in the union of a half-plane and a semicircle.
Moreover, given w=-¢"* with [A|<n/2 and f with —Min(¢,n/2)<argf <mn
+ Min(¢, 7/2) then if |arg f + A— /2| <min(¢p, n/2) and |f] is sufficiently small

E(f)=o | e ™B(tfw)dt. (4.6)
0
In particular if ¢>n/2, and 0<A<m/2 then (4.6) holds for all f>0 which are
sufficiently small.
Remark. Since B(z) is real for z real, it is also automatically analytic in
{z| - /2 —min(¢, n/2) <argz < — n/2 + min(¢, 7/2)} .

In particular, if ¢ =n/2, B will be analytic in the plane with two “cuts” (R, o) and
(— 00, — R) removed.

Finally, we want to note a relation between the a, and the width I;(f) defined
by

L(f)=—2ImE(f)
for f>0:

Theorem 4.4. Suppose all two body potentials satisfy V,(x)=V,(—rx). Let E,(f) be
one of the eigenvalues given by Theorem 4.2 and let ), a,f" be its formal asymptotic

n=0
series. Let E; be the level given by (4.3). Then for all sufficiently small R :
R
a,=—Q2n)~ [ A" LA +(— 1)'T(A)]dA|+O(R™). 4.7
0
Remarks. 1. If j=k, then a,=0 for n odd.

2. For the case of hydrogen, one can rigorously compute I' asymptotically for
small f and so, using (4.6), the asymptotics of a, for all levels; see [15].
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Proof. For n even, we write a Cauchy integral :

E(ip)=(2mi)” I (W + 43" QA E(AdA,

where C is the contour shown in Fig. 3. Taking the real part of both sides and

C2

oiu

-R C R
Fig. 3

expanding (u?+A%)" =172 +({u)?*A"*+({w*A~®+ ... we see that
R

a4, =Qm)" | 272" [2ImE,(A)]dA+O(R™2".
—R

Since 2ImE,(4)= —I(4) for A>0 and 2ImE,(—4)= +I(4) for 1>0, we obtain
(4.6) for n even.
For odd n, we proceed in an identical way beginning with

E(iw) = (2ni)” f (W2 +24%) " QipE(AdA
and this time take imaginary parts of both sides. [

5. Exponential Falloff of Resonances Wave Functions

In this section, we want to prove the following result:

Theorem 5.1. Let yp be an eigenfunction of an H(|f), 6,n) in a region where this H has
only discrete spectrum. Write r=(r,, ...,ry)=(a,b) where a is the component of r
coupled to the electric field and b is the orthogonal component. Then for all ¢
sufficiently small :

exp(elal®? +elbl)yp(a, b)e L2

Theorem 5.1 is of obvious interest. The proof follows ideas of Combes and
Thomas [9] as extended by Simon [26].

Proof of Theorem 5.1. By Proposition 11.4 of [16], we have the quadratic estimate
lag >+ 461> < DLIH(If1, 0,m 1> + 1911 (5.1)

for suitable D where a is the component of r coupled to the field. Since V is — 4-
bounded with relative bound zero, (5.1) implies that |H(0,n)¢|* is dominated by
a multiple of |H(|f1,0,1n)¢lI*+ | ¢|* so (5.1) holds with H(|f],6,n) replaced by
H(lf1,0,n).
Now let F(r)=(a?+1)¥*+(b?+1)/2. Let U(«) be multiplication by exp(iF(r))
and let HY=U(x)HU(x)~!. Since V and |f]a are multiplication operators
H®=H® + [y B,;0,0,F +*) C,(0,F)(9;F)] + oy D, (0,F)0 (5.2)

ijrivy
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Now 0,0,F is bounded and 9;F is bounded by a multiple of (1 +a|)'/?. Tt follows
that the term in square brackets in (5.2) is H'® bounded on account of the
extended version of (5.1). Since

I fi2:11* == {f2, 07 > — 2{ fi0:fih, Osb)
<3212 +3107012 +((f0.0)d1%+ 10,012

we see that the last term in (5.2) is also H® bounded.

Thus H® extends from « real to an analytic family in [Ime| <& for some § > 0.
It follows by the Combes—Thomas—O’Connor method [9, 21] that any discrete
eigenvector of H') is analytic for U(«), ie., e®f™ype L? for § small. [J

In the next section we will need the following theorem but only in the two-body
case. Welet t= ) g 10,0; with A={a;;} a constant positive definite matrix and X a

LJ
real linear function of reR".

Theorem 5.2. Suppose W is a complex valued function on IR* with t+ Re W =-const
and v is an eigenfunction of t +X + W in the sense that
(1) pe2(t+X).
(i) For each ¢peCT(R"), ¢(t+X)p=d(E— W)p.
Let X , =Max[0,X] and ) a,(0.X)(0X)=7>>0. Then ifa<y™'
i,j
exp(3oX 3 ?)pe L.
Proof. We use the identity (¢ CZ(IR"))
Pt =5td> +1¢’t+ Z aijai¢aj¢
ij

to write (for ¢ real)

(. Bt +X)p) =3P +X)w, ) +3(p. G + X)) + Ya;,(w, 0,00,6v).
Using (i) we have

(, p(t+X + Re(W—E)dy)=} (v, 0:09,dv)a;;

i, j

and thus t+ Re(W—E)= — C gives
ij

Without loss of generality we can take C =0 because we can translate X by C. We
write ¢(r)=¢(Ar)g(X) with ge C*(R), Xg?% ¢ bounded and ¢,eC(R") with
¢o(0)=1 and then take A/0. We find

(1, (9X)*X —»*g'(X)*)p) 0. (5.3)

By a limiting argument, (5.3) is also valid if ¢’ is piecewise continuous and bounded
and g*(X)X is bounded. We choose

g(x)=exp(30x>?)g g(x)
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with
gr(x)=0 x=<1/2
=1 1<x=R
=exp(—3(a+¢)(x—R)*?) R<x,

where 0 <e<7y~ 1. Then if ya <1

g(xPx—72g'(x)* =(1 —y’o?)xexpGux®?) 1=x<R
>0 R=x.

Since the contribution to (5.3) in the region x> R is non-negative we have

(1=7%%) | WPXexpoX*dr<y® | WwiPg@ParsC,  (54)
1SX<R 1/2£x<1
where C can be taken independent of R and o if « <y~ !. Taking Rt oo in (5.4) gives
the desired result.

Remark. A similar technique for proving exponential L? bounds was used in
[41] and for X =0 by Lavine [42].

6. Non-Vanishing of the Width

In this section we will give a proof of the following result:

Theorem 6.1. Let W be real-valued and in C g‘ for some ¢ >n/3. Suppose in addition
that for each ¢>0 and each bounded open subset B of {0:|Im0| < ¢ —¢} there is a
splitting W(0)= W,(0) + W,(0) where

@) W,0) (r|+1) (—4+1)~" is compact and analytic in B.

(ii) sup [W,(0)] <e.

Let f>0 and hy=— A+ fa(r) where a(r) is a component of r. Suppose that
ho+W obeys a unique continuation principle. Then hy+W has no negative
eigenvalues.

A result of this genre has already been obtained by Avron and Herbst [3]
using different methods. (In [3] the eigenvalue is not restricted to be negative.)
Here we will mimic an approach of Balslev [7] and Simon [25] and then explain
the difficulties in extending the proof to N-body systems.

Proof of Theorem 6.1. We denote hy(0)= — de™2°+ fa(r)e’, h(6) =h,(6) + W(0). The
proof will be broken into several steps:

1. Resonance in |Im0| <n/3. Let E be a negative eigenvalue of h=h(6=0). For 0
real, let P(0) be the spectral projection onto the eigenvectors of h() with eigenvalue
E. By Corollary 2.5 h(f) has E as an eigenvalue for 0<|Im6|<n/3. For 0 in the
latter region define P(0) (by a contour integral) as the associated spectral
projection. Clearly, for f and ¢ dilation entire and 0 <Imf <n/3:

13101 iel(UD)f,(E+ie—h)~'U(O)g)= 1351 ie(f,(E+ie—h(0)) " 'g)
=(UD)/£, PO)U(0)g) = (1. P(0)g)
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and similarly for —7/3 <Im6 =<0 so that (f, P()g) is analytic in |Im6| <7/3. Thus
by a Phragmen—Lindelof argument [2, 87. || P(0)|| < || P(in/6)| for |Im 0] <7/6 and so
by a density argument P(6) is analytic in |Im#6| <n/3.

2. Stability at 0= +in/3. By sectoriality considerations, (h(6)—z)~* is uniformly
bounded for |z— E|<3|E| and 2<Im6#=n/3 and is strongly continuous in the
whole strip including up to Imf = + /3. We will show that

W(0) (ho(0)—2)~ 10 Win/3) (hoin/3) — 2) ! (6.1)

as 0—in/3 with Im6 <z/3, uniformly in z for |z — E| <|E|/4. Clearly we can replace
W by a W, with W,(0) (1+[r]) (—4+1)""! analytic and compact in {0:Z<|Im0)|
<z/3+¢,|Reb| <1} =B. The proof of (6.1) will be complete if we can show that for
feB and |Im6|=n/3

W1(0) (ho(0)—2)~ ' =K (0, 2) + K5(0,2) (2 — ho(6)) ™ (6.2)

where K ; is compact and analytic for 0e B and |z — E| <|E|/2. For then certainly K ;
is norm convergent and by the compactness and analyticity of K,, K,(6,z)
(z—ho(0))" ! is norm convergent with the right uniformity. To show (6.2) we use
the resolvent equation

(z—ho(0) " =(z+de )" 1+ (z+e” %)~ ! fa(r) (z— hy(6)) !

=(z+de )" Y+ {fa(r) (z+ 4e2%) "1 + fl(z+ de”2) " L, a(r)]}
(z—ho(0) ™"
and set

K, =W (0)(z+de” 21,
K, =W,(0) fa(r)(z+ de™*) "1 + W (0) f[(z+ de™ 2°) !, a(x)].

By arguments in [3], W(in/3)(hy(in/3)—z)"* is compact so that o, (h(in/3))
={xe'™/3:xelR}. Choose a circle C of the form {z:|z— E| =6} with 6 <|E|/4, so that
1— W(in/3) (z— hy(in/3))~ ! is invertible on C. Then as in [4]

P(0)=(2mi)"* [ (z—h(0)) ™ 'dz
=(2mi) ™" (j; [z—h(0)"! —(z—ho(0)” *1dz

is norm continuous as —in/3 and converges to
P(in/3)=(2mi) ™" | (z— h(in/3)) " *dz.
Similarly ‘
0=(h(0)— E)P(0)=(2ni)~ ' [ (z— E) (z— h(0)) " *dz
converges to )

(2ni) ™" [ (z— E)(z— h(in/3))™ 'dz = (h(in/3)— E) P(in/3)

C

so that (h(in/3)— E) P(in/3)=0.
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Similarly we conclude

PO) —"_, p(—in/3)

0~ —in/3
with (h(—in/3)— E) P(—in/3)=0.

3. Definition of n(). By O’Connor’s lemma [23], since P(6) is finite dimensional,
any neRanP(0) is such that U(6)p=#x(0) has an analytic continuation to
Im@|<=n/3 continuous up to the boundary and (h(0)—EW(@)=0 for
Im6| < /3.

4. Falloff of n(+in/3). By Theorem 5.2, exp(ea’/?)n(+in/3)e L2

5. Completion of the Argument. We mimic [7] or [25] and conclude by using
Carlson’s theorem that for any ge Cy with g =0 for a(r) <A for some 4 >0 that

z(g,U(3lnz)y); Rez=0

is identically zero. In particular n(r)=0 for a(r)>0 and thus by a unique
continuation argument, #=0.

Since the Balslev—Simon work extends to N-bodies, one might expect the proof
of Theorem 6.1 to extend to N-body systems but we have run into a number of
technical difficulties, some of which we cannot solve:

A. Definition of H(in/3). Even for Coulomb potentials, it is not clear how to define
H(in/3) as an operator sum. The problem is that the usual facts that C A-bounded
implies C®I is A®I+I®B-bounded only holds in general if B and A are
bounded below. However, using form methods, we can make a reasonable
definition of H(in/3).

B. HVZ for H(in/3). Even for bounded potentials [when problem (A) is non-
existent], we have been unable to prove that ¢, (H(in/3)) is where it should be. The
problem is that Ichinose’s lemma 6(A®I+ & B)=a(A)+ a(B) can fail for oper-
ators which only generate contraction semigroups (and not holomorphic semi-
groups). We note that even geometric methods of analyzing g, [11, 27, 10] rely on
an Ichinose lemma.

ess

C. Stability at in/3. Even if we knew about o, (H(in/3)), we do not see how to gain
sufficient control on (H(0)—z)~ ! as 0—in/3 to conclude continuity of P(6).

In spite of these problems, it seems to us that it could be possible to extend the
proof. In attempting this, we were shocked at our ignorance of spectral properties
of generators of semigroups which fail to be holomorphic. Better understanding of
these could be the key to extending Theorem 6.1.

Appendix A. Borel Summability for Degenerate Eigenvalues

In this appendix, we want to explain how to prove the bound (4.4) on normal
eigenvalues. Our proofis patterned after the proofin [6] of the analogous result for
the Zeeman problem (this same proof also works for bounds on the coefficients in
the 1/R expansion of molecular physics [19]). We begin with the case where the
unperturbed eigenvalue is simple (or simple after restriction to a symmetry
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subspace) and then discuss the more complicated case where the unperturbed
eigenvalue is not simple but the degeneracy is removed to first order.
In either case one writes E(f)=F(f)/G(f). In the non-degenerate case

F(f)=EoG(f)+ |z—£§ - (.S WHy+ [ W—1)"'p)dA, (A1)
G(f)= u—g _ (@, (H, +fW—2""p)dA (A2)

with H,=H(f=0,60,n) and W=X¢’ the electric field term. ¢ is the unperturbed
eigenvector. The formula E(f)=F(f)/G(f) is a standard result in perturbation
theory [23]. The perturbation series is obtained by expanding (H,— fW— 1)~ ' in
a series in f. To prove (4.4) we must control the error separately in F and G. We
will prove the bound on the F; the same method controls G. Thus, we will prove
that

sup  [(Ho+ fW—=A " [W(H,— A" ]"¢||<C"* 'n!. (A.3)

|A—Eo|=¢

We prove (A.3) for fixed (y,6) in %, but it is easy to see that the estimates are
uniform over compacts %, in (1, 6) and hence (4.4) follows for f in sectors,

{lf1<Rs; —min(3, §) + 0 <arg f <m+min(3, §)—0}.

(A.3) depends on the use of the scale of spaces $,={fle"*feL?} with the
obvious norm. Since, for f small " _S}El}?= [(Hy+ fW—2)"1 <o by stability,
(A.3) requires that we show that

ITW(H, =2~ T"¢l| =C"" 'nl. (A4)
Fix a and view (H,— )~ ! as a map from §,,, to itself and W as a map from §,,,
t0 94— 1) Then
LHS. of (A= [ LIl ;- 2 Sup_ I(Ho =75 s,
j=1 o=

where ||B]; , is the norm of B as a map from $,,, to H,,,. Now
W, -1l Scllxe™ e =zn.

Also, by interpolation, the || -||; ; norm is bounded by the maximum of the | - |, ,
and the $, to $, norm. Thus since n" <n!B", and ¢e H, for a suitable (A.4) holds if
we show that for ¢ fixed and small:

-1
SUp_ (Ho=2) g g <0 (AS)

(A.5) is an estimate of Combes and Thomas [9] similar to that we used in Sect. 5.
This describes the proof of (4.4) in the non-degenerate case. We describe the
extension to the case where degeneracy is removed to first order as a series of steps
(we take Q, =1 without loss of generality):
1. We begin with the standard method [18] of reduction to a non-degenerate
problem. Add a constant to W so that the eigenvalues of P,WP, (P0=(2‘7zi)_1
=Q2n)~" ¢ (Ho—z)_ldz>

z—Eo|=¢
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are all non-zero. This will not affect the errors for n=2. Define
H(/)=P(f) [H(/)—E]P(/)/ f =HO) + (/).

Then H(0)= P,WP, has non-degenerate 0- mdependent spectrum away from 0
and, if the non-zero eigenvalues of H(f) are 4 {(f), ..., 2,(f); then the eigenvalues of
H(f) near E, are just E,+ f1,(f).

2a. For some a>0, H(z—H(f))' ||, = const uniformly in 0=b<a, (1,60) in £,
(#,S R, and compact), | f| small and |z — E| =¢ for some ¢ >0 which is as small as
desired. To prove this we use the stability argument of Sect. 3 for H(f,0,a)
=e*"H(f,0) e~ *" to obtain a bound on (z— H (f, 6, &))" uniform in small | f1, (1, 0)
in 2, o) small and z near E,. Here D is a non-trivial cluster decomposition. The
argument in the proof of Theorem 4.1 using the Weinberg—van Winter equation
then leads to the desired result.

2b. For some a>0, ||(z—H(0))’1||b y=const uniformly in 0=b=a, 0 in
compacts of {0:[Im0) <¢} |z—u)|=¢ where y, are the eigenvalues of P,WP,
-H(O) This is easily seen from the relation (z —HO0) '=z"11- P,)
+Py(z—H(0)"'P,, the fact that ||(z— H(0))"!|| is uniformly bounded for the
above z and the bound [|e*"P, || < const uniformly in 6 for the above 0.

2¢. |i(z— H( )~ is uniformly bounded in f, 6, z for (6,%) in £,, |f] small and
|z— p;l=¢ with >0 and small. To see this we write

(z—H() "=z L=P(/)+ L= AP

where P(f) is the spectral projection associated with H(f) for eigenvalue AL,
defined by a contour integral. We have already seen that A,(f)— y; uniformly for f
in the relevant region. By an argument of Kato [18, p. 446] easily made uniform in

the surpressed variable 0, P(f) —— R
for eigenvalue y, associated with H(0)= P WP,

3.Using P(f)=Q2ni)"" ¢ (z—H(f))”dz in the definition of H(f), and the
expansion |2 Eol =e

(z—H Z Ho) "(Wz—Ho)™ ef*+ "1z = H(f) "' (W(z
_HO)—l)n+1

()= z A S+ Ry (1)

——— P(0) where P,(0) is the spectral projection

one can write

where A4, is a sum of O(n) integrals of products of (z— H,)™'’s and W’s, each term
containing exactly n+1W’s while R,,, ; has O(m) terms, each term with m+2W’s
but in addition to (z— H,)™ ’s each term will contain some (z— H(f))™ ’s.

The perturbation series is obtained writing A(f) as a ratio of

(¢j, § dZ(z—FI(f))“z¢,~> to (¢>j, 5‘ dz(z—FI(f))‘lqu)
lz—nyl=¢ lz—njl=e

where ¢; is the eigenvector of P,WP, of eigenvalue 1 (4f(f)—u; and then
expandmg f))' =(z—H(O)=V(f))"! to n™ order in V(f) and collecting
terms of order <nin f. As in the non-degenerate case, we need only prove the n!
bound on the remainder for numerator and denominator separately. The error is a
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sum of terms which we obtain as follows: In k" order in V(f) we have (H(0)
n—k+1

— 27\ (BO)=2)" V. Write the first V(f) as Y. A,f*+R, 4. o(f). The
term ¢=1

(H(0)—2)" 'R, _y . ,(/) (H(O)—2)~ *(V(f) (H(0)—z)~ 1)~

goes into the error bin. In the term involving A4;f 7/ we expand the second V(f) to
order n—j—k+2 and throw

(HO)—2) YA, fH(HO0)~2) 'R, _; s 5() HO)— 2" (V(f) (H(0)—z) " 12

into the error bin, etc. In the error terms we now expand 4; and R, as sums of
products of resolvents and W’s [V(f) can be considered as R, in this procedure].

In the error resulting from truncating the geometric series for (z— H(f)) ™!, namely

(H(f)—z) L (V(f) (H(©O)—2)~ e+t

we use the bound

ICH(f)—2)" 2 (V) (HO)—2)~ )" g | S cll(V(f) (HO0)—2) "1y 1

which follows from (2c¢). Thus this error is of the same form as the ones already
considered. We estimate the total error by the product of the number of terms
times an upper bound on the size of any term.

4. Let us show that the total number of terms is O(c") for some ¢>1. We first
consider the error from (H(0)—z)~ *(V(f) (H(0)— z)"*)*. From expanding the first
V(f) our error is schematically (leaving out all resolvents)

— k—1
—Rn—k+2R1

which has O(n—k+2)0(c* " 1) £0(n + 1)c* terms. From expanding the second V we
get an error of the form

] k-2
. Z A R, (R,)
. J1, 221
Jjitj2=n+1—(k—2)
which has on the order of c* Y Ju. S Y jij, terms.
L Jj221 L1221
jitij2=n+1—-(k—2) Jj tj2=n+1

Continuing in this way we see that the error resulting from (H(0)—z)~ ' (V(f) (H(0)
—z)” Y* has at most N, terms with

n+1
Nk:Ck(Z Jit Z Jua+ .+ Z ]dz]k)

ji=1 jitija=n+1 Jit et ie=n+1
3
Now subject to )| x;=1, x,=0, x, ...x, attains its maximum with all x;’s equal so

i=1
, n+1\ . .
JrJ = (—) -(number of decompositions j, + ...+ j,=n+1 with
Jit e tip=ntl 4

n+1\ [ n n+1\¢/ n n
i>1)= < - < n+1 )
Jiz1) ( / ) (/—1)”(1+ / ) (f—l)“’ (f—l) Thus

Nké()k Z (/ n 1)en+1écn2nen+l .
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Adding all terms from k=1, ...,n and the geometric series truncation error terms
we have O(c") terms for some ¢>1.

5. Each term that we must bound is an integral of a product of resolvents and
at most n+2W’s and thus by the method used in the non-degenerate case is
bounded by ¢"n!|f|"*! for some c.

This completes the sketch of the proof of (4.4) when the eigenvalue is
degenerate but degeneracy is removed to first order. [

Appendix B. Essential Spectrum in the Ineffective Case

Our goal in this section is to identify the essential spectrum in case the charges and
masses are ineffective. We let I be the family of all decompositions D= {C,, ..., C,}
with Q,/M;=Q /M for all i, j, and k> 1. Recall (Sect. 2) that ineffective charges and
masses are precisely those with J460. We will prove:

Theorem B.1. Let

ﬁ(0)= - i (2m) 4™+ Z Vij(ee(xi_xj))

i<j
+e%-. Z q;X; (B.1)

and let H(0) be the corresponding operator with center of mass removed. Suppose all
V€ Cé‘,‘, the Combes class. Then for all 6 with 0 <|Im6| <min(¢, %), we have that
O HOV= ) Aty oo bty + A6 P20, €0(H(0)) . (BD)
« €S

15, Cidd

Given this result, one easily sees inductively that

Corollary B.2. Under the above conditions
Gess(H(e)) = U {H’txl + e + tuack + A’e N 291/’{ g 07 /uo:i € O-disc(HCi(e))}' (B3)
}ed

{C1yeoiCic
The proof of this corollary depends on the observation that if D={C,, ...,C,}

is an ineffective decomposition and if D, ={C,,,...,Cy, },... are ineffective

decompositions of C,, ..., then D,...D, is an ineffective decomposition.

By the standard argument of Hunziker [38], the RHS of (B.3) is contained in
a(H(0)), so again using induction, to prove Theorem B.1 we need only show that
the RHS of (B.2) contains g, (H(6)).

Henceforth we suppose that Argfe(0,7/3) so that Re(ie™3%)>0.

Mainly we will require a strong form of Ichinose’s Lemma. The following result
of Herbst [39] uses in part ideas of Gearhart [40].

Definition. The generator, A, of a strongly continuous semigroup e~ 4 (t=0) on a
separable Hilbert space, 9, is said to have contained spectrum if and only if |e 4|
< e for some w and if

(a) For all E, there is a y so that

a(A)n{z|RezS E} C{z]|Imz| <y} .
(b) sup [(z—A)" <00,
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The following follows from [40]:
Lemma B.3. If A has contained spectrum, then
ole™ )\ {0} =~
for all t>0.

Lemma B.4 [39]. Let A, ..., A, be operators with contained spectrum on Hilbert
spaces 9y, ...,9;. Let A be the operator on 9,®...Q%, which generates the
semigroup e '@ ...®e " so that formally

A=4,®01Q..QI+I®A4,Q..QI+...+IQ...QA,.

Then A has contained spectrum and
K

o(A)= Y o(4)).

i=1

In addition to these results we will need the following result of Phragmén—Linde-
16f type whose proof is standard:

Lemma B.5. Let F(z) be an operator valued analytic function in a neighborhood of
S={zl0=Rez=1, Imz=0}. If A= sup |F(2)|| <00 and lim ||F(iy)| =0, then for
any 0<1: i ’

ylim sup |F(x+iy)| =0.

-0 0=x
Proof. Apply the maximum principle to the function

et =BR(7). B>0
. . 3 .
in the region 0<Rez=<1, % <Imz< 7)} to find that
sup [[F(x+iy)|| Sce ¥*eB 4 ce™B1L =9 1 o1+ B0 sup || F(ia)| .
0=x<0 azy/2

Choosing B suitably the result follows.
Finally we need the following:

Lemma B.6. Let H(0) be the operator H(0) when all V,;=0, let L, = ie"®H(0) and let
Vi, ...V, be (not necessarily distinct), two body potentials so that

F(y)=(Eq+Ly+iy) 'V (Eq+Ly+iy) ™' .. (Eq+ Lo +iy) "'V,
is compact (i.e., the Vs determine a connected diagram). Then for each E,,

Jim JE()]=0.

Proof. By a limiting argument, it suffices to consider the case where each V; is in
Cg (as a function of r;—r;). Then

Fy)= [ dt,..dt,g(t,, ...t,)e YO+-+im
0
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with
gity, ..., tm)=e~t1LoV1 . .e“'tmLone_(ll‘}‘.“‘)‘lm)Eo )

Now g is compact; indeed it is Hilbert-Schmidt as can be seen by using the
explicit integral kernel of e, so that g takes values in a separable space; clearly
g is measurable and since [e "% < Ce™P*, ||g|| is in L'. Thus, by the Riemann—
Lebesgue lemma, | F(y)|| -0 as y—»oo. [

Proof of Theorem B.1. As usual let L(0)=ie "H(0), L(O)=ie "H(0) and L(0)
=ie "H(#). We will prove inductively that each L°(0) has contained spectrum
and that
0,.(L(0) S kD) a(L(0)). (B.4)
If D={C,,...,C,}, then
L)=1®..QI+..+I1Q. . QL*QI+I®..QL (B.5)

with o(L) =0 for effective D and o(L)= {ie” **A|A=0} if D is ineffective. Thus (B.4),
the result on contained spectrum which we will prove and Lemma B.4 complete
the proof of Theorem B.1.

We begin the induction by noting that in case N =1, L(0) is easily seen to have
contained spectrum. Thus suppose we know every LE(0) with CS{1,...,N} has
contained spectrum. By (B.5) and Lemma (B.4) each L(6) has contained spectrum,
so using the Weinberg—van Winter equation

(L(O)—z)~'=DO;2)+1(0;z)(L(O)—z)"". (B.6)

we see that D and I are bounded as |Imz|— oo with Rez bounded from above.
Expanding I in diagrams when Rez is very negative and using Lemma B.6, we see
that || I(0, z)|| =0 as [Imz|— oo with Rez very negative. But then exploiting Lemma
B.S:

lim ||I(6,z)| =0.

[Imz|—
Rez<E

By the Weinberg—van Winter equation (B.5) we conclude that 1(6) has contained
spectrum.

(B.4) follows in the usual way from the Weinberg-van Winter equation if we
note that by inductively proving (B.2) we know that {zIRez<E}\U a(L(0)) is
connected. [ b

Appendix C. Some Estimates

The object of this appendix is to prove certain estimates which one of us has used
elsewhere [28].

Theorem C.1. Let hy=— A+ fx,, f>0. Then if y1o ., is the characteristic function

of [0, o)
x1X[0,oo)(x1) (ho—2)" L l/x_1X[O,oo)(x1)aj(h0 -2)71, Ao, oo)(xl)A(hO —z)7!

are bounded operators for z¢a(h).
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Proof of Theorem C.1. By first making a scale transformation we see that f can be
set equal to 1 without loss of generality. Let p;= —i0,, p?>= — A and let 0 be a non-
negative function in C®(R) with O(x)=1 if x=1, 6(x)=0 if x=<0. Let 4A=0(x,)
(p?+x,) with domain Cg. We compute

A*A=p?0?p? +x370% +x,0°p* +p*0°*x,
=p*0°p> +x70>+23 px,0%p;+[py. [p1, x,0°1.
J

dz
Since [p,,[p,,x,0*1]=— W(xl(?z)g — ¢ we have for peCy
1

Al +cllwl> 2 106e)p>w 1% + x, 00 w2 +2 Y 11/ %,0x )pywll > (C.1)

Using the fact that C3 is a core for p> +x, and that for Imz+0, A(p* +x, —z) "' is
bounded we conclude from (C.1) that 6(x,)p*(h,—z)~*, x,0(x,) (hy—2z)~' and

]/)Z()(xl)pj(ho—z)_1 are bounded. Translating x, by 1 we see that the above
operators are bounded when x, is replaced by x,+1 and 6(x,) by 6(x, +1).
Multiplying by y;o. )(X;) from the left leads to the desired result. []
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