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THE MATHEMATICAL THEORY OF RESONANCES
WHOSE WIDTHS ARE EXPONENTIALLY SMALL
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1. Introduction. Among the most interesting and challenging mathematical
problems raised by non-relativistic quantum mechanics are those connected with
resonances. This is due both to their subtle nature and to their practical
importance. Let us begin by describing two situations which are typical of rather
distinct general classes of examples; the first was completely analyzed by one of
us [49] several years ago (relying, in part, on earlier work of Friedrichs and
Howland; see [49] for references)wthe second will be analyzed in this paper.

Example O. Autoionizing states in helium. Let A0 be the Schr6dinger operator

A0 AI A2 2 2
/’1 r2

on L2(IR6), where r in Iq6 is written (r ,r2), and A is the Laplacean in ri. Let

A (A) A0 + ,1r, ral-’
(A0 and A (;k) are self-adjoint with domains taken as the Sobolev space HE). For, 1, A0 is a very good approximation to the energy operator of the helium
atom (and for (2/Z)E, to a constant multiple of the energy operator of an ion
consisting of a nucleus of charge Z and two electrons). The continuous spectrum

Received March 29, 1980. Research partially supported by USNSF grant MCS 78-01885. Part of
this work was done while E. Harrell held a NSF National Needs Fellowship at the Department of
Mathematics, M.I.T.

845
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of A0 is the interval [-1, ), and many of its eigenvalues are imbedded in this
continuous-spectrum. For good mathematical and physical reasons one expects
that these imbedded eigenvalues are not present for A (2,) when is small, but for
the physical, observed case A (1) one typically sees bumps in physical excitation
spectra near the positions of the imbedded eigenvalues of A 0. In [49] (see also
[39] for a pedagogical presentation), for each eigenvalue E0 of A 0 a function
E(X), analytic near zero, was found so that for q Gaussian the only pole of
(q,(A()- E)-lq) near E0 after continuation from ImE > 0 occurs at E().
E(A) was interpreted as a "resonance" and F(A)= -2 ImE(A) is the resonance
width. In general

F() a22 + 0(3) (1.1)

with a2 computable.

Example 1. The Stark effect in hydrogen. Here

H0 A 1
t"

is the Hamiltonian on L2(Iq3) of a hydrogen atom, and

H(F) no Fz (1.3)

(with z the third component of r) is the Hamiltonian in a constant electric field
(0,0,F). H0 has the familiar Bohr spectrum: [0, ) as continuous spectrum and
eigenvalues at -1/4n. The basic spectral properties of H(F) for F 4:0 have
been mainly known since the work of Titchmarsh [54] (see [2,23, 56, 50,57] for
significant recent related work): H(F) has (-, ) as spectrum, no eigenvalues,
and purely absolutely continuous spectrum. Here, too, one expects there to be
resonance energy functions E(F) with E(F) Eo as F0. There is, however, a
big difference between this problem and the last, namely that F is exponentially
small. Schr6dinger [41] originally developed his perturbation series to treat the
Hamiltonian (1.3) assuming that H(F) has actual eigenvalues E(F) near E0. His
methods can be used to obtain formal series in the nondegenerate cases,

F2nE(F) A2,, (1.4)
n--O

with all the coefficients A2n real (and finite; if one tries the analogous procedure
in Example 0 one gets ill-defined integrals f(x- Xo)-lg(x)dxmthe Taylor
coefficients there can be obtained by systematically interpreting (x- x0)-l as
the distribution P((x- Xo)-1)_ ir6(x- Xo)). Shortly thereafter, Oppenheimer
[38] pointed out that because the electron could tunnel through the Coulombic
potential barrier, H(F) should not be expected to have stationary states, i.e.,
normalizable eigenvectors. Indeed, using formal, WKB-type formulae for the
tunneling, he "computed" the width of the lowest resonance. A more systematic
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WKB calculation was then made by Lanczos [30]. There is some controversy
[58, 59] about whether Oppenheimer’s ideas lead to the correct answer even after
correcting his algebraic mistakes; nevertheless, following standard terminology
we call the "correct" WKB formula as found in Landau-Lifshitz [31] the
Oppenheimer formula. It states that

F(F), - F-’ exp(- -) (1.5)

for the width of the resonance associated with the lowest eigenvalue of H0. One
of our main goals in this paper will be to give a proof of this formula. Despite the
fact that it was first "derived" fifty years ago there is not only no rigorous proof
but even still some considerable discussion in the physical literature of its
correctness. The reason for this and the associated reason for the complexity of
the proof below is that one must be sure that every error term arising along the
way is not merely small in the sense usual in perturbation analyses (i.e. O(F) for
some k), but small compared to the right side of (1.5). Indeed, although Yamabe
et al. [58, 59] (who also review much of the literature) have an approach with
many similarities to ours, it is not at all clear how to control the errors without
the various technical devices we use below.

For comparison with some of the literature, we note that an alternative
normalization of (1.3) is

1A_ +F’z (1.3’)H’(’) 7
Notice that under the scaling r-+ 1/2r, H’(F’) is unitary equivalent to 2H(1/4 F’),
so that

E’(F’) 2E(1/4F’)

r’(F’) 2r(1/4F’)

a, 2( 1/4)"a 2,. (1.6)

Let us next say something about previous rigorous work on resonances in the
Stark problem. Many of the ideas go back to Titchmarsh, both in his book [54]
and in a series of papers [55], who worked on three interrelated approaches:
spectral concentration, poles of Green functions, and "transmutation formulae."

Spectral concentration has been discussed and extended by a large number of
authors; see [39] for complete references. We note that given Howland’s ideas
[27] on the connection between poles and spectral concentration and given our
results below, one can considerably improve the spectral concentration results
previously known for the Stark problem in hydrogen.
The connection between poles of Green functions and resonances has already

been noted above. Titchmarsh studied them most especially in a model which is
a simplification of the Stark problem:
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Example 2. (The Titchmarsh problem). Consider the Hamiltonian

d2 g zh ( g, z, f)
dx2 x2 x fx (1.7)

with f real, g > -1/4 and z > 0 fixed parameters, on the space L2((0, oo),dx).
Questions about the boundary condition at zero will be discussed extensively
below, h arises if one reduces the v-dimensional Hamiltonian -A- zr-1 -fr to
subspaces (r/2u(r)Y(f)) with Y a fixed spherical harmonic. For v even the
values of g that occur are g m2- 1/4 with m 1/2(v 2), 1/2 v, 1/2(v + 2),... and
for , odd, the values g l(! + 1) with 1= 1/2(v 3),1/2(v 1), In either event
the quantity

m ( g + 1/4)’/2 (1.8)

is always either integral or half-integral under this reduction. For these values of
m, Titchmarsh [54, 20.11] studied the problem for fixed z and m (or equivalently
g), allowingf to vary near zero. He proved that for any fixed eigenvalue X0 of the
problem with f--0, the Green function G(x, y;X) defined for ImX > 0 has a
meromorphic continuation in ;k for fixed x and y, into a neighborhood of X X0,
with a pole at a point X(f). He proved three facts about X(f):

(i) X(f) Xo + xl+ O(f21n(1/f))
(ii) ImX(f)=O(f2)
(iii) ImX(f) > C exp(- CEf-/4), C,2 > 0.

He conjectured that ImX(f) was exponentially small, which is one of the things
we prove in this paper. With our methods, or alternatively with those of Herbst
[24] discussed below, one can establish an asymptotic series for X(f) valid to all
orders, which improves (i); and the observation that all coefficients are real
immediately improves (ii) to O(f) for all N < . See [20] for further discussion
of this model.

Titchmarsh also considered these pole ideas in the context of the Stark effect.
Because of the singularities of G(x, y; E) at x =y and the corresponding failure
of eigenfunction expansions to converge absolutely, Titchmarsh dealt instead
with the kernel of the spectral projection fIm G(x, y; / + iO)d#. Some related
ideas have been developed by Schwinger [43] and Lovelace [37]. Most recent
progress in the connection between poles and resonances originates in the work
of Combes [10], who proposed looking for poles of G when smeared in x, y with
vectors r/which are analytic for the group of dilations /(x) eV/2/(ex). In fact,
our solution [49] of Problem 0 depended intimately on the development of these
ideas by Balslev and Combes [3]. For some years it was clear that the Stark
problem did not fit into the Balslev-Combes framework and there appeared to be
severe formal problems preventing any extension. However, in a recent striking
paper, Herbst [24] succeeded in extending the notions of [3] to allow the
definition of a resonance; in particular, he was able to prove the occurrence of
resonance poles in the smeared Green function for the Stark effect in hydrogen
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and he showed that the resonance functions E(F) obey:
N

(i) E(F) Eo + A,,F"+ O(F2u+21
n--1

for the Rayleigh-Schr6dinger coefficients A2n, which are all real.

(ii) Ime(F) O(F2N ), all N;

(iii) ImE(F) > 0, all F v 0.

The quantity for whicla we prove Oppenheimer’s formula (1.5) is precisely
Herbst’s E(F).

Independently of Herbst, Graffi and Grecchi [18] used the transmutation
formulae given below to discuss resonance poles for the Green function smeared
with dilation-analytic vectors.

Herbst’s methods have been extended by Herbst and Simon [26] to prove
(i)-(ii) for multi-electron atoms in external electric fields. Unfortunately, as we
shall explain later, our methods here are limited to the case of hydrogen. A major
open question is the proof of generalized Oppenheimer formulae for multi-electron
atoms.

There is a second set of problems, at first seemingly unrelated, that we will
study in this paper, The canonical example of this problem is:

Example 3. (The anharmonic oscillator and the Bender-Wu formula). Let
A(fl) denote the lowest eigenvalue of Q(fl) -d2/dv2 + V

2

oo); dv). By work of Titchmarsh [55] and Kato [29], it is known that A(fl) has an
asymptotic series to all orders,

A( fl ).., anti n.
n--0

By a numerical analysis of the first 75a’s, which they computed by a simple
recursive formula, Bender and Wu [5] deduced the asymptotic formula

a.ar-3/:(- 1)"+ ()"+ /:r(n + 1/2), (as n ---) o) (1.9)

(they guessed the constant in front from a numerical 9-place decimal!). Several
years later, they realized a connection between (1.9) and some WKB tunneling
formulae [6]. To explain their idea, we must mention some analyticity results of
Simon [48], Loeffel and Martin [35], and Loeffel et al. [36]: A(/3) has an analytic
continuation to the complex plane cut along the negative real axis, with
continuous boundary values. Moreover, IA(/3)I < A + B I/31 /3 in the whole
plane. From these results and a Cauchy integral formula, one easily deduces [48]
that for n > 1:

an (_ 1).+, q,/.--I ]L -limA( bt + iO)dtx (1 10)
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Thus, the large n asymptotics of a follow from the small /x asymptotics of
ImA(-/z + iO). Bender and Wu [6] remarked that for / > 0 and small,
-d2/dx- + x2-/,x4 is formally a tunneling problem, which they then analyzed
using nonrigorous WKB formulae, finding that

ImA(- + iO),4rr- 1/2/z- /2exp(- 2/3/x) (1.11)

(Simon [48] had earlier noted that this would imply (1.9)). We will prove (1.11)
below and thereby, given (1.10), also prove (1.9). Our methods should extend
easily to the case of x2m oscillators. The transmutation formulae do not hold in
that case, but we only need them to reduce this operator to the Stark problem.
To facilitate comparison with the formulae of Bender and Wu, we note that

their normalization is

Q,(fl,) d2
2 X4.I- x + fl

dx

Under the scaling x-+-x, Q’(fl’) is unitarily equivalent to 1/2 Q(2fl’). Hence

ImA’(-/,’ + iO)= 1/2ImA(-2/,’ + iO)

=2an lan"
Parenthetically we note, following Herbst and Simon [25, 26], that the relation

(1.10) has an analogue for the Stark effect, viz.,

A2, -r-lF-zn-’F(F)dF+ O(R-2n), (1.12)

with A2n given by (1.4) and F -2 Im E. Thus, given our proof of (1.5) we also
have an asymptotic formula for the A2n perturbation coefficients for the Stark
problem:

62n+A2n,’--, (2r)1(2n)’ (1.13)

Given the necessary changes of units, this agrees with numerical calculations of
the A2n [45, 47].
We also note that considerable interest has been shown in (1.11) and (1.9)

recently in terms of saddlepoint analysis in function space integrals (e.g., [34, 8]).
Despite considerable partial progress towards a rigorous justification of this
approach (see [51,52]), (1.9) has not been proven by those means. Our proof of
(1.9) sheds no light on why the formal function-space arguments give the right
answer.

There is clearly a formal similarity between Problems 1-3 in that all involve
tunneling through barriers and relations between imaginary parts of resonance
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energies and asymptotics of perturbation coefficients. Actually there is a closer
similarity than that. The problems, at least after suitably imbedding them in
problems with more parameters, are essentially identical. This realization is
intimately connected with the separability of the Stark problem in suitable
coordinates. Jacobi [28] seems to be the first to have studied the exact solution
(up to quadratures) of the problem of a classical particle in an inverse-square
force plus a constant external force field. He used the separability in elliptic
coordinates. In 1916, Schwarzschild [42] and Epstein [13] independently
reexamined the problem in order to explain the splitting of the Stark effect
(observed by Stark [53] in 1913) within the old quantum theory of Bohr.
Schwarzschild relied on Jacobi’s solution, while Epstein introduced the
separability in parabolic coordinates which, as we shall see, leads to coupled
anharmonic oscillators. In 1926, Schr6dinger [4 l] and Epstein 14] independently
carried this separability in parabolic coordinates over to the "new" quantum
mechanics, obtaining essentially the same basic transmutation formulae we
describe below. This separation in parabolic coordinates is behind much of
Titchmarsh’s work [54,55] and also much of the recent work of the Modena
group [18,19,20,4]. In particular, the essential equivalence of Oppenheimer’s
formula and the Bender-Wu formula (more properly the Bender-Wu-Banks
formula discussed below) has been noted independently by Benassi and Grecchi
[4].
To describe the equivalence we increase the number of free parameters. In

Example 1, we define

H(F,Z) -A- Zr-l- Fz, (1.14)

and we write the formal eigenfunction equation

Z,F) (1.15)

In Example 2, we deal with the operator h(g,z, f) and always let m be given by
(1.8). For g > 3/4 (m > 1), h is essentially self-adjoint on C0(0, oo), and the
condition of square-integrability at x 0 forces a boundary condition at x 0.
For -1/4 < g < 3/4 (0 < m < 1), all solutions of the equation are square-
integrable at zero, behaving as x 1/2 -+’’ (or, if m 0, as x /2 or x 1/21n x). If

h(g,z, f)J(x; g,z, f) , J(x; g,z, f) (1.16)

with the boundary condition

lim J(x)/x + <
x-->O

then we say that J obeys Dirichlet-like boundary conditions (for g 0, this
corresponds precisely to Dirichlet boundary conditions; also, as we shall see, for
g -3/16 (m 1/4) a transmuted equation goes over to one with Dirichlet
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conditions). If on the other hand

limx1/2-m[J(x)lx1/2-m] ’= lim [S’(x) -(1/2 -m)J(x)lx] O,
x---0 x---0

then we say that J obeys Neumann-like boundary conditions (again, for g 0,
this means Neumann conditions, and for g -3/16, Neumann conditions for
the transmuted problem).

Finally, for Example 3 we introduce

d2 + CtV
2 + flV4 + 7v-2 (1.17)O(a, fl,7)

dv2

and the formal eigenfunction equation, v > 0:

Q(a,/3, 7)xI,(v; a,/3, 7) A(a,/3, 7)xlz(v; a,/3, 7). (1.18)

We can give the first set of transmutation formulae by noting:

PROPOSITION 1.1. Equation (1.16) is equivalent to equation (1.18) under the
change of variables

a -4; fl -4f; 7 4g + 3/4; A 4z (1.19a)

x v-; J(x) v/Z(v). (1.19b)

This proposition is intended in the sense of equivalence of ordinary differential
equations, and not as a statement of operator equivalence. Notice that
7 4g + 3/4 is equivalent to 7 4m2 1/4. In particular, 7 0 corresponds to
g=-3/16 (m= + 1/4) and eigenfunctions of the anharmonic oscillator
_d2/dv2 + /32 q.. /24 on all of (-, ), that are even (resp. odd) under v---> -v
correspond to h(- 3/16, A/4, ill4) + 1/4 with Neumann-like (resp. Dirichlet-
like) boundary conditions. Also, the two-dimensional oscillator -A + x2+ fix4
restricted to functions of the form xl/2f(x)eim, i.e.,

d 2

dx2
+ X2 + [X4 + x-:(m:- 1/4),

corresponds to h(g,A/4,- ill4)+ 1/4 with g m2- 1/4, so that m is given by
(1.8).
The second set of transformation formulae relate (l.15) when separated in

parabolic coordinates to (1.18).

PROPOSITION 1.2. If r=(uvcos,uvsinC,1/2(u-v2)) (i.e.,
v--/r- z, so u, v2 are parabolic coordinates), then

u=Jr+z,

O( r) ( uv) /2X(U)(v)e irnth
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obeys (1.1) if X, t obey

Q(- E, F/2, m2 1/4)X

Q(- E,- F/2,m2 1/4)0 A20
A + A2 -2Z 0.

(1.20a)

(1.20b)

(1.20c)

This is a straightforward, although tedious, change of variables; see [54;
15.16]. For rn > 1, Q is essentially self-adjoint without any boundary condition,

and for rn 0 the Dirichlet conditions correspond to the requirement that O be
bounded.

(1.20c) is just the formal equation relating the A of (1.18) and the E(Z,F) of
(1.15):

A( E, F/2, m2 1/4) + A( E, F/2, m 1/4) 2Z. (1.20c’)

In particular, it relates the Oppenheimer formula for E(Z, F) when rn 0 and
the analogue of the Bender-Wu formula for A(a,-/ + iO,- 1/4) found by
Bender, Wu, and Banks [7]. It can be proven [21] that any solution of the partial
differential equation with suitable boundary conditions at infinity is a sum of
products in parabolic coordinates.
As a final introductory point we should say a little about the physical

interpretation of the quantity E(F) as the energy of a resonance. That is, to what
extent is E(F) dependent on our decision to work in a framework that gives a
special meaning to the dilation analytic vectors (see Simon [60] for additional
discussion of this point)? First, there is a remark of Howland [61] that, carried
over to our situation, gives a natural mathematical meaning to E(F) independent
of any special choice: namely, our results show for suitable complex F (indeed
for F purely imaginary), E(F) is actually an eigenvalue of H(F); thus E(F) is
just the analytic continuation in F of an eigenvalue. From a physical point of
view, one should prove that resonance energies as defined within the framework
of the dilation analytic theory are the poles of the scattering operator analytically
continued. For results of this genre in the case of zero field see [60]; see Yajima
[57] for the case with electric field. While these results tend to suggest strongly
that the E(F) will be the poles of the S-operator for our actual case, all of them
are restricted to potentials with stronger falloff than r-l at infinity and some
require more local regularity. We also note that while there is some controversy
in the physics literature about whether many body effects might produce poles of
S unrelated to the dilation analytic theory, there is general agreement that these
will yield poles of S and that in the two body case considered here, these are the
only such poles. Finally, we note that Herbst [62] has related the E(F) to the
decay of (d,eitH(F)dp) for q an eigenvector of H(O); this relates another notion of
"resonance" discussed in the physics literature.



854 E. HARRELL AND B. SIMON

We can now describe the contents of the rest of the paper. The above
transmutation formula reduces the Stark problem to an ODE, and the other two
problems are already ODE’s. We will characterize resonance solutions as
solutions with a certain behavior in a certain direction of the complex plane. This
characterization, known in the physics literature as Siegert-Gamow boundary
conditions (after [44, 16]), is equivalent to the characterization by dilation
analyticity in the Stark case and to the characterization by analytic continuation
in the anharmonic case. We will then be able to isolate ImA by variation of
parameters starting from an approximate solution which is WKB in suitable
regions, Airy at turning points and Whittaker in the near region. The basic
strategy is described in Section 2. As the reader will have noticed, it is
unfortunately limited to problems given by ODE’s and involves some
manipulation with special functions. The application to the Titchmarsh problem
is complicated by the long range of the r -l potential. Since it is not L at
infinity, one cannot approximate the solution of (1.16) by solutions of Airy’s
equation h(g- O,z -O, f)J L/. The analogue of Titchmarsh’s problem where
Z/r is replaced by a potential in L is thus technically much easier, so we begin
by analyzing that problem in 3, thereby illustrating the basic strategy. The
Titchmarsh problem is then analyzed in 4. Given the analysis and the
transmutation formulae it is easy to obtain the major results of this paper; a
proof of the Bender-Wu formula (1.9/1.11) in 5 and of the Oppenheimer
formula (1.5) in [}6. We have included a glossary of information we need on
special functions in one appendix and placed several calculations in other
appendices.

It is a pleasure to thank L. Benassi, S. Graffi, and V. Grecchi for valuable
correspondence, and I. Herbst for valuable discussions.

2. The basic strategy. In this section, we want to describe the basic
approach and reduce the analysis of resonance widths to the proofs of estimates
on solutions of ordinary differential equations with prescribed behavior at
infinity. We begin by relating resonances to these special solutions, thereby
getting an implicit equation. By analyzing this equation with Taylor’s Theorem,
we will obtain the required reduction. Finally we will give several general
elements of the construction of solutions and their estimation.

Definition. By ’V we denote the class of functions V(x) on (0, ) which have
an analytic continuation to the region S z] ]argz[ < r/3 + 6 for some 6 > 0
and which obey either

(a) V(a + xeiq’)l dx < oo (2.1)

for all a S, < rr/3 + , or

(b) V= V -I- V2 + g3, (2.2)
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where V Z/x, V2 /x2, "Y >/ 1/4, and V3 obeys (2.1). Note that we do not
demand that V be real. This will be important because the transmutation
formulae lead to nonreal V’s.

PROPOSITION 2.1. Let V qr; then for every F > 0 and E C, the differential
equation

-" (Fx V(x)) E
has a solution q J(x, F, E) that, together with its derivative, goes to zero in the
sector 0 < arg x < r/3 + , uniformly in the regions e < arg x < r/3 + 6 e.

All such solutions of (2.2) are multiples of J. This solution satisfies IJI
Cexp(-elzl3/2) in (z Izl > R, argZ (6,r/3- 6)), while all other solutions go
to infinity.

Proof. Uniqueness follows from the constancy of the Wronskian of two
solutions. Existence follows from a simple variation of parameters of the type we
consider extensively below with either Airy functions (the exact solutions when
V 0)or with the WKB solutions. We will remark on some details of this
construction below. [-]

Definition. By a resonance solution of the operator -d2/dx2 + V- Fx with
prescribed boundary condition C at x 0, we mean a solution J of (2.2) with the
vanishing conditions given in Proposition 2.1, which moreover obeys the
prescribed condition C. The corresponding value of E is called a resonance
energy.
We must link this definition to the operator-theoretic definitions alluded to in

1, namely those given by dilation analyticity in the Stark and Titchmarsh
problems and by analytic continuation in a parameter in the anharmonic
oscillator.

PROPOSITION 2.2. In the following cases:
(a) V regular at x 0; -d/dx with Dirichlet or Neumann conditions,
(b) VZ/x at x O, -d2/dx2 with Dirichlet conditions, or

(c) V--.Z/x + l(l + 1)/x2 (1 > 1) at x O, -d2/dx2 + V with the boundary
conditions (Dirichlet) obtained by closing the operator on C(O, oo),

Herbst’s method [24] of dilation analyticity is applicable, and resonance in the
Herbst theory corresponds precisely to resonance energy as defined above.

Proof. Herbst’s theory depends on showing that -e-2id2/dx2 + V(eix)-
Fex has discrete spectrum for 0 real, small and non-zero. Resonances are
eigenvalues for Im 0 small and positive and are independent of 0. It is easy to see
that resonances thus correspond to solutions of the ODE which are square-
integrable along rays (xe Ix > 0,0 fixed, small, and positive) and hence to
resonances in our sense. [--I

PROPOSITION 2.3. Fix a, 7 real, > -1/4, a > 0. Let A(fl) be defined for
fl > 0 as an eigenvalue of the operator Q of (1.17) and define A(fl) for arg fl ir
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by analytic continuation in the lower half plane. Then A(-I1- io) is such a
continued eigenvalue, if and only if -1/act is a resonance eigenvalue for the
Hamiltonian (1.7) with g 1/4 (, 3/4), z 1/4 A f 1/4/3 1/4[/31 and with the
appropriate conditions.

Remarks. 1. By the appropriate boundary conditions, we mean that
Dirichlet-like (resp. Neumann-like) boundary conditions in (1.17) correspond to
the same type of condition in (1.7).

2. We note that in the , 0 problem the whole line reduces by symmetry to
the direct sum of problems restricted to even and odd functions, and these are
equivalent to the Neumann and Dirichlet problems on the half-line.

Proof. One first notes that if /3 is held fixed and positive and is fixed,, > 1/4, then analytic continuation in ct is possible on an operator theory level
for all A, ct[48], and eigenvalues correspond to solutions which go to zero at
infinity along the real axis. If one notes that under the scaling x-->hx the
differential operator Q(ct, fl,3’) goes to k-2O(ctk4, 6,,y) one can relate
solutions of Q(x, fl, ,) A going to zero as Ixl- 00, argx 0 to solutions of
,-2Q(ct,4, fl,6, 7) A/going to zero as Ixl--) 00, arg(Lx) 0. This continuation
in fl corresponds to continuation in ct if one remembers to continue the argx for
which the boundary condition is demanded. This proves the result. To see that
continuation of fl in the lower half plane is involved note that the condition is
+/-argfl+argx=0. l-]6

PRO’OSITION 2.4. Fix m =0, 1... and let A(ct, fl, m2- 1/4)be the real
eigenvalues of Q(ct, fl, mE 1/4)for fl > 0 and the resonance eigenvalues of fl < O.
Then for fixed Z,F real and positive, solutions E of (1.20c’) correspond to
resonances in Herbst’s sense for the Stark problem (1.15).

Proof. This involves the same argument as in Proposition 2.2 and the
parabolic separation of variables. -]

Remarks. 1. It can be proven [21] that every resonance wave function for the
Stark problem is a product in parabolic coordinates, so that every such resonance
corresponds to a solution of (1.20c’).

2. In terms of analytic continuation in fl, one often writes (1.20c’) with
-F/2 e-iF/2 to indicate the continuation through the lower half-plane.
These considerations reduce the study of resonances in the operator-theoretic

sense to the finding of what we have called resonance solutions, and henceforth
we only consider these resonance solutions.

In addition to the time-independent definitions of resonances we have
mentioned, there is a time-dependent point of view, from which a resonance state
is a localized state which, while not an eigenfunction, decays (in time)
abnormally slowly. The shortcoming of this point of view is its imprecision. By
looking at spectral projections onto small enough intervals one can find
arbitrarily slowly decaying states, but the slower the decay the worse the
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localization. There is no convincing canonical balance of localization and
slowness of decay to optimize. However, a representative tine-dependent
resonance state can be constructed from the resonance solution we write down
by cutting it off so that it becomes L, and the rate of decay is essentially the
imaginary part of the resonance energy that we calculate by a golden-rule
argument (see Section 3).
The procedure we will follow yields resonances in the Stark problem as

solutions of an implicit equation. Our strategy below will be to sol’ce the other
problems also in the form of implicit equations. Thus we will want to solve an
equation

G(f, ),) 0 (2.3)

for k as a function of f, related to a real solution h0 of G(0,;k0)= 0. Under
suitable conditions on G we know that for f small there is a unique solution of
(2.3) with h(f) near )0. We begin with the rather elementary

THEOREM 2.5. Let G(f, ) be a C function on f[ f [0, F), I ,o1 < e, k
complex} which is analytic in for each fixedf and with

(a) G(0,Xo)= 0 and OG(O, 0)/ is a nonzero real number; and
(b) for some a > 0:

)G )G
--)h (f’h) (o, ,o)- o(1,- Xol / Ifl’)

(c) for a fixed function g(f) and for real and near ko:
Im G(f,X) g(f)h(X)exp(- a()/f)(1 + O(Ifla))

for a C function a of # with h smooth and h(o)=/: O. Then there is a unique
solution X(f) near ho of G(f,X(f)) O for f small. Moreover, Reh(f)= Xo + Xf+
o(f) for some Xlj and

Imh(f) Cg(f)h(Xo)exp(- a(2to)/f) .(1 + o(1)),

where

-’( )C= (OG_ (0,,o)) exp -X, _fig (g
=da h0)

If the o(f) term in ReX(f) can be replaced by O([fl’ +a), then the o(1) term in
Imh(f) can be replaced by O(If]a).
Remark. By C on the closed interval, we mean in the sense of a one-sided

derivative.

Proof. By the implicit function theorem, there is a unique ,(f) which is C so
that ?(f)= ho + klf + o(f). Using the mean-value theorem, we find/(f) with
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Re/(f) ReX(f) and Im/(f) between 0 and ImX(f) so that

G(f, ReX(f)) ImP, Re G(f, t(f)),Im

where we have used Im G(fo,)(f))= 0. Since

exp(- a(geX(f))/f) exp(- a(Xo)/f) exp(- geXl(da/dtQ + o(1)),

the result follows. [-]
Under suitable hypotheses on G, one can go to higher order in ImX(f), in the

sense that (1 + o(1)) can be replaced by [1 + af + bf2 + o(f2)] for some explicit
a, b. In particular, one could use the methods of this paper to go to higher order
in the Oppenheimer and Bender-Wu formulae.
The final element of the overall strategy involves the implicit equation we will

use to find the eigenvalues. This will be the standard method [40,22] of taking
the Wronskian of two solutions of the basic differential equation, one obeying
the boundary condition at infinity, the other at the origin. To construct the
solution of an equation

+ C(x) q(x) 0 (2.4)
dx

with some boundary conditions at x0, we use as comparison functions two
functions qx obeying

If we expand

( d2 )-+A(x) q (x)=0. (2.5)
dx2 +-

(x) a+ (x)q+ (x) + a_ (x)q_ (x)

(x)o’+ (x) + (x),

then we obtain the equivalent equation

(2.6)

d(a+)=dx a_ W{,_,q+ _0+
q2 a+ (2.7)
_+_ a_

where B(x)= C(x)- A(x) and W {f, g} =fg’-gf’ is the Wronskian of f and
g. This use of variation of parameters to justify WKB-type results has been used
before by various authors [15,22, 1]. In all cases we construct resonance
solutions of (2.2) when E is real and negative by performing the variation of
parameters along a path P P U P_:

el {xI0 < x < ElF} (2.8a)

P_ x Ix ElF+ rei/3, r > 0}. (2.8b)



MATHEMATICAL THEORY OF RESONANCES 859

In the region

p}O)= (x P, x<F (2.9a)

(where a is a fixed number strictly between 0 and 1/2 to be picked for
convenience later), we will take q_+ to be solutions of (2.2) with F 0; and in the
regions P2 and

P(’)= (xP, x<F-) (2.9b)

we would like to take q_+ to be solutions of (2.2) with V 0. We can get away
with this in the short-range case (3), and only need to consider three regions,
p(0), p(1), and P2" In the long-range case (Vx-), however, we cannot get
away with using solutions of (2.2) with V= 0, because in the limit F= 0
the solutions of (2.2) are not asymptotically exp(_+/-E x), but rather
exp(_+ /- E (x + c In x)). We therefore need to take q +_ to be WKB functions in
order to get the right asymptotics. Since such approximations are poor near the
classical turning point -ElF, the long-range case (4) will need to break p(i)
into two regions

PI(2) (x Pl F- < x <[- ElF] F -t ) (2.9c)

p(3) {x Pi 1[- ElF]- r -t < x}. (2.9d)

Likewise, P2 must be broken into two regions,

P2(1) {x e2lr= Ix + ElF < F- } (2.9e)

e(2) {x ez r > F -a }. (2.9e)

In the region P() we will take solutions with F 0 (Whittaker functions); in the
regions p(2) and p(2), (3)

2 we will use WKB approximations; and in the regions P
and P2() (near the turning point) we will take Airy functions in conformity with
the ideas of Langer [32].
One further complication is that it will be convenient not to have #,_+ C at

the matching point for regions P and P2this is no problem since only q and +’
need be continuous. For this reason we will give different names (to wit q,_ and
/_+ ) to the bases in the two regions. We will rely on a general property of
solutions of (2.6), which is the remarkable fact that when A, C, and q,_+ are real
valued, Im(a//a_ ) varies only slowly, and according to an explicit formula"

THEOREM (2.6). Let c +_ and B be as above and real-valued on the real interval
[x0,x], and let a+_ obey (2.6). Then

Im -_ (Xo)=Im -_ (x
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where

x0
+ + a----_ (x)

Proof. Since

the differential equation leads to:

a+ )’ B(x)
77_ W{,_,,/)

2,

_
77_ + +2+ 7-_

Taking the imaginary part of both sides,

d ln[im(a+)]= 2B(x)
77_ w{,_,,+ }

O+q_ +q2+ Re

and integrating this leads to (2.10), (2.11).
We emphasize that the errors introduced in (2.10) when X is small and exp(X)

is expanded in X are multiplicative, i.e.,

Im (Xo)=Im -_ (x,).[l+O(X)].

3. The short-range case: A warm-up. As we explained at the end of the last
section, the treatment of the Titchmarsh problem is complicated by the long
range nature of x-1. In addition, there are complications due to the singularities
of x- and x -2 at x 0. Thus we illustrate the situation by considering

_d2
Ho + V(x) (3 1)

dx2

on L2(0, ot) with the boundary condition

u(x =o)=o. (3.2)

We let

HI= Ho-fx (3.3)
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and consider a negative eigenvalue o of H0. We suppose throughout that V(x) is
analytic in

xl largxl < + R, (3.4a)

V(x)l < c( + I[)-’-’ (3.4b)

for some e, 6 positive, and

V(x) is analytic near x 0. (3.4c)

Under the hypotheses (3.4), we can define four solutions o_+, OD, ou of

o"(x) + V(x)o(x)

The solutions on,u(x,)) obey the boundary conditions

oD(O,X)=O, o5(0,x)= 1; ou(O,x)= 1, o;,(0, ?,) =0.

One easily sees that OD,N(X,k) are analytic in R C and obey"

[%,N(X,X)l + [O,N(X,X)l < C exp(lX[’/Zlxl) (3.6)

in the region Rs/2 C,. The solution o_ is defined by the conditions:

o_ (x,h)/exp(- [-h x)---) (3.7a)

o’_ (x,h)/[exp(- TrZ-x) ](- /-, )--) (3.7b)

as x --) o along the real axis. o_ is analytic in R (;k[h [0, oc)} and is easily
constructed with a variation of parameters about exp(_+ /-) x); see, e.g., Dicke
(appendix to [48]). The solution o+ is to be chosen so that

(3.8)

For example, we can take

o+ + [o,_ (o)1-’[o’_ (o)-
which is meromorphic in R {h[h (0, oc)) with poles in h only at points with
o’_ (0, h) 0. It is not hard to see that o + obeys"

o + (x, h)/exp( + -h x) -) l, (3.7c)

o’+ (x, k)/exp( + x/-X-x)(-k ) --) 1. (3.7d)
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Equation (3.8) determines o+ up to multiples of o_, and, in particular, if

o_ (0,0) 0, (3.9)

then o+ (0,,0) is independent of any choice. We will prove the following result in
this section:

THEOREM 3.1. Assume (3.4) holds, and let o be a negative eigenvalue of Ho (so
that (3.9) holds). Then Hf has a resonance h(f) near o for f small and real, andfor
some a > O,

Imk(f) Cexp(-4(-o)3/2/3f).[1 + o(fa)], (3.10a)

where

and

C (1/8)exp(y)(- X0) -l/20+ (0, 0)[ (3.10b)

2( Xo) l/2f x o (x; Xo) ]2 dx, (3. lOc)
f[ ,,_

Remark. The exp(y) term is somewhat subtle; it arises from the k(da/dl)
term in Theorem 2.5. In physicist’s language, it comes from the effect that the
first-order energy shifts have on the tunneling. This is obviously a negligible
effect for the anharmonic oscillator, which is reflected in the transformation
formula in that if one adjusts the charge rather than the energy to accommodate
the change in f, then there is no such term. In the Stark-effect problem, no such
term occurs for the ground state, for which E- E0 O(F2), but one is present
for certain excited states; see 6.
To prove Theorem 3.1, we construct a solution J(x, fiX) of (2.2) with , E

by a variation of parameters using solutions q,_+ (x, f,) such that J(x, f,)=
a+ (x, f, h)q + (x, f, h) + a_ (x, f, h)q_ (x, f, ,). J will be chosen to go to zero as

Ixl- o with 0 < argx < rr/3, so that X(f) is the solution of

J(x=O,f,) =0. (3.11)

It will be convenient to replace (3.11) by the equivalent condition

G(f, X) 0, (3.11’)

(a+) J(x 0)
G(f,X)-q_(0)+4,+(0) (x=0)= a_(x=O)

The hypotheses (a), (b) of Theorem 2.5 are easy to check in the construction
below (done for X complex), so we will concentrate on verifying hypothesis (c)
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and identifying Im G(f, 1). Since (c) involves only real , we will henceforth take
? real.
We will choose ,_+ in such a way that for f-0, a+/a_(x-O)--O

independently of X, and thus if we verify the hypothesis of Theorem 2.5"

ImX(f) -exp(-)+ (0) (x 0).(1 + O(f)),

where
___

(0) means .__ evaluated at X X0, f 0, x 0. Moreover, at f-- 0,
will be chosen to be multiples of o_., so that ImX(f) will depend on the
calculation of Im(a+/a_ )(x 0), and hence Theorem 2.6 will be useful.
As described in Section 2, we define

__
to be C on [0,- X/f] solving (2.5)

with

A(x,X) ( V(x)- t, x <
-ix-X, x>f-",

and with c fixed once and for all, 0 < a < 1/2. Thus a+ will obey (2.6) with

-fx, x<f-’,
B(x,)t) V(x), x > f-’.

q+ can be expanded in terms of the basic solutions o+ in the region x < f-,
and in the region x > f- we use the functions

a(x; f,X) Ai(-fl/(x + X/f))

b(x; fiX)= Bi(-fl/(x + X/f))
where Ai, Bi are Airy functions (see Appendix b); Bi is chosen so that b falls off
from x 0 to x -All. q +_ are determined by the differential equation and the
"boundary conditions":

+ O+ (X,,), X e PI,X <

q,_ N(f,X)b(x, f,X),x e,,x > f-’,

where N is chosen so that

N(f,,) =[ W(b,o+ )(x =f-")]-. (3.12)

(Note: Most Wronskians we consider are of solutions of the same second-order
equations, so we need not specify a point x. In (3.12) and in some formulae
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below we do wish to specify a point x; actually, as we shall see, our value of t is
irrelevant in (3.14) to leading order in f.) The evaluation of N and of the
expansions

+ (x) C+ (a)a(x, f,X) + C+ (b)b(x, f,), XPl,X>f-a,

(x) c_ (o+)o+ (x, f,x) + c_ (o_)o_ f,x), XPl,X<f-,
are simple exercises of the use of Wronskian equalities at x f-; for example,

C+ (a) W(o+,b)(x=f-a)/W(a,b).

As f0, the point x f-a is in the region where o_+, o’_+ obey their asymptotic
formulae (3.7) and where a, a’, b, b’ obey asymptotic formulae (b.9, b. 10) given in
Appendix B. Thus, one can obtain asymptotic formulae for the constants C_+
and for N; explicitly:

q,+ (x; f,,) C+ (a)a(x, f,) (1 + O(f)), (3.13a)

and

C+ (a) Zf-’/%/2(-X)’/4exp(-}(-X)3/2/f).(1 + O(f)) (3.13b)

uniformly in [f-a,_
(x, f,X) C_ (o_)o_ (x,X) (1 + O(f)), (3.14a)

and

C_ (0_) Nfl/6,rl’-l/2(-x)-l/4exp((-X)3/2/f) (1 + O(f)) (3.14b)

uniformly in [0, f-a]; and

N 1/2 (--)k)-l/4,/rl/f-l/6exp( (-X)3/-/f).(1 + O(f)). (3.15)

Thus (3.15), (3.14b) imply that

C_ (o_) 1/2(-X)-l/2(1 + O(f)), (3.14c)

which is as it should be, since W{o_,o+ 2/-X, W{_q+ 1,q+ o+,
and q_ C_ o_.

One can see why all formulae are independent of a, and why q+ .C+ (a)o+
and q,_ .-C_ (o_)o_ to leading order as follows: In the asymptotic regime, the
exponentially decreasing (resp. increasing) solution must match to that solution
which decreases (resp. increases), and it doesn’t matter much where the matching
is done, since in both cases the matching is taking place in a region where both
V(x) and -fx are small, so that exp(_+ (-k x) dominates. Note that while Ai
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falls off exponentially, that means that as x is increased, a will grow
exponentially!
Along the curve P2 we will make a variation of parameters with

We will use comparison functions r/_+. Since _,-b does not fall off
exponentially along P2, we will not take v/_ q_, but rather we use the Airy
function

c(x, -f,) Ai(-f’/3(x + f-l)e +2ri/3)
and take

1- Ne +ri/6 C(X,

with N the normalization factor determined by (3.14). r/+ will be the analytic
continuation of +, so that by (3.13):

+ (x, f,.) 4qrf-l/3N-la(x, f,k) (1 + O(f)). (3.16)

Notice that

+ O(f))

2.(1 + O(f)) (3.17)

by (b.8).
We can now describe our construction of the resonance solution J precisely.

We will expand

J(x) b + 1+ + b_ 1-, (3.18a)

J’(x) b + 1’+ + b_ 1’- (3.18b)

on P_ and seek a solution of the differential equation with (b/ ,b_ )--)(0, 1). Of
course, we will need to show that b / is very small, so that b/ rt //r/_--) 0. The
continuity of J and J’ at the matching point x -kf- requires that

a+ (x -X/f) b+ (-X/f)- b_(X/f)W{l_,_ (3.19a)

and

a_(x= -X/f)= b_(-X/f)W{vl_,q+ ), (3.19b)

since + /+ and W{+,

_
1. In particular,

(a+)Im -_ (x=-2t/f)=Im b+
b_
---Im

W{/,+ (3.20a)
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Now:
NW ( 1-, q- N2eri/6w ( C, b } f /3i Ti. (3.20b)

Theorem 3.1 will follow from two propositions:

PROPOSrrION 3.2. There is a solution J of HjJ LI along the curve P2 with

b_ + O(I f[a) (3.21a)

uniformly in x P2 for some a > O, and

b + O(r/2_ )o(Ifl) (3.21b)

uniformly in x and f. Moreover,

b+ (-h/f) o(Ifl) T,

where T is the quantity defined in (3.20b).

PROPOSITION 3.3. The solution J of Proposition 3.2, continued along P and
expanded in terms of q ._ obeys

a_ (x)= 2 + o([fl) (3.22a)

a+ (x) O(Ifl)g(x),

where

1, x<Ro
g(x) q2__ (x), x> Ro,

for some fixed Ro.

Proof of Theorem 3.1 (assuming Propositions 3.1 and 3.3). We first claim that
the solution J of Proposition 3.2 obeys resonance boundary conditions at
infinity. As noted after (3.18) this requires that b/ ///rt_--) 0 as x- . But by
(3.21b), for f fixed, b+ +/r/_ O(r/+ r/_ )= O(ac)= O(Ixl -l/) by formulae
(b.ll), (b.12) in Appendix B. Therefore the resonance condition is given by
(3.11), (3.12), if

(a+),t,_ (x o) + ,t,+ (x o) h-Y_ (x o) a(f, ) o.

Next, we claim that

a_ (x O)= Im (x -)t/f). (1 + O(Ifla)). (3.23)

By Theorem (2.6), this follows from showing that the quantity X of (2.11) is
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O([f[a) with x0 0, xl--" -h/f. By the formula (3.22) for the asymptotics of
a+/-,dp+ (x)q_ (x) + q2+ (x)Ro(a+/a ) is bounded by C[1 + (q+ q_ )2].

Thus, to prove (3.23), we need to know that

and

fo-X/fB(x)ax O(Ifla).

-X/fln(x)l(q, + q,_ )2dx= O(Ifla).

In the region [0, f-a], where B(x)--fx and q,+ q_ is bounded, there is no
problem since a < 1/2, so f-"fxdx O(fl-2). In the region [f-’,(-X)/f],
we have that

I(*+ q’- )(x)l < Cf-I/aa(x, Pt, f)b(x,X, f)

< f-,/3[ + f’/3lx + X/fl]-1/2
by (3.13)-(3.15) and the asymptotics of a, b. Therefore we break the interval
[f-, Xf-l] into two regions R [f-, 1/2 Xf-1] and R2 [- 1/2 Xf-1, Xf-1].
In the region RI,q, + q,_ is bounded uniformly in f, so f,,,In(x)ll / q,_l=dx
--0(f’). In the region R2, In(x)l-- O(Ifl/’), so

IB(x)l IZdx O(fl+’)fo-l/2Xff-2/3(1 + fl/3y) -1

O(f" )fof-:/3(l--z) ldx

O(f’ln f).

Thus X-- O(Ifl"), proving (3.23).
Next, notice that from (3.21c), (3.20a), (3.20b), (3.15), and (3.17), we have

a+) TIm -_ (x -X/f)= -.(1 + o(Ifl))

Thus

11_( -X)-’/2 exp( ( -X)3/2/f) (1 + O(Ifla)).

ImG(f,) 6(-2t)-’/0+ (O,x)exp(- -}(-2t)3/2/f).(1 + o(Ifl)). (3.24)

Recalling that q,+ o + and W ( o_, o + 2X, W (q,_, q, + 1, we see that

G(f= 0,X) o_ (0, ,)/2,/- X,
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and thus (3.24) and Theorem 2.5 imply (3.10) with

"y= +)k12(--ko) 1/2.

This agrees with the claimed formula if we note that first-order perturbation
theory is known [26] to by asymptotic, so

)k --(O_,XO_ )/(O_,O_ )

Proof of Proposition 3.2. We construct b+ ,b_ by integrating the differential
equation (2.6) from infinity and iterating the integral equation. The net result is

b+ ._Mj 0
b_ j=0

m(g+) foo /r(X 1)
g- (x)

x w(n_,n+ )
along P2

where M is a map on pairs of functions of P2- Now introduce the norm on pairs
of functions:

II(g+, g- )11 g-Iloo + 112g+ I1,

If we show that in the related operator norm IIMII O(Ifla), then we have
convergence of the sum sufficiently strongly to verify that the limit solves the
equation, and hence a proof of (3.2 a, b). We first note that for all f and X,

supl_ (z)-_ (Y)I < 1;

Izl < lyl
z,y P2

(3.25)

for by scaling the supremum is independent of f and X. The bound follows if we
note that C(z) is monotonic (dAi(z)/dx < 0; see Appendix b). The point of
(3.25) is that in estimating IIMgll, we can replace ’0_ (x) -2 [’0_ (x)-l_ (Xl) +2]
r/_ (Xl) -2 by ’0_ (xl).-2 inside the integral. Thus, by using the boundedness of
W (’0_,’0 / for f small, we need only show that each matrix element of

f-xf-, V(x)l IN(x)l dx--- O(Ifla), (3.26)
along P2

where N(x) is the matrix
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Thus we only need that, for p 0, 1,2:

(IV-’l + lyl)- -if- ’/3g( f’/ay)lP& O(Ifla), (3.27)

where

g(fl/3y) Ai(e-Z=i/3fl/3y)Ai(fl/3y).

By the asymptoties in Appendix B, g(z)](4rr)-l(z-1/2), so

g(z)l < (1 + z) -’/2,

and If -1/3 1/3 +2/3 --1/2g(f Y)I < (f + fy) Changing y to f lz in (3.27), we obtain

(L.H.S. of (3.27)) < f’(Ih + Iz[)-l-’(f2/3 + z)-e/2dz.
For p 0, 1, we bound (f2/3 + z)-p/2 by Z -p/2 and obtain (3.27) with a . For
p 2, we bound (f2/3 + z)-I by z-l+’f -2’/3, and obtain (3.27) with a e/3.
We have thus proven (3.26), and therefore we have established the convergence
of the expansion for f small uniformly on P2, as well as the estimates (3.21a, b).
To prove (3.21 c), we use the fact that we have just shown that B {_/) ith term

of b_ Iloo is bounded by C for a constant C O(Ifla). Now let B(+i) =--Ilith term
of b+ [Ioo (note that there is no ,/-1/2 as there is above). Then by the basic
integral equation,

(i)B (i+1)+ < XI ci + X2B +

where

X f_ V(X)’02__ (X)l dx,
,f-

along P2

V(x)n + (x)n_ (x)l ,ix.

We have already shown that S2 O(Ifla). As for X1, by changing variables as
above,

g (constant)N2(lXf-I + lyl)-’-’lAi(fl/3y)12dy

(constant N2f(2/3)+") (onstant) Tf(1/3) +,

since f(Ai(z)2dz < oo. Thus

(i)B (i+1) < C1Tfl/3+c + DffB++
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so for f small (so that Df < and c < 1),

B+ O(+w) (1 Uf )-lCl(1
i=l

i.e., (3.21c) holds with a 1/3 + e.

Proof of Proposition 3.3. Since the proof is similar to the proof of the last
proposition, we only sketch the details, emphasizing the differences. We pick an
interval [0, R] so that all the zeroes of o_ lie in [0,R] for ? near )0. Thus

_
is

nonvanishing on [R,-)/f] for all f small, and we can use a norm

Ilall Ila_ IIo / Ila+’/’--21lo on this interval. Moreover, sup[_ (y)]-lb_ (X) is
bounded uniformly in 7, f, and x. As in the proof of the foregoing proposition,
one easily proves that in this norm the operator M that solves the relevant
integral equation is O(Ifla). Indeed, the basic estimate

B(x)lq,+ q,_ 12 dx- O(Ifla)

was already made in the proof of Theorem 3.1, above.
Of course, the data at -)/f must also be norm-bounded as f--)0. Since

-2(_)/f) diverges as f--)0, there is something to check. The a___ (x -)/f)
can be obtained from the b constructed in the last proof and (3.19). By (3.20)
and (3.21c), a+ (x -)/f)= O(f’/3)N 2. Since q_ (x -)/f)= Bi(O)N 2, we
see that Ila(-)/f)]l is bounded as f-0. Thus the solution exists, and
a_ 2 + O(]fla), a+ O(Ifla)q2__ on [R, o]. This easily extends to the interval
(0, R) by integrating the equation without q,_ "factored out." [--]

Remark. In the proofs above, we had expansions which converged at an
explicitly computable rate. Thus with finitely many computations we could
compute to any given order O(Iflm).

Moreover, all the basic functions depending on f, i.e., a, b, and c have known
asymptotic expansions. Thus, in principle we could obtain Im k(f) for any fixed
m with a (multiplicative) error of the form (1 + O(]flm)).

If the eigenfunction is cut off at large, real x, then the state that remains, while
not an eigenfunction of the Hamiltonian, is a localized state of abnormally long
decay time. Let C(x) be a smoothed characteristic function of [-oo, 0], such that
C(x) 0 if x > 1, 0 if x < -1, and C’ and C" are bounded. Let J be the
exact eigenfunction of Hf of (3.1)-(3.3) (or h of (1.7) as in the following section)
as a differential operator for x C with resonance boundary conditions,
i.e., Hf] (E-i.)J where O(exp(-4()o)3/2/3f) (resp. O(f-’/-x)’/.
exp(-4(-)o)3/z/3f)) has been explicitly calculated. (The sign of can be fixed
by convention to be positive.) We have also seen that J(x) and J’(x) are both
uniformly O(Tl/2llXio,tl(x)J(x)ll)= o(/2llXio,tl(x)J(x)ll), for x [t- 1,t + 1],
where -Elf is approximately the largest classical turning point and the L2
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norm is computed for real x. (Note that ]lXto,tlJll is approximately the norm of
the associated eigenfunction of the dilation-analytically continued version of Hf.)
We then claim that (x)--= C(x- t)J(x),x F1 /, is a state of long sojourn in
the sense of [33]: is clearly an approximate eigenfunction of Hf, because the
commutator [Hf, C]- -C"-2C’d/dx is effectively bounded when acting on
J;

H C(x- t)HJ- C"J- 2C"J

=E+6,

-iedp C"(X[t-l, t+ ,]J) 2C’(x[t-l,t+ 11J’)

is a vector whose norm is O(Tl/llXto,tlJII ). That has very slow decay is shown
by differentiating the probability that the system stays in the same state:

ddet/dt =_ - 1(, exp(- itH )(I))[

(, exp(- itH))(, exp(itH)H) (d, exp(itH)d)(d, exp(- itH)Hd)}

(, exp( itH ))(, exp( itH )(E + iS )) (d, exp(itH ))(, exp( itH )(Edp + ))

2 Im (, exp(itH ))(exp(itH )d,

O(ll II) by the Schwarz inequality for all times" and for short or

intermediate times, it is O((, 6))= O()= 0(118112) O(T)’[lXto,t]J[[.

4. The Titchmarsh problem. In this section we discuss the asymptotics of
the resonance problem associated with (1.7). We will concentrate on computing
and controlling the asymptotics of the imaginary part of a Wronskian, since that
is what we need in the following two sections. From this and calculations of the
"unperturbed" Wronskians one can easily compute the imaginary part of the
resonance eigenvalue for the Titchmarsh problem according to the analogue of
Theorem 3.1.

There are two difficulties afflicting the present case, which were absent in the
situation of the last section. First, the potential V is not integrable. To get around
this, we will have to use WKB comparison functions rather than the Airy
functions of the last section in the region where fx dominates V--except that
near the classical turning point we will have to shift back to Airy functions (as
usual with WKB calculations) to avoid the singularities of the WKB solutions at
turning points. Thus we will have five regions instead of three.

Secondly, if g is large, the comparison functions will be misbehaved at x --0.
It was with this problem in mind that we divided the Wronskian by a_ in the last
section.
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We will use similar symbols /,
_, A, B, etc. to those of the last section with

similar meanings. However, we reserve the right to change normalization
conventions from the last sectionmwe will, of course, be explicit about the
normalizations used here.
We will deal with two solutions R(x, fiX) and J(x, f,,) of

+ gx -2 x -1 fx , u(x) O. (4.1)
dx2

(We take z and can later recover the z dependence by scaling.) The regular
solution R will obey the boundary conditions at x 0, and J will obey resonance
conditions at infinity. As before, we will expand J by variation of parameters in
terms of two real-valued functions. _+ near x 0. The basic object that interests
us is

W{J,g (x

}(x 1).(a+/a_)(x 1) + }(x 1),

and, in particular, since +__ and R are real-valued on the real axis,

ImG(f,X)= W(q+,R)(x= 1).Im (x=l).

It will be useful to expand R in terms of a function 0 obeying

(4.2)

+ gx -2 X -1 X O(X) 0 (4.3)
dx

with Dirichlet boundary conditions; we also suppose that

lim [,)(x)/x l/2+[g+ 1/4 1.
x--0

(4.4)

For special case g =-3/16, we will need the Neumann-like solution, which
obeys

lim (0’ (4x)- lp) 0, lim 0x -’/4 1.
x-O xO

(4.4N)

Standard ordinary differential equations techniques show that since [0, 1] is a
finite interval where -fx is uniformly small,

W(+,R )(x 1)= W{+,p}(x= 1).(1 + O(f)). (4.5)

Since _+ will also obey (4.3) near x 1, the Wronskians will be easy to
compute. We thus want to write +_ near zero in terms of the solutions of (4.3).



MATHEMATICAL THEORY OF RESONANCES 873

These solutions are usually written as linear combinations of the Whittaker
functions

and

W1/2(_h)-,/2,(g+ 1/4)1/z(2i- k x), M1/2(_x)-l/2,(g+ 1/4),/-(2-’ X x),

W_ 1/2(-h)-’/:;(g+ l/4)’/=(e+-ir21 }k X),
any two of which are linearly independent except at exceptional, discrete values
of , and g. The analogues of the o___ of Section 3 are:

O+(X,,g) 2 COS(’n’/2’’) { W_(l/2)(_x)-,/Z,(g+l/4),/:(eir2----}kx)

"{- W_,l/2,(_h,-l/:,,g+ l/4, l/:(e-irr2--x) }
(4.6)

and

O_ (X,X, g) W(l/2)(_x)-,/:,(g+1/4),/(2- Xx). (4.7)

For X near -l/4n2, which occurs at eigenvalues of (1.7) if g n2- 1/4, (4.6) is
of the form 0/0, and we make the different choice of (b.19b); on the real axis,
o + is just Re (resp. Im) W_(/2)(_x)-,/2,(g+ l/4)l/2(eir2’-’ k X). The asymptotics of
o_+, which because of the long-range 1/x term are not simply exp(_+ (- x), are
described in Appendix B.
As mentioned in Section 2, we break the region Pl [1,-X/f] into three

regions, I [1, f-], II [f-", )kf -1 f-], and III [- )kf -I f-,
_Xf-1], where c (1/3, 1/2) and fl (5/16, 1). These mysterious choices are
made so that later some integrals will converge. Also, as in Section 2, we write

C(x) gx -2- x-l-fx )t A (x) + B(x), where:

-fx in I

B(x)= C"I4C] --IC’/CI2 inII

gx 2 x in III,

and pick q,+ to be C on P1, obeying

-"+_ + A (x)q,+_ =0. (4.8)

In the region I, q_+ are linear combinations of o_+, and in region III,
combinations of the Airy functions a(x; f,A) and b(x; f,) used in Section 3.
The rather complicated form for B in Region II is such that the solutions of (4.8)
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are linear combinations of the two WKB solutions:

X_+ (x; f,t)(C(x,F))-l/4exp( "+ ft;(C(y; f))l/2),
where is the smallest root of C(x; f) 0 with C’ > 0 (asf 0, --)

(- 2X)-l(1 + /1 + 4Xg )).

We choose _+ so that

q+=o+ in RegionI

o_ Nb in Region III,

where N is a constant (in x) such that W (q_ ,q+ 1. The rather tedious
construction of q_ in the other regions by matching at the boundaries is to be
found in Appendix C. In terms of the tunnelingfactor (computed in Appendix A)

T(f, 2)=--exp(- 2ft(2(C(x)) ’/2 dx),
where 2 is the root of C--0 near x -h/f, we find that:

N_
(- f-l/6T’/-. (1 + O(f" )), (4.9)27+

where

7+ (_k)l/4[ 2e_..1/1+4g),

Moreover, in Region I:

@+ O+

and in Region II"

4,g /1 + 4gA

and in Region III:

-1
q_ (2L-X") o_ .(1 + O(f’));

q+ 7+X+ "(1 + O(f’))

X-.(1 + O(f’));27+

dp+ ---[,af-ll3/N]a(x; f,x) (1 + O(f’))
q_ Nb(x; f,,).

(4.10)

(4.1 la)

(4.12a)

(4.1 lb)

(4.12c)

(4.1 lc)

(4.12c)



MATHEMATICAL THEORY OF RESONANCES 875

We will break the second part of the path going to infinity, x -3f-t +
re i/3 r > 0), into two pieces, Region IV, where Ix + ,f-l < f-z+, and Region
V, where Ix + f-l] > f-. In Region IV, B is the same as in Region III, so that
the comparison functions r/_+ are sums of the Airy functions a(x; f,30 and
c(x; f,30. In Region V, B is the same as in Region II, so that +/_+ are sums of
WKB solutions X_+. The functions X_+ are extended to complex x by placing
branch cuts on (-3/f, ) and from t along the real axis to -o. Thus
Re(C)1/2 > 0, and so X- falls off in region V. We define +/+ to be the analytic
continuation of <#+ into Region IV, and then extend it by continuity to Region
V, and we define

*l- =--[ +r- l/yl/6T- l/2N]x-
in Region V. Calculations of Appendix C show that in Region IV"

rl+ (2+rl/2f-l/6T-I/23"+)a(x; f,X) (1 + O(f" )), (4.13a)

-lTl/2e+i/6c(T/_ 7/’1/ 1/63’+ X; f,)). (1 + O(f’)); (4.14a)

and in Region V:

rl+ 3’+ X+ .(1 + O(f)) (4.13b)

(23,+)-X- .(1 + O(f" )). (4.14b)

We now turn to the proof of the convergence of the variation-of-parameters
construction of the resonance solution J.
As in the last section, we work with a weighted norm. However, the norm

II(g/ g-)ll--IIg-II + II+S2g0+ / used there will not work (see below), and
instead we use the norm

II(g+, g-)11--II g-I1 + f-lln-2g+ I1,

where A is chosen to obey:

0 < A < min(/3, fl) ft.

The net effect is to change the matrix N so that it becomes

(4.15)

Tlus we need to know two facts to get the convergence of the variation of
parameters along P2"

sup It/_ (z)-r/_ (Y)l < o (4.16)
z,y P2
Izl<lyl
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uniformly in f small and near X0; and

fe B(x)fa(P-’)(q+ q- )edx= O(Ifla) (4.17)

for p 0,1,2. (4.16) is easy since
_

is monotonic in Region V (X- is
monotonic), and up to multiplicative errors of the form (1 + O(f’)) it is
monotonic in Regions IV ( is monotonic). To check (4.17) we consider the
contributions of Regions IV and V separately.

In Region V, in terms of the variable r eir/3(x + X/f), C(x, f)--gx -2-
x-’- fre i’/3 obeys CI >f(r-ro), since Ix-’l < cf on all of P2. Since

IC’I < const..f, IC"I < O(x -3) O(f2r -1) and r- r0 > r/2 in Region V, we
see that

IB(x)l const..r -2 (Region V). (4.18)

Now rt+ 1- O(C 1/2) < O((fr)- 1/2), SO in Region V, (4.17) follows from
fA(p-l)f-ar-2(fr)-p/2dr= O(fa) for p=0,1,2. This is easy to see because
/3 > 5/6(/3 > 1/2 would do), and A </3.

For Region IV, we mimic the estimates following (3.27) and see that we will
need to control

Ap fa(p-,)foY’-’(ll + r)-1(f2/3 + r)-P/2dr.
For all values of p we can estimate (l l + r)-I above by IXl-’. For p 0, 1, we
estimate (f2/3 + r)-p/2 by r -p/2 and see that A0 o(fl-B-zx), which is O(fa)
since A < fl, and that A O(f(l/2)1-)). To treat A 2, notice that

fof’-r(f2/3 + r)
-1
dr= ln[ (f2/3 + fl- )/f2/3]

O(ln f),

since -/3 < 2/3. Thus A2 O(fa In f), which is O(fa) since A > 0.
This completes the proof of (4.16). Notice that if we had not used the f-zx

weighting in the norm, we would have had a In f type divergence.
The estimates (4.15), (4.16) prove the first part of:

PROPOSITION 4.1. There is a solution J of (4.1) along the curve P2 with

b_= + O(Ifla)

for some a > O, uniformly in x P2, and

b+ 0(v12_) O(Ifla+a): (4.19a)
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Moreover,

T____ .O(ifla).b+ (-X/f) + (4.19b)

Proof. We need only check (4.19b). As in the proof of Proposition 3.2, we
only need to show that

f lB(x)n+ (x)n_ (x)ldx= (4.20)

x T.(olfl).fiB( )_ (x)lx= v+ (4.21)

(4.20) is just (4.16) for p 1. We check (4.21) in Regions IV and V separately. In
Region IV:

-1

so the Region IV contribution to the integral obeys (4.21). As for the
contribution from Region V, since 1- (27+)-X_ (1 + O(Ifl’)), we need that

f(r IB(x)x (x)l dx= r. O(Ifla). (4.22a)
egion V)

2But X involves exp(- f,, ), and since Re(fT > 0, a factor of T comes
out and thus (4.22a) follows from

I(C(x))-1/2B(x)ldx= O(Ifla). (4.22b)
.’(Itegion V)

But by (4.18), B(x)= O(r -2) and C -1/2= O(fr)-/2, so the left side of (4.22b)
is 0(f(3-)/2), which is O(f’) since fl > 1/3. [--]
The formulae transforming from b+ to a/ are identical to those in the

short-range case, i.e., (3.20a). Since W rt_, q)_ },-(T/7:+ )" (const.), the leading
term is from W _, q)_ on account of (4.19b). Thus:

(a+)Im (x=-X/f)=-Im
w{n_,,_ 7"
W(_,+ .(1 + O(Ifl))- 47+ .(1 + O(Ifl))

(4.23)

by (4.12c), (4.13a), (4.14a), and (b.8).
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Next we use (3.19) and the estimate (4.19b) on b+ (-,/f) to find that

a+ (-X/f) O( T/T+ )

ok- (-,/f):" O(f’/3) (4.24)

by (4.9).
The point of (4.24) is that it asserts that if we use the norm

II(g+, g- )11 g-I1 + f-all,/, g+ I1,

then the "initial data" (a+ (- ,/f), a_ (- ,/f)) for integrating the integral
equation have finite norm so long as A < 1/3. For this reason, the variation of
parameters along Pl will converge so long as for some R0 > 0 independent of f,

sup I- (z)-1_ (y)l < o, (4.25)
x,y P!

/o < I,I < Y

and

fp B(x)fA(p-1)It + t_
p dx-- O(Ifla). (4.26)

The condition z > R0 can be imposed since on [0, R0] we can use an unweighted
norm as we did in the short-range case. (4.25) is easy to show, since up to errors
+ O(f),

_
is monotonic in (Ro, -,/f), where R0 is chosen so that o_ is

monotonic past Ro (this can be done since Ro can be chosen with o_ convex on
(Ro, oo)). This leaves only (4.26). As usual we prove it separately in Regions
I-III.

In Region II, we write

C(x, f) gx-: x -1 + fr; r -(x + ,/f). (4.27)

We first note that

C > 1/2 f(r to) in Region II; (4.28)

for if r<-1/2h/f, then Igx---x-ll < O(f)<fro If r>-1/2f-’X but
x >f-, then [gx-:-x-l[ < O(ff)< (1/2)fr. Next notice that in all of
Region II, C’ f + x-: < O(f9-), so, since q+ ep_ O(C-i/:),

"- (I# +

_
)7A(P- 1)

" O(f_oOBfA(p--l>(f’)--2--p/2f4" )
O(ff(P)),



MATHEMATICAL THEORY OF RESONANCES 879

where:

‘/(0) =/3 + 4a 2- A,

(3/2)/7 + 4a 5/2,

‘/(2) A + 2/7 + 4a 3.

All these ‘/’s are positive so long as A < 1/6 since a > 1/3,/3 > 5/6. To control

we break the integral into two pieces, for x from f- to -X/2f, and for r from
f-a to -X/2f. In the first piece C > constant by (4.28) so we have to bound

ff-a/2ffA(p-l)x-3dx O(f2t+(P-l) A)

(since C"= O(x-3)), and this is small if /t < 2a. In the second piece, since
C" < f3, we have to bound

f3 (f-lfA(p -l-p/2

which is O(f2-alnf),O(f3/2f/W2),o(fl+af) for p 0, 1,2. Since all these ---> 0,
we have verified (4.26) in Region II.

Finally, in Region I we note that on [1, oe), /

_
is uniformly bounded by

(b.18) and (b.22), so that (4.26) requires that

fof-a()fA(p- l)dr= (| 12)f’-2fap-,),

which --->0 if A < 2a. Thus, since a (1/3, 1/2),/3 (5/6, 1), (4.26) will
hold if 0 < A < 1/6, A < 2a and A < -/3. We have thus proven the first
part of

PROPOSITION 4.2. The solution J given by Proposition 4.1 can be continued
along P by variation ofparameters, and

a+) TIm (x 1)= 4,/2+
.(1 + o(Ifl’)). (4.29)

Proof. By Theorem 2.6, we must show that the quantity X of (2.11) is o(Ifl’).
But since a_ + o(Ifl’) by our basic formulae and a+ O(2__ ), we see that

IXl -< const.fe la(x)l[1 + (q,+ q,_)2] dx= O(Ifl’) by (4.26). [--]
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Combining (4.2), (4.5), (4.10) and the formula for T computed in Appendix A
with the last proposition we find:

THEOREM 4.3. Let G(g, f,)) be the Wronskian, normalized by a_ (x 1), of
the two solutions J and R of (4.1). Then for g and 2 fixed,

ImG=(l/n)w(o+,p) yz+ .(1 + o(Ifl’)),

where O is given by (4.4) (or (4.4N), depending on the boundary conditions at 0),
and

T/’y2+--(-)-l/218(-h)3/2]l/(-?O/2f exp[ 4( )k)3/2/3f]. (4.30)

In the next two sections we will be interested in special cases g -3/16 and
g (m2/4 1/4), m 0, 1,2 To avoid rather complicated-looking expres-
sions, we will compute the Wronskians only in these cases, although it would be
easy to carry the g along in general. These formulae are equivalent to a
computation of the asymptotics of the Titchmarsh resonance eigenvalues.

5. The Bender-Wu formula.
following result:

In this section our goal is to prove the

THEOREM 5.1. Let Ak(fl) be the analytic continuation of the kth eigenvalue
(k 1,2, ) of -d2/dv2 + v2 + 194 to the cut plane C\(-o, 0]. Then as 1$0,

ImAm,(-# + iO)= 23k-’[(k- 1)!qc-]
-1

p,-k+ l/2exp(_ 2/3) (1 + O(

(S.1)

for some a > O. In particular, (1.11) and thus also (1.9) hold.

We note that Bender and Wu [6] obtained (5.1) (without rigor) for general k. It
turns out that we have to prove (5.1) separately for k even and k odd,
corresponding to Dirichlet and Neumann conditions at x --0. We first consider
the case of Dirichlet boundary conditions, i.e., k 2n.

PROPOSITION 5.2. Let H(f, h,z) be the normalized Wronskian of the resonance
solution at infinity and the Dirichlet solution at zero for the Titchmarsh problem

d2 3 -2 -1 )dx2 16
x zx fx u O.

Fix =-1/4 and zo=n-1/4, n=l,2,..., so that H(f O,o,Zo)-’- O.
Then for )to fixed at -1/4 and f near zero and positive, there is a unique solution
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z(f) of H(f, h,z) 0 with

Im z,--, 22"-2[ (2n 1)!V/ ]-(f )-2,,+ /2exp( 1/6f ).

881

Before proving Proposition 5.2, we note that it implies Theorem 5.1 for k even"

Proof of Theorem 5.1 for k even. Let k 2n. By the basic transmutation
formulae of Propositions 1.1 and 2.3, ImAk=2,(-/z + iO)= -4Imz(f= /4)
for the solution with =-1/4a=- (a= 1) and z0= + 1/4Ak=E,(/x=0)

1/4(2k 1) n 1/4. (The minus sign in Im Ak -4 Im z comes from the facts
that, by Proposition 2.3, 4 Im z Im A(-2/ + iO) and that Im A(-/ iO)
ImA(-/ + iO).) Substituting//4 for f and 1/2 k for n in (5.2) and multiplying

by 4 yields (5.1). [--]

Proof of Proposition 5.2. We begin by observing that by scaling

H(f ,z) a(z-3f, z-2), (5.3)

Where G(f,) is the Wronskian for z discussed in 4. Thus, noting that

ImH(f i(,z) exp(-4(- )3/21f)
has an exponential factor independent of z, we see that, by Theorem 2.5,

Imz(f)-, ImH(f,h,z(f))/ (f= O,,Zo)
Im G(z-3.f,z-2)/2z-3 OG (O,z-2X)

(5.4)

all evaluated at f z- and h z2. To get (5.4) we need to note that since
G(f,h) O(ff) by our method, implying that i)G/Of= O(f"-l), we have that
3fz-4(1)G(fz-a))/Of goes to zero with f. Equation (5.5) follows from Theorem
4.3. For later purposes, we remark that (5.5) also holds in the Neumann case,
except that p changes.
To evaluate the Wronskians in (5.5), we can write that W(o+_,p)
limx_0o+ (x)/x /4 by (4.4) and (4.5) (g -3/16 and suitably normalized p).

That is, o___ is a multiple of the regular solution p(..x3/4) if and only if the
dominant x 1/4 term is missing. Thus, by (b.17),

w(o_,p) =r (5.6)
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and by (b.21),

w(o+,o) r + )) cos(’/4)
2,/z-x- cos( /2 - x)

To evaluate when W {o_ ,p)= 0, note that this can only happen when the
denominator of (5.6) has a pole, i.e., at

3_ =-(n- 1), n= 1,2,..., or
4 2/- ;ko

;koCh)
4(n 1/4)2

By the relation X0=0z-2 we see that for 0=- 1/4, this corresponds to
z0 n- 1/4. At this value of ,0,

1/4

W{o+,o)= F(n + 1/2) (- 1)",

since cos(r(n 1/4)) cos(- mr + r/4) (- 1)" cos(r/4). On the other hand,
since [O(1/F(x))/OX]lx=_(,_l) (n 1)!(- 1)"-i at that value of X0,

OX {o_,o} (-I)"2F g
i/4-3

(,,- 1)!

Finally, by (4.30),

8(--kO)3/2 2n-1/2

(4(--)3/2

)72+T (Zo- y’ Zo- 2Xo) =(- o)-l/2Zo f~
exp

3f~
at z-Xo X -1/4(n- 1/4)2. Combining the last three formulae with (5.5)
and using (n )!I’(n + /2)= 2-(2n-I)(2n 1)!/--, k0= --1/4, Z0= n 1/4,
we find that (5.2) holds. [--]
As in the case of k even, the result for k odd follows from"

PROPOSITION 5.3. If I(f,Z) is the normalized Wronskian for the same

equation as in Proposition 5.2, but involving the Neumann and resonance solutions,
then for ’o 1/4 and z0 n 1/4, n 1,2 (so that H(f= 0,X0,z0)= 0),

Imz,, 22"-3[(2n 2)!v/-r]-I(f)-2"+3/2exp(-2/6f). (5.7)

Proof. As noted in the proof of Proposition 5.2, Equation (5.5) holds in this
case also, but now O obeys (4.4N). Thus if o+_ c+_ x 1/4 + d+_ X3/4 + then
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we find that:

W(o+,p) lim((1/4)o+x -3/4- o’+ x 1/4) --1/2d+.
x->0

Thus, by (b.17’) and (b.21’) we get:

w(o+,o)
2--1/4( X)3/8f’ cos(rr/4)

F j+ tcos(rr/2f-C X )

w{o_,o)
23/4( X)3/8f-

( )"r a 2,/=g

As in Proposition 5.2, W (o_,/9) 0 corresponds to poles of the F-function, i.e.,

1_ -(n- 1), n= 1,2 orX}")=4 2(- ), 4(n 3/4)2

At this value of X we have

w(o+,o}
(--1)n-12-l/4(--)tl)3/Sf-

r(n 1/2)

since cos((n 3/4)r) (- 1)" cos(- 3/4r) (- 1)"- cos(rr/4). Using the for-
mula for 8(I’-I)/ix at a pole, we find that

tWok (o_,/9)--- 27/4(-,1)3/8(2- )k )
-3- [(- 1)’(n 1)! ].

By (4.30),

T__T_ [ 8(--’1) 3/212n-3/2 ( 4(--1)3/2 )2+ (ZO-’ZO-2‘) "-(--l)-’/2ZO i
exp

3f
at X Zo--1 I/4(n 3/4)-. Combining the last three formulae with (5.5)
and using (n 1)!F(n 1/2)= 2-(2"-2)(2n 2)!f, , -1/4,zo n 3/4,
we obtain (5.7). [-!

6. The Oppenheimer formula. Our goal in this section is to prove (1.5) and
its analogue for excited states. This also proves (l.13) and its analogue for excited
states. Because of the connection between the Stark problem and anharmonic
oscillators with (m2- 1/4)x -2 terms (Proposition 1.2), we begin by analyzing
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that problem, proving a formula ((6.1), below) first obtained non-rigorously by
Banks, Bender, and Wu [7]. From this result, (1.13) will follow fairly easily. We
emphasize that the idea of obtaining the Oppenheimer formula from the
Banks-Bender-Wu formula is due independently to Benassi and Grecchi [4].

THEOREM 6.1. Fix m 0, 1,2, Let Akin be the analytic continuation of
the kth eigenvalue (k 1,2,... i f" (-d2//v2) +
(x (-oo, o)) to the cut plane G\(-, 0]. Then as

Im/,,,,,(-t + i0)= 24’+-"-’[(k 1)!(k + m-

-2k-m-, exp(-2/3). [1 + O( )] (6.1)

for some a > O.

Remark. Formula (6.1) holds also for non-integral m, if (k + m- 1)! is
interpreted as I’(k + m). This appears at first sight to contradict (5.1), which after
all involves the value m 1/2. But notice that A, 2k,m=l/2" With this
realization, and (k- 1)!F(k + 1/2)= 2-(2k-l)(2k- 1)!7r, one reconciles (5.1)
and (6.1).
As in the case "m 1/2" discussed in section 5, this theorem follows from

Propositions 1.1 and 2.3 with

PROPOSITION 6.2. Fix m =0, 1,2 Let Hm(f,,,z be the normalized
Wronskian for the resonance solution at infinity and the Dirichlet solution at the
origin for the Titchmarsh problem,

dx. ((1/4)m-- 1/4)x -- x-’-fx X u O.

Fix~ 14 and o k + 1/2m 1/2, so that H (f O, o, o) O. Then for
)to fixed andf near ero and positive, there is a unique solution

3(f) of H.,(f ,z) 0 with Im3(f)

-1/2[(k- 1)!(k+m--1)!]-lf-:k-m+lexp(1/6f). (6.2)

Proof. We first consider the case rn 0. The argument leading to (5.5) did
not depend on the value of g, so (5.5) is valid here also. Normalizing p so that

W(o+,p} lim [x-l/2+m/20+ (x)/F(m)], (6.3)
x---)0

we have (by (b.17)) that

W{o_,p} (2fL-) /F 1/2 + m/2
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and (by (b. 18)) that

{ },qm(rr(m/2 1/2))

F(1/2 + m/2 + )
with qm(X)= COS X for m odd and sin x for m even. By the by now familiar
analysis the zeroes of W(o+,p) occur at Xk 1/(m + 2k- l)2, at which
values

W ( o+,O} (- 1)k(2--)l/2-m/2F(k + m)

and

1/2--m/2( -3.--1)k(k 1),2(2s-X-)
Moreover, by (4.30)

+2k-

l/ zo --T-
This leads to (6.2) for m > 0. For m 0, a similar argument using (b.17b) and
the first equation in (b.21) gives the result, l---!
As a preliminary to the calculation of the width for the Stark problem, we

want to compute the first-order shift. To begin with, we compute:

LEMMA 6.3. Uniformly in the cut plane,

k,m( ) 2m + 4k 2 + flBk, 4- O(f12), (6.4)

where

nk, (m2 3m + 2) + 6k2 + k(6m 6). (6.5)

Proof. Consider the two-dimensional oscillator

p2 4" X2 4" p 4" );2 4" fl (X2 4" 2)2._ no 4" fir4.

As usual, we let a 2-’/2(x + d/dx),at 2-’/2(x d/dx),a>,a] similarly, and
a.__ 2-/2(a +_ iay). Then N_. a*___ a__ has eigenvalues n_. 0, 1,2, and

H0 2N+ +2N_ +2,

L=N+-N_,
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so that if 6n/,n_ is the obvious eigenvector, then (using results of Simon [48] to
conclude that perturbation theory is asymptotic in the cut plane):

k,m(O) 2n + + 2n_ 2

4 r2/n+,n 2Bk,m (n+,n_,r +,,_ ) ]l, (6.6)

with n_ related to k and m by m n+ -n_, k n_ + 1; i.e., n+ m + k- 1,
n_ k- 1. The claimed formula for Ak,m(0) is now obvious. To get (6.5), we
first calculate that

x2+y2=a+a_+at at++1/2H0.

So, by the well-known relation giving the actions of a_+ and at___,

(x2+y2)@n+,n_=Jn+n_n+_l,n__ + /(n+ + 1)(n_ + 1) n++,,n_+
+ (n+ + n_ + 1)q,,n+,n

Thus, by (6.6),

Bk,m n+ n_ +(n+ + 1)(n_ + 1) + In+ + n_ + 1] 2

which yields (6.5). [
LEMMA 6.4. Let Ek,q,m(F) be the solution (unique for F small and positive) of

F Fk,m(- E, -- ) + q,m(- E,- - -iO )= 2, (6.7)

where

k.m(Ol, [ ) ol/2k.m( 0-3/2).
Then

where

Ek,q,m(F ) 1/4N -2 + 3(k- q)NF + O(F2),

N--m+k+q-1.

(6.8a)

(6.8b)

Remark. By scaling, k,m (a, B) is the mth eigenvalue of (- d2/dr)2) + d,)2 +
4 +(m2--4)19 -2. Thus, by Propositions 1.2 and 2.4 Ek,q,m is a resonance

eigenvalue of the Stark Hamiltonian -A- 1/r- Fz.
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Proof. Consider F 0. Then (6.7) becomes:

2 /-- E (am + 4k + 4q 4) /- E (aN)

by (6.4). From this the formula for E(0) is obvious. For non-zero F, (6.7)
becomes

F -3/2[B2 =-- (4N)+ (-E) , k,m- nq,m) "]" O(F2)

F(2N3B-/-E- 4N+ )(k,m-Bq,m)+O(F2),
so

3B ]-1F(2N) ( k,m- nq,m) q- O(F)2/-e= N+
(2N)-’ F (2N)(Bk, Oq,m ) .. O(F:Z).--Squaring, we find that

E -(2N)-2+ 1/2(nk,m nq,m)V
so that (6.8a) follows from (6.5). [-]
We can now state the main result on the Stark width (this agrees with

non-rigorous calculations in [4, 12, 46].)

THEOREM 6.5. Let Ek,q,m(F) be the Stark resonance energy solving (6.7). Then

ImEk,q,m(F)= -1/4[(q-1)!(q + m-1)!]-le3(k-q)F-2q-m+lN -6q-3m

exp(- 1/6N3F).(1 + O(F )), (6.9)

where N k + q + rn- 1. In particular, (1.5) holds for -2Im E,I,0.
Proof. By Theorem 2.5,

[ F O(FIm Ek,q,m (F) CIm q,m--Ek,q,m(O),- - --iO) (| +

with C eV[4NO( E)/2/OE]-leo eV(2N)-z and 3’ the first-order term
in the exponential. Thus writing

Ek,q, (F) N + Ak,q,m F, we have that

3’ ( )((2N)-lAk,q,m) 3(k q)

by (6.8). Using (6.1) we obtain (6.9). l--]
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Finally, we obtain the asymptotics of the perturbation coefficients in the Stark
problem using the general analogue of (1.12) for non-even F’s [26, 4, 46],

An=(r)-lfoRF-n-l[ImE(F+ iO)+ (-1)nImE(-F+ iO)]dF+ O(R--).

(6.10)

Since Eg,q,m(-F + iO)= Eq,k,m(+ F + iO) and since for q > k, (respectively
k > q) Eg,q, (F), dominates (respectively is dominated by) Eq,,m(F for F small,
we obtain:

THEOREM 6.6. Let Af’q’m denote the nth Rayleigh-Schr6dinger coefficient for
E:,q,m. Then to order (1 + O(n-a)),

A- (4r)-I[(q 1)!(q + m- 1)!]-lea(k-q)N-a62q+m-l(6N3)
(n+2q+rn-2)!, ifq>k;

(4qr)-( 1)"I(k 1)!(k + m 1)!]-le3t’q-’)N-36:V’+m-t(6N3)
(n+2k+rn-2)!, ifk>q;

(4r)-[1 + (-1)"][(k 1)!(k + m-1)!]-’N-362’+’-1(6N3)
(n+2k+m-2)!, ilk q.

In particular, (1.13) holds.

Appendix A. Calculation of the tunneling factor.
factor of section 4,

We calculate the tunneling

where C(x)= gx -:- x - -fx- X, and the turning points and 2 are the
roots of C 0 respectively near -(1 + /i- 4g )/2h and -h/f + 1/X. For the
purposes of this calculation, define the approximate turning points

(a.1)

I’ -=(-1/2X)(1 + /1 + 4g).
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t’ would be the lower turning point if gx -2 were neglected, and t’ would be the
lower turning point if fx were neglected. Then if g > 0,

C(x))’/2dx (-X- fx- 1/x)l/2dx+ (-h- 1Ix + g/x2)’/2dx

)ln(/1 +4’gA)

+ O(f" + f’-2 ).
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This equation uses some tabulated integrals [17] and facts about the elliptic
integrals, which we have collected in Appendix B. Thus

If 1/4 < g < 0, then the integral from t" to f- has a different form, and

(a.2)

f/1 + 4g exp((r + 2arcsin(1//1 + 4,g )/L-))
X exp(- (-h)’/’/f) (I + O(f + fl-2a (a.2’)

Appendix B. Some properties of special functions. The following facts are
compiled from 1,9, 17].

1. Airy functions. The functions Ai(z), Bi(z), and Ai(z exp(+_ 2ri/3)) solve

w" zw O. (b.1)

Any two of them are linearly independent, Ai(z) and Bi(z) are real for real z,
and they are related by analytic continuation and the formula

Bi(:) exp(i/6)Ai(z exp(2ri/3)) + exp(- ri/6)Ai(z exp(- 2ri/3)).

Some of their Wronskians are:

For small z,

W{Ai(z),Bi(z)} 1/9,

W { Ai(z),Ai(z exp(
_
2ri/3)) exp( T- ’i/6)/2,rr.

W ( Bi(z),Ai(, exp(
_
2ri/3)) ) 7 exp( -T- rri/6)/2r.

Ai(z) 3-2/3/1"(2/3)- 3-’/3z/F(1/3) +

Bi(:) 3-1/6/F(2/3) + 3’/6z/F(1/3) + ....
For large z, largzl < r,

Ai(z)--"
2’

1/4 exp(- 2:3/2/3)" (1 + 0(: -3/2)),

(b.2)

(b.3)

(b.4)

(b.5)
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and for large z, [argz < r/3,

1--L z -’/" exp(+ 2z3/2131.(1 + 0(z-3/2)).Bi(z) (b.6)

Equations (b.5) and (b.6) may also be differentiated. Moreover, if z > 0, then
dAi(z)/dz < 0 and dBi(z)/dz > O.
The Airy functions .we use are of the form

a(x; f,k) =- Ai(-fl/3(x + k/f)),

b(x; fiX)=- Bi(-fl/3(x + h/f)), (b.7)

and

c(x; fiX) =- Ai(-fl/3(x + )/f)exp(2,n’i/3)).

Therefore

W(a,b} -fl/3/r,

W a, c _f1/3 exp(- ri/6)/2r, (b.8)

and

W (b,c) fl/3 exp(ri/3)/2r.

If x < A/f- f-l then

fl/6a(x; f, ik)-- -(-h- fx)-’/4exp( 32-(-h-fx)3/a/f).(1 + 0(f1’211,

(b.9)

and

fl/6b(X; f,k)--"-- - (--k-- fx)-l/4exp(.+ (-X- fx)’/z/f),(1 + O(f’/z)).

(b.lO)

If x= -A/f+ rexp(ri/3) and r is real and >f-l/3, then

a(x; f,X) exp( + ri/6) -f-1/12
2Vr- r-l/4exp(+ fl/r3/2)’( + o(fl/211,

(b.11)
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and

r-l/4exp(- 32--sl/2r3/2),(l (b.12)

2. Whittaker functions. The functions

Wl/2.[g+ i)4 (2/- X x),
W_ /27 ,qg+ ,/4 (2--Xx exp(ri)),

(b.13)

and

W_ l/2-.qg+ 1/4 (2/- X x exp(- ri))
solve the equation

(- d21dx2 + glx2 lx X)w(x) O. (b.14)

The Wronskian is"

W { Wl/24z,g+ i/4(2x), W_ 1/2-z-,i/g+ i/4 (exp( +_. ri)2fz-X x))
2/- , exp( T-ri/2-S- X ).

(b.15)

For small z,

W,,o(Z) z/:in(z)/r(/2 ) + O(z/-),
and for g > 1/4,

(b.16)

,l/g+ 1/4 (’) (2/g + 1/4 )Z I/2-/g+ ./4 St(1/2 + /g + 1/4 x).. O(z3/2-qg+ I/4+ zl/2+qg+ I/4 ln(z)). (b.17)

For the Neumann case with g----3/16, we need somewhat more detailed
information, and (b. 17) taken to higher order in z is

Wr,l/4(g) --vrffz’/4/r(3/4- )- f-z3/4/F(1/2- r)

2x-z/4/F(3/4 r) + .... (b.17b)

(The logarithmic terms of (b.17) occur only when the second subscript is n/2,n
integral.) For large z, largzl < 3r/2- i,8 > 0,

W,,,/g+ i/4 (z) z" exp(- z/2). (1 + 0(1/z)). (b.18)
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The two functions

and

W’I /2-&--- /g + /4 (2’-- .X, ) (b.19a)

2
( W_ l/2q-L-’,/g+ l/4(eirr2 k X)

W_ l/2f",/g+ 174 (e-’2-x)},

n 0, are real for real x, and their Wronskian is

g=/= n2- 1/4

g=n2- 1/4,

(b.19b)

W { Wl/2J-,/g+ 1/4 (2/- X x), o + (x)} 2fZ--X (b.20)

The function (b.19a) has the proper behavior for large x and, at the exceptional
values 1/2fZ-h 1/2 +/g + 1/4 +k, k 0, 1,2,..., also for x-0. The
function (b..19b) has the improper behavior in both limits. The double definition
ensures this even when 1/2/-h has an exceptional value and g nE- 1/4 (at
which cos(rr/2/-X ) would be zero). For small x,

g= -1/4;

r(2/g + 1/4 )cos(w(1/2 /g + 1/, ))

g =/= n2 1/4, g > 1/4;

F(2/g + 1/4 )sin(rr(1/2 /g + 1/4 ))

g--n2- 1/4, n=1,2,

(2Z-X-x)

(2Z-Xx)

1/2-/g+1/4

l/2-qg+l/4

(b.21)
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For large, real z,

o+ (x) (2,/- h x)-,/2-2 exp(.Z._h x).(1 + 0(1 Ix)). (b.22)

3. Some integrals and approximations. If a > b > 0, then

f6a/(a x)(x- b)/x dx-- VI(a + b)E(r/2,/(a b)/a )

2bF(,n’/2,/(a b)/a ) ]. (b.23)

Define k’= /1 k. Then series expansions for the complete elliptic integrals in
two different limits are

" F(- 1/2, 1/2; 1" k2)
r k2 12--(1-- /2-- "3k4/22"4

+ (ln(4/k’) 1/1.2)(k’)2/2 + 12 3(ln(4/k’)

2/1.2- 1/3.4)(k’)4/2:- 4 + --.. (b.24)

and

’rr F(1/2, 1/2; 1;k2)F(rt/2, k) K(k)= -=2 {1 + (1/2)2k2 + (1.3/2.4)2k4 + )
ln(4/k’) + (1/2)2(ln(4/k’) 2/1.2)(k’)2 + ....

(b.25)

If the integral of (b.23) is incomplete, from u > b to a, then

fua/(a- x)(x- b)/x dx-- 9-[(a + b)E(arcsin/(a- u)/(a- b),/(a- b)/a )

-2bF(arcsin/(a- u)/(a- b),(a- b)/a )]
+ _2 (u- a- b)/(a- u)(u- b)/u (b.26)
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If k is near and is small, then

E(ck, k) 2 E(k’)ln tan(q/2 + r/4) +
tanq (2 E(k’)- 1- ...)COS

=2+ ...,
and

F(ck, k) 2 K(k’)ln tan(q/2 + r/4)
tanq (2 K(k’)- + ...)cos q7

Other integrals we use are:

(/a + bx + cx- /x)dx= /a + bx + cx + a
x/a + bx + cx2

/a + bx + CX2

x dx

x/a + bx + cx
-2/bx + CX2 /bx, a 0, b 0;

arcsin((2a + bx)/x/b2 4ac ),/- a
a < 0,b2 > 4ac;

and

x dx

/a + bx + CX
2

ln(2vr-/a + bx / cx2 / 2cx + b), c>0.

895

(b.27)

(b.28)

a>0;

(b.29)

Appendix C. Construction of the comparison functions.
the coefficients in the expressions

We wish to solve for

+ o+ (x) + Z+ o_ (x),
+ j+ x+ (x) + + x- (x),

[e+ a(x) + + b(x),

Region I;
Region II;
Region III;

(c.1)

’+ 0+X+() +,+X_(X),
Region IV;
Region V.
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By the definition in section 4, a+ and + 0. Thus q)+ (x) is known
throughout Region I, and the coefficients in the other regions will be determined
by matching at the boundaries. The boundary between Region I and II is at
x --f-, at which

+ (f-) ",/+x+(f ) + 8+x_(f-),

’+ (f-" ) + X’+ (f- ) + 8+ X’-- (f- ),

and we readily find that

+ w(/,x_ )/W(x+,x_ )I-:-o, (c.2)

and

+ w(+,x+ )/W(x_,x+ )t,--:-o.

Since ,+ is now known in Region II, we calculate at the next boundary:

+ W{q,+,b}/W(a,b)l,,=_x/f_f-,,

and

’+ W {q+,a} / W ( b,a}lx=_X//_f-#; (c.3)

and so on:

O+ W(’rl+,X_ }/W(X+,X_

,+ W ,I’I + X + ) / W (x x+ X/f+ /3f ,s

The formulae of Appendix B allow us to obtain useful approximations for these
coefficients, the most important of which is ,+ (cf. (4.9) and (4.10)). From (c.2),

(2-)/+ -. dt

(-C’(x)/4C(x) C(x) l/- + 1/2/- Xx

1 (2v/-Z’- , f-,, )2 ( ,) -1/4exp(f

X+g/x2 1/x)’/2dx+O(f1-2) .{2/-)k+O(f’)},
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with t’ from (a. 1). Thus

y+ (--X)I/4(2’- f ) exp(---f_ (_f_2 + g_f_)l/2

+q ln((2g x + 2vr /g x x2 )/x)[tfll
ln/2(Z- /g x hx= 2Lx 1

!
t’

(1 + O(f ) + O(fl-= )), for g 0 by (b.28)-(b.30), which

I/2Cs-;[ (2/- gX I) t[ ] + O(f + fl-2a2g- t’ .(1 ))

(1 + O(f + fl-2a )).

(c.4)

If 1/4 < g < 0, then y+ becomes (-h)l/4[(2.-X-e//1 + 4gh )11/2-.
exp((r/2 + arcsin(1//1 + 4g ))//- g ) by (b.29). On the other hand,

8+ 1/2 (2/- X x) exp(---x)C(x)-l/4exp(+ ftt,XC(x’)l/2dx’)
{-C’(x)/4C(x) + C(x) 1/2 "+ 1/2Z-x -j-z-X-}Ix=f-..

Thus

and since X+/X- exp(2f (C(x’)) 1/2 dx’) > exp(2ftf,-(C(x’)) 1/2 dx’) on Region II,
+ X- (x)/,+ X+ (x) O(f’) uniformly on Region II, from which it follows that

+ (x)/’t+X+(x)= 1+ O(f’* +fl-2) as in (4.11b). At the next boundary,
x -,/f-f-,

q+ (x)/y+ X+ (x) + o(f" ) all n < oo, and

q/+ (x)/y+ X’+ (x) + o(f" ) all n < (c.6)
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Since the X- terms are completely negligible there, the calculation of + and ’+
is quite easy from (c.3) and (b.7)-(b.lO), (b.26)-(b.28):

’+ ff/’f-- 1/3( --t)-- ’/4t + T-l/2(f)exp(- :_.t2)k/f_f_$(C(X)) 1/2 dx)
.._k f1,6(_/)-i,4 gxp( f1,2(f-fl )3,2){-2+ O(f3fl/2-1,2)).

Thus

e+--2ff-,/6+ T-I/-(f).(l + 0(f3/2-1/2)), (c.7)

where "1’+ is given to O(f" +fl-2a) in (c.4). Just as with 8+, there is a
cancellation in

+ I/6( I/2t + --,/2(f)exp( . fI/2-3/2--- f- -h) T

and so

(c.8)

e+ (x)l+ a(x)= + O(f3M2-112) (c.9)

uniformly on Region III (because, in terms of the Airy functions, on Region III,

Ib(x; f,,)/a(x; f,X)l xp(-

/a(x; f,h))
is bounded uniformly in x as f-> 0).

Since rl+ is the analytic continuation of +, the next boundary point is
x -h/f + e-"i/f-, where

rl+ (x)/.+ a(x) + o(f" ), all n < oo, and

’+ (x)/.+ a’(x) + o(f" ), all n < oo.
(c.lO)

The calculation of the coefficient O+ from + is essentially the inverse of the
calculation of + from , +, and

o+ + .( + o(f’#/’--"/’)). (c.11)
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There is again a leading-order cancellation in +, and, with (b.11),

t+ =1/2+ W(a,x+ }l,__X/f+e-.,/-,’(1 + o(f")),alln; (c.12)

t+ X- (x)/O+ X+ (x) O(f3B/2- 1/2), (c.13)

uniformly in Region V. So

1+ (x)l/+ X+ (x) + O(f3/V2-1/2), (c.14)

which completes the construction of the comparison functions + and 1 +.
The construction of the other pair of comparison functions is quite similar,

except that we start at oo and move in: Let

[_ ,,+ (x) +

_
o_ (),

0_ (x; fiX) 3’- X+ (x) + 8_ X- (x),
l_ ,(x) +

_
b(x),

Region I;
Region II;
Region III;_

(x) +
_

c(x),
n_ (; f,,)

_x+ (x) +

_
x_ (x),

Region IV;
Region V.

Then we solve for the coefficients starting with Regions V and III, where by
definition from section 4,_

fi/6T-1/2(f)N(f);

v_ =0; (c. 16)_
N(f),

The normalization factor N(f) is fixed by the condition that W (,_, ,+ ) 1, so
(4.9) for N results from a comparison of (c.l 1) and (4.11c), (4.12c). Since the
calculations are quite similar to the earlier ones, we will not do them in any
detail, but note that the "right" coefficients fl_, 6_, ’_, #_, and

_
dominate as

before, because of cancellations to leading order in the "wrong" coefficients and
exponential dominance of one comparison function over the other throughout a
given region. With this observation, the remaining dominant coefficients can be
read off from the Wronskians of + with ,_ and of 1 + with 7- and our earlier
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calculations (c.4)-(c. 14):

E. HARRELL AND B. SIMON

/_ (1/,+ W(c,a)).(1 + O(f’))

f/6 1/2( ri/6,+ T f)e .(1 + O(f’));

1...(1 + O(f’));8_ (1/’/+ W{X_,X+ }).(1 + O(f’))=_
--(1/W{o_,o+ }).(1 + O(f’))

2-
This completes the determination of q_ and

(1 + O(f)).
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