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1. Introduction. In recent years, the spectral and scattering theory of
partial differential operators on Ft has been an extensively studied subject,
especially for operators which resemble Schr6dinger operators; see [28, 29] for a
comprehensive review. Although scattering is basically a time-dependent
phenomenon, very few results have been obtained with time-dependent
methods. Indeed, the main time-dependent technique is Cook’s method [28,
XI.3] which traditionally yields only existence of wave operators. There are
certain methods, most notably the Kato-Birman (trace class) theory [28, XI.3]
and the theory of smooth perturbations [29, XIII.7] which have both
time-dependent and time-independent versions but the sharpest results have
seemed to require time-independent methods, most notably the Agmon-Kuroda
analysis of weighted L2 estimates [29, XIII.8].

This situation has been dramatically changed by an exciting and beautiful
paper of Enss [13] who uses purely time-dependent methods to obtain virtually
identical results to those of the AgmonoKuroda theory in the case H -A +
with F a multiplication operator. Particularly exciting developments suggested
by Enss’ tour de force involve the inclusion of Coulomb potentials and the
extension to multiparticle systems. Enss [14] has solved the first of these and has
made substantial progress on the second! In this paper, we want to explore the
more straightforward extension of studying H H0 + F for more general Ho
and F where F is still "localized" in a bounded region of space and H0 is still an
operator with "no scattering" in a geometric sense. It is hoped that th.ese
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generalizations will help illustrate what is going on in Enss’ paper. In addition,
they show that Enss’ method is capable of recovering virtually all the known
results on H’s of the above form.

In fact, it is already clear from Enss’ original paper that his methods have
striking applicability. In the first place, he only needs that V be "localized" in
the sense that there is some falloff at infinity. He does not require that V be
"local," i.e., a multiplication operator, or even "pseudo-local," i.e., that
(f, Vg)--0 if f, g are in C0 .with disjoint supports. (Note that we distinguish
between "local" and "localized.") That localization suffices for Cook’s method is
a result that goes back at least to J6rgens-Weidmann [21]. On the other hand,
pseudo-locality is often used in the Agmon-Kuroda theory; we note that Jensen
[20] has quoted some lectures of Kuroda where non-local potentials are treated
by the Agmon-Kuroda method. Secondly, as Enss points out, the relative
compactness of V plays no role in his work. In fact, as we shall see below, even
relative boundedness is not needed! Rather, one is close to merely requiring
mutual subordinateness of H and H0 in the sense of Birman [5] (see 2).

In our extensions and simplifications below, we rely on three technical devices
which go beyond those that Enss used in [13]:

(1) Decompositions in phase space. In [13], Enss decomposes phase space into
products of cones in x and k. He then reduces his analysis to a one dimensional
analysis which in essence has the effect of slicing his x-space cones with an
infinite number of planes parallel to each other but not perpendicular to the axis
of the cone. For non-isotropic H0 this is especially inconvenient. Instead, our
decomposition will be into cubes in x-space. Enss has informed me that he used
a Similar kind of decomposition in his analysis of the Coulomb problem [14].

(2) Integration by Parts Machine. Enss exploits the explicit Gaussian kernel
of eta. Here we use an integration by parts machine systematized by H6rmander
[19] to treat general e -tn. The point is that if is localized near x0 in x-space
and strictly localized in a set K in k-space, then (e-tnoq)(x) is very small outside
of the classically allowed region, (x0+ tlv=OP/Ok for k K} when
0 e().

(3) Asymptotic Equality of H and Ho. In the Enss analysis, it is important to
prove that Ilia(H) (n0)]ll0 for a certain set of s and . Enss relies on
Cook’s method and needs to control e-itH’ln for t [-T, T] with T,, .
Following a suggestion of Hunziker, we rely instead on a technique from Simon
[36].
What comes out of the presentation in 2 is that the Enss analysis depends on

four conceptual ideas:
(a) One lets the dynamics do the hard work, i.e., move the wave function far

from the scatterer.
(b) Apply Cook’s method. The deep discovery of Enss is that Cook’s method

can be a useful tool in proving completeness and the absence of singular
spectrum.
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(c) Control (e-moq)(x) by exploiting the fact that once one is far from the
scatterer, one can work on a scale where quantum and classical mechanics are
essentially identical!

(d) Make a suitable joint decomposition in x and k-space to accomplish (c).
In this decomposition, it is critical that one localize strictly in k-space but only
weakly in x-space. In fact the x-space decomposition can be done in a way that
does not destroy the strict k-space localization. It is this phase space
decomposition that I find most attractive and characteristic of the method which
leads to my proposed name of "phase space analysis." It suggests that the
cotangent bundle is the right place to do scattering theory! Indeed, it may be
possible to treat localized perturbations of Laplace-Beltrami operators on
manifolds by the Enss method; one needs to prove that the quantum notion is
almost that under the geodesic flow.
We should mention a number of examples that we treat in the text below

which illustrate the scope of the extensions.

Example 1.1. (Dirac operators) It is easy to accomodate H0’s which are
elliptic systems. See 2.

Example 1.2. (Optical and Acoustical scattering) Acoustical scattering is
easy since it is elliptic as a second order system and optical scattering can be
accomodated by the trick [30] of adding fictitious degrees of freedom. We treat
both inhomogeneities (2) and obstacles (6).

Example 1.3. (Higher order perturbations) Consider

where the perturbation is of higher order and thus probably not amenable to
any technique depending on inverting + V(Ho -z)-. For a > , (= no. of
space dimensions), Birman’s theorem [5] shows that 2---(H, H0 -A) exist and
are complete. In 2, we see that this is true for a > and moreover that there is
no singular spectrum. This result is new.

Example 1.4. (Positive singular perturbations) In 4, we will show that if V is
a non-negative function with

sup ( +

then H=-A / V has no singular spectrum and complete scattering.
Presumably, 2 + e can be replaced with (1 + e) but in that case, we need

sup f (1 / Ixl) + lV(x)l dx where /

if , > 2, p if , and p > if , 2. These results are new for z, > 1.
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Example 1.5. (Half-Solid) Let W be a bounded periodic function on
(-oo, oe) and let V(x)= W(x) (resp. 0) for x >0 (resp. x < 0). Let
H =-d2/dx2+ V. Recently Davies and Simon [10] showed that H has no
singular spectrum by using a "twisting trick" which allowed one to exploit
time-independent methods. With the Enss method, one does not need such
cleverness! See 6.

Example 1.6. (Constant Electric or Magnetic Fields) Recent results [2, 3, 17,
41] on scattering in constant electric or magnetic field are recovered. Here, as
always, the Enss method depends on directly analyzing the basic physics!

Example 1.7. (Schr6dinger Equation with absorbtion) Let H =-A + V
where V is not self-adjoint, but rather i(V- V*) > 0. Then if V is -A-bounded
with relative bound smaller than 1, e -itn will be a contraction semigroup for
t > 0. Such semigroups are approximations which arise in nuclear physics under
the rubric "optical" model. In a recent paper, Davies [9] has advocated their
study and showed how to use the Kato-Birman theory to analyze them. The
Enss method can be used to analyze such semigroups under fairly general
circumstances. (See 9).

Finally, we sketch the contents of the paper. 2 is the central section of the
paper where we abstract [13]. In that paper, Enss only recovered the
Agmon-Kuroda results on the absolutely continuous and singular continuous
spectrum. He did not bother to prove that only 0 can be an accumulation point
of point spectrum. We prove this result, which should be significant in
multiparticle systems, in 3. In 4, we allow V to be a form perturbation. Given
the form version of Cook’s method [35], this is quite easy. In 5, we consider

H0’s which are not constant coefficient partial pseudo-differential operators but
which possess, nice eigenfunction expansions. In particular, we consider
-A + W with W periodic (a solid) and scattering in the zero temperature
Heisenberg ferromagnet where H0 is a finite difference operator. In 6, we use
the device of looking at e +itnje-itno for a J with -J relatively compact to
recover known results where V has local singularities. In 7, 8 we discuss
constant electric or magnetic fields and in 9, Schr6dinger operators with
absorbtion.

It is a pleasure to thank V. Enss for informing me of his work and for
numerous discussions, and I. Herbst and W. Hunziker for useful discussions or
correspondence.

[}2. General Pseudo-Differential Operators. This is the central section of
this paper. Our strategy is that of Enss [13] but there are some differences in
tactics. Normally, we work on L2(Iq). k stands for the u-tuple of differential
operators i-7 and also for the Fourier transform variable. The symbols
F(x X) and F(k K) denote respectively multiplication by the characteristic
function of X and the spectral projection for the u-tuple k (characteristic
function on Fourier space). We consider operators H H0 + V where H0 is a
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"pseudo-differential" operator. We intend this last phrase in the weak sense that
H0 is a continuous function, P(k), of k; we do not assume any estimates of the
form IDP(k)I < C(1 + Ikl)-I1. We will need some weak conditions on P
which require it to be "essentially elliptic."

Definition. ko is called a singular point of P if P is not C in a neighborhood
of k0 k0 is called a criticalpoint if it is not a singular point and V P(ko) 0. The
values of P at the singular (resp. critical) points are called singular (resp. critical)
values. The family of singular points, singular values, critical points and critical
values will be denoted by Se Sv Cp, C respectively.

Definition. A continuous function P is called vaguely elliptic if and only if"
(A) Sv t3 C has a countable closure
(B) e(k) as Ikl--, .
(c) P,= e.

Definition. A symmetric operator, V, and self-adjoint operator, H is called a
regular perturbation of Ho P(k) if and only if

(i) For some N, D(V) D D([k[:N) and h(R) V([k]N + 1)-1F([x[ > R)[[
obeys

foh(x)dx< o; h(0) < o (2.1)

(ii) H is a self-adjoint extension of (H0 + V)D(Ho) N D([kl2N)
(iii) For all a, b in [q, there is a positive continuous function Q going to

infinity at infinity so that

Q(k)E(a,b)(H)
is bounded.
We will call (2.1) the Enss condition. Since h is monotone decreasing, (2.1)

implies that h(x)O at infinity; indeed, h(x)< Ixl-’f h(y)dy. The basic
theorem is

THEOREM 2.1. Let Ho P(k) with P vaguely elliptic. Let H Ho + V be a
regular perturbation. Then:

(a) f -* (n, H0) s-limt_ oo e it% itHoeac(Ho) exist
(b) H has no singular continuous spectrum
(c) Ran 2 + Ran f]- is the absolutely continuous space for H
(d) The only possible (finite) limit points for the point spectrum of H are in

Cv tA Sv. Any eigenvalue not in C t3 Sv has finite multiplicity.
(e) Oess(H ) Oess(H0)= ( e(k) k c ).
We will prove (a)-(c) below. (d) (which is not a result of Enss in his case) will

be proven in 3. (e) follows easily from (a)-(d).

Remarks 1. It is easy to accomodate multicomponent systems within this
framework. % is then --1 L2(Iq’) P is now a matrix P,(k); < i, j < n and
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condition (C) is that P(k) is a Hermitian symmetric matrix. One then writes

P9(k) 7’-- I,(k)e’)(k)e)O(k) where (etO(k)} is an orthonormal basis for Cm.
Singular points are now points where either some/t or some et) is singular, and
critical points are points where some V/z is zero. Singular values are all the
t(ko) for k0 singular. Critical values are the values of/z(ko) for those with
V lt(ko) 0. With these changes, Theorem 2.1 extends with minor changes in the
proof. One can accommodate the case where the et)’s can only be chosen locally
away from Se rather then globally, as might happen with an isolated eigenvalue
degeneracy. One can also deal with permanent degeneracies (i.e., some
eigenvalue doubly degenerate for all k as in the Dirac equation) by allowing the
rank one projection ,t)) to be replaced by a C finite rank projection. It was
with systems in mind that we wrote (B) as el-.- rather than P z. If , 3, 1,
el implies that

___
P for a single P. For systems, the condition is

<t)l z for each l, and different signs can occur as in the Dirac equation.
2. We allow the possibility of singular points to include an example like

P(k)---Ikl. We could allow P to go to infinity at isolated points or submanifolds
without any trouble. Moreover, C on FI \Se is not essential; some finite
computable number of derivatives would do. Note that only S and C aren’t
allowed to be "fat"; Se or Ce could be. For example, P can be constant on an
open set without necessarily violating (A)-(C).

3. Recall the notion of Birman [5]: Given two operators A and B we say that
A is subordinate to B, if and only if [If(A)(g(B)+ 1)-ll < for some
continuous, positive functions, f, g, on FI, with f going to infinity at infinity. It is
not hard to see that hypothesis (iii) is equivalent to saying that H0 is subordinate
to H. (i) implies that H is subordinate to H0 but is considerably stronger in that
the f(A) can be chosen to be A. (iii) can be weakened to require that only
intervals (a, b) which avoid some closed countable set have the necessary
property (but then this set may also include limit points of eigenvalues).

4. Let h(R ) v(k2 / 1)- "/>Rll wherej>R(x) oh(x/R) with q Co
and q(y) 0 (resp. 1) for ly[ < 1, (resp. > 2). Then hl(R ) < h(R) < hi(R/2) so

(k2N + 1) -lh L (0, ) if and only if h is. Let h2(R ) Vj>R I1" Then using
(k2u -]= +1) >R/2[ j>R -, one sees that[j>R, + 1) (k2N k2N, ](k2N+ 1)

lh2(R)-h(R)l < CR-lhl(R/2). From this we see that when h(0)< ,
f’ h(R)dR < if and only if f hz(R)dR < o.

5. The use of k2N in (i) is not essential; any function of k which is continuous
and divergent at infinity will do.

6. Let P(k) be a real analytic function on iq going to infinity at infinity.
Then the critical values of P are discrete, i.e., there are only finitely many in any
compact subset of Iq. To see this, we note that since P at infinity, it
suffices to show that P has only finitely many critical values when restricted to a
compact K of Iq ’. The functions fi(k)= OP/Ok define functions analytic in a
complex neighbor.hood, N, of K. Since K ,s compact, we can shrink the
neighborhood, so that the variety (f.(k)= 0) has only finitely many co,_nected

components in N. Each component has the property that its non-manifold
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points do not disconnect it [16] so that P is constant on each component since
any two points can be joined by a curve, , along which (7 P)., 0.

Before proving the main theorem, we give a number of examples which
illustrate the conditions. We will not be explicit about giving all the details. In
addition, we make no attempt to give reference to earlier work on these models;
a fairly comprehensive bibliography can be found in [28].

Example 2.1. (Local potentials and differential operators). Let A, a Z be
a covering of Iq" by unit cubes with center at a. For a function W, let
w [fa.lW(x)[2]/2. Then, Strichartz [40] has shown that for rn > ,, and W a
multiplication operator, W(lklm+ 1)- is bounded if and only if sup w < o
and this sup defines a norm equivalent to 11W([klm+ 1)-111. Using remark 4
above, we see that a multiplication operator W obeys (2.1) for some N if and
only if

sup w, dR < o. (2.2)

(2.2) should be compared with the condition for W(lk[ "4" 1)-1 to be trace class
for some m, viz. Y. w < o (see e.g., [38] for a proof of this fact). More
generally, if V Y W()D with W() a multiplication operator and V formally
symmetric, then (2.1) holds if each W() obeys (2.2). To be sure that Theorem
2.1 is applicable, we need for (iii) to be true. This will happen, e.g., if H and Ho
are semi-bounded and Q(H)= Q(Ho).

Example 2.2. (Higher order operators Ex. 1.3) If H0 > 0 and V Y WaD
is positive on D(k2N) x D(kZN), then the form sum H0 + V will have
Q(H) c Q(Ho) so (iii) holds. Thus we can completely analyze H if (2.1) also
holds (see the discussion above for this condition). There is no restriction on the
degree of V relative to that of H0 For example, if H -A + AfA with f positive
and (1 + [xl) +’g in L2 { W sup w < o) for g f, 0.,f, Af, then H obeys all
the conclusions of Theorem 2.1.

Example 2.3. (Dirac operators Ex. 1.1). Let Ho kfl + ma where a, ill,
f12, f13 are Dirac matrices and Ho is an operator on L2(F13, G4). H0 is a vaguely
elliptic system; the eigenvalues _+ Vk2 q- m2 go to infinity at infinity. One can
get smooth (indeed analytic) eigenvalues, by picking an eigenbasis (u(}= and
letting e(l)(i S(fc)u (1) where S(/)implement,s the unique Lorentz transforma-
tion which takes (m, 0, 0, 0) to (/k2 + m2 k) and leaves (0, invariant if
g.k--0. (pure boost). A 4 4 matrix of multiplication operators will obey (2.1)
if and only if each element obeys (2.2). Under suitable conditions, e.g., Ho + V
self-adjoint on D(Ho), (iii) will hold.

Example 2.4. (Acoustical scattering Ex. 1.2) Here we consider the case of
scattering from inhomogeneities and in 6, the case of scattering from obstacles.
This does not fit the framework given above since the basic generators A and Ao
are self-adjoint in distinct inner products. We sketch the modifications needed.
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Here Wo(t) solves / c2oAu and W(t) solves fi c2 V "D-Iv U where c, p are
functions going to constants 0, Co at infinity. The basic Hilbert space is
L2D(V) where D(V) denotes the completion of in IlVfll-norm.
W(t) e -int and Wo(t) e -gnot are unitary but in different inner products each
equivalent to the usual inner product. Thus both are uniformly bounded families
of operators in the usual inner product; see [28, 30] for further discussion of the
basic framework. We claim that all the arguments below easily extend to this
case" e.g., the H6rmander type estimates (lemma 1) are applicable if one writes
the matrix elements of Wo(t) i.e., cos]k]cot and [k] Ic0-+ sin(lklcot) in terms of
complex exponentials, or, in proving lemma 4, we use the fact that (A)
(defined using the inner product in which A is self-adjoint) is a limit of
polynomials in the energy norm for A, so in the equivalent norm which is the
usual norm on L2 @D(V). An additional complication is that F(]x < R) is not
bounded on % because of the derivative in the norm. One usesj<R --j>R
withj given in remark 4 above, in place of F. The hypothesis needed on 0, c
comes from the requirements that V A A0 obeys (2.1) (with F replaced byj)
and that j<tE(,b)(A) be compact (local compactness).

Example 2.5. (Optical Scattering from Inhomogeneous Media) We have a
structure very similar to that in the last example. We want to solve
j - 7 X (/--1(7 X E)) where E is a vector valued function on FI 3 and e

and/ are x dependent positive definite matrices approaching fixed matrices e0
and /0 as xm. The extra problem is that the system replacing H0 is
P(k)v= co-l/Elk (/0--lk 0-1/2v)] so that v e/2k is a zero eigenvector.
Thus every point is a critical point and the eigenvalues don’t go to infinity! If we
borrow a trick from [30], this difficulty can easily be overcome. The trick is to
riote that P(k)v is always orthogonal to e/2k so that the bad modes decouple
from the good modes; put more prosaically, if E obeys V.(e0E)=0
V.(%OE/Ot) 0 initially (and these follow from two of Maxwell’s equations
since %OE/Ot V H), then it does for all time. So one introduces a new P by

+

which is vaguely elliptic. One then solves the equation

+ aiv(V.  )

and studies its spectral and scattering properties. Restricted to the subspace with
V .eE V .eOE/Ot 0, the equations and scattering, etc. are identical; see [30]
for the details when the Kato-Birman theory is used in place of the Enss
method. To apply the methods here, the V that is needed in (2.1) is a two-by-two
matrix with only one non-zero entry, namely H-/4o with (Note"
H Hamiltonian, not a magnetic field!)

H -e-lcurl(/-lcurl. ) + div(grad e.)
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and

H0 -0-’curl(/t0- ’curl.) + div(grad 0 ").

The constructions are always such that D(A)= D(Ao) so that (iii) is easy
because/; which is used to construct A0 is elliptic.
As a preliminary to the proof, we note that since F(Ixl < R)(Q(k)+ 1) -1 is

compact for any Q > 0 going to infinity at infinity, (iii) implies
(iii’) F([xl < R)E(a,b)(H) is compact for all a, b in Iq.

(iii’) is often called local compactness.
We abstract the basic device from Enss [13] in a theorem. To state it, we

suppose existence (conclusion (a) of Theorem 2.1) is known; we prove that
below.

THEOREM 2.2. (Enss Decomposition Principle) Let H obey the hypotheses of
Theorem 2.1. Let Ckn be a sequence of unit vectors with

(a) liE(Ix < n)nl --->0 as n -->

(b) For some [a, b] disjoint from S Cv, Ela, bl(H)d?n tn for all n.

Then, one can decompose n n, in + n, out + n, SO that:
(1) I1., wll 0 as n ---> .
(2) II(f / 1)n, inl] --->0 and II(f- 1)n, outl]--->0 as n.
(3) SUPnl[n, in[ < , supll,, outll < .
(4) lim,_, [supt<ollF(lx < tn)e-itnotbo rn, inl] 0 for some 6 > 0 (only depend-

ing on a, b).

Basically, ., in is the part of 5 with velocities ( OP/Ot) pointing /’inwards
,outwards1"

fin, w is a number of pieces which we toss into the wastebasket along the way.
The following is virtually identical to some arguments of Enss [13].

Proof of Theorem 2.1(b), (c) given Theorem 2.2. Let }(sing denote the singular
continuous subspace of H. Since %sing reduces H and since S t C cannot
support a singular continuous measure, if sing (0), we can find

%si,g, v 0 with Eta, ble for some [a, b] disjoint from S U Cv. By
Wiener’s theorem on the Fourier transforms of continuous measures, (iii’)
implies that IIF(Ixl < n)e-itnll goes to zero in L2-mean sense ([31, 1, 13, 28]).
In particular, we can find inductively with > max(n, tn_l) SO that
IIF(lxl < n)e-it"Hl] < 1In. Let n e-it"Hc. Then obeys the hypothesis of
Theorem 2.2. Thus, by (1) and (2)

Thus

IIn + n, in n, outll 0 (2.3)

lim eit"H[[2 + tn,i + - 0n, out]
n--->o

which means that is in the absolutely continuous space
contradiction implies that %sing (0)"

for H. This
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Similarly, since c (Ran f-)+/- reduces H, if this space is non-zero, we can
proceed as above and find q (Ran f-)+/- ac, so that q - 0 and so that
(2.3) holds for qn e-it"Hal? But

](n ’+ b., in)[ I((-+
where

c < liE(Ix[ > an)(2 +

goes to zero by (3) of Theorem 2.2 and

/3 II(t2 / )*’/’11 IIF(lxl < rt)eit"Hd,-n, inll
goes to zero by conclusion (4) of Theorem 2.2. Thus, by (2.3)

(, ) (n, n) lim [(4’n, 2 + qn, n) + (’n, 2- q’n, out)] 0

since q,, (Ran 2- ) +/- by hypothesis.

Remark. Enss [14] has recently found a beautiful argument for directly
showing that for q, e-it"I’ld? with z, one has n, in---->0. This can replace
the last paragraph in the above proof; see 9.
We now turn to the proof of Theorem 2.2. The basic estimate that tells us that

quantum paths are essentially classical is:

LEMMA 1. Fix K compact and disjoint from Se tO C1. Let ( be a fixed open
neighborhood of ((OP/Ok)(ko) ko K). Then for all n, there exists a constant C
depending only on K, (q, P and n so that

I(e-itl-Iq)(x)l < c(1 + Ix- Xol + Itl)
I1(1 / Ix- x01"),/,ll (2.4)

for all q, with supp c K, all xo and all x, with (x Xo)/t

_
(.

Remarks 1. (2.4) is intended in the sense of holding for q’s in $ with
supp c K. It then extends to any q with the norm on the right finite so long as

supp c K. For, we need only slightly increase K so that we can modify any
to yield a q in .

2. Classically, a particle moving under the Hamiltonian P(k) with
k(t O) ko, and x(t O) xo will follow the orbit xo + (OP/ Ok)t. (2.4) says
that if q is originally "localized near x0 in x-space and strictly in K in k-space,"
then e-itHd? is localized near the classical orbits associated to these initial
conditions.

Proof. If (2.4) is proven for x0 0, it follows for all x since e-itHo commutes
with translations in x. In [19], H6rmander proved that for x/t( and
supp u c K:

Ife-"e<k)-ik’u(k)dkl < C(1 / Ixl / Itl)-" flOu(k)ldk. (2.5)
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((2.5) is proven by repeated integration by parts, x/tq(9, means that
[e -ueq0-g’’] has no points of stationary phase.) Since K is bounded

flDuldk < C(flDul2dk)1/2 so that

E flDu(k)ldk< c [Dul
I[<n n

Il<n

Taking u , we have proven (2.4).

Proof of Theorem 2.1(a). By Cook’s argument, it suffices to show that
[IVe-itno[ f(t) is in L(-, ) for any with having compact
support disjoint from Ce Se. We write

f(0 < V(k2 + )- -imo(k2e + )11 Z + n
where

A < V(k2v + )-’11 IIF(Ixl < &)e-itn(k2N + )11

n < IlV(k2N + 1)-lF(lxl
By lema 1, A Ll, if we choose > 0 smaller than the smallest velocity in
supp . By the Enss condition (2.1), B

To apply Lemma 1, we need an efficient way of localizing in x and k-space
simultaneously. Since we need strict localization in k, ,e can’t strictly localize in
x. Thus, let be the characteristic function of the unit cube centered at
Pick f and let

f f (2.6)
If ff= 1, then

and since f $"

E f(x) (2.7)

sup IIIx- lZII < (2.8)
for each n. Thus, for any u, u Y fu decomposes u as a sum of pieces localized
about different points in Z ". The point is that^supp(fu)=supp(f, )
c supp fi + suppf C supp t + supp f so, by taking f with very small support
we can localize in x without losing much strict localization in k. Once we have
localized near a, we will want to split into those velocities pointing "away" from
x--0 and those pointing "towards" x 0. Thus, we want to follow by an
a-dependent k-space localization. For this reason, we will need:

LEMMA 2. Let f $ with f > O, ff dx 1. Let f be given by (2.6). For each
a, let g be given with

sup I1(1 A)gll2 < ,



130 BARRY SIMON

For h , define

Then

Remark.
convention.

(Th)(x) Z g(k)f(x)h(x). (2.9)

IIThll2 < CIIhll=.
In (2.9) g(k) denotes the function of -iO/Ox as per our standing

Proof. IIThll z < E,,aff(x)lh(x)l In,(x- y)[f(y)lh(y)ldx dy where H# is
up to factors of 2rr, the Fourier transform of g,g. By Lebnitz’ rule and the
hypothesis on g, we have a uniform bound on the L norm of (1- A)(ggt)
and thus

Thus
< Cl(1 +

IIThll 2 < C, E f L(x)lh(x)l Ih(y)lf(y)(1 / Ix-yl2)

fCl Ih(x)l(1 + Ix fll 2) Ih(y)l < CIIhll

Remark. An estimate on [f(k), g(x)] can be found in the appendix. This
estimate and the density argument in the first sentence of the proof provide an
alternate proof.

LEMMA 4. Let j>R be the function in the fourth remark after Theorem 2.1. Let
H, Ho obey the hypothesis of Theorem 2.1 and let b Co(FI), the continuous

functions vanishing at infinity. Then

[l((n) (no))(Ikl2N + 1) -l’J>RII 0
as R---) oo.

LEMMA 3. Let f, g Co(iq"), the continuous functions vanishing at infinity.
Let gR (x) g(x/ R). Then

I1[ f(k), g (x)] II- o
as R . In particular, ifj> s is the function in the fourth remark after Theorem
2.1, and z is not real, then

Proof. Since lily(k), g(x)]ll < 211fllll gllo, it suffices to prove the result for
a dense set of f’s and g’s. We thus suppose that g $ and f is a polynomial in
(kZ+ 1) -1 and ki(kZ+ 1) -1 (such polynomials are dense by the Stone-
Weierstrass theorem). Using lAB, C]=A[B, C]+[A, C]B we are easily
reduced to the cases f(k)= (k2 + 1) -l and f(k)= ki(k2 + 1) -1 each of which is
easy since II[k, gRlll < R 11Vgll. I--1

where we use (2.7) in the first inequality and Young’s inequality in the last step. 1---1
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Proof. (following ideas in [36]). We first claim it suffices to consider the case
(x)---(x- z) -1 with z non-real. For then using (z- w)-l(z- w)= (x-

z)-l(x w)-l=Oz, w(x) we obtain convergence for Oz, w. By the Vitali
convergence theorem and the analyticity in z, w, we have convergence of the
derivatives in z, w and thus for the case O(x)= (x- i)-m(x "k i) -k. By the
Stone-Weierstass theorem, polynomials in (x + i)-1 and (x- i)-1 are dense in
C(R), so the general is accommodated.

Since H Ho + V on Ran[(Ho z)-l(k2N + 1)-l] we have that

[(n- z)-’-(no- z)-](k:N + 1)-j>
(O- z)-lV(k2N -{-. 1)-l(Uo- z)-lj>/R A "-]- B

where Ilall--II(O- Z)-Iv(k2u dr- 1)- ’>R(H0 z)-all < Im zl-Wh(R) goes to
zero at infinity by the basic hypothesis (2.1) on h and Ilnll
z)-ll V(klv / 1)-11 II[j, (n0- z)-]ll goes to zero by lemma 3. I-]

LEMMA 5. Under the notation of the last lemma,

as R.

Proof. Since lemma 3 implies that II[(IklZN/ 1)-,j>g]ll0, we conclude
that II[q(n)-q(no)]j>g(Ik[’N+ 1)-110, Let Q(k) be a positive function
going to infinity at infinity. Then for any e,

(Q(k) + 1)-l< c,(Ikl2u + 1)-1+
from which we conclude that II[(H)-(Ho)lj>(Q(k)+ 1)-lll0. Since
(Q(k) + 1)E(,b)(H ) is bounded for suitable Q, the result follows, l’-!

Proof of Theorem 2.2. First pick a’, b’ so that [a, b] c (a’, b’) c [a’, b’] is
disjoint from Sv U Cv Let be a C function which is 0 off (a’, b’), on [a, b]
with 0 < < 1. By hypothesis (b) and lemma 5:

[o(H) (Ho)
as n--) . By hypothesis (a), the same is true ifj>,,/z is replaced byj<./2 Since
(I)(H). q)., we have that

IlO, , 0; n O(no)0n (2.10)

Since is supported away from the singular values of P and P at infinity,
O(P(k)) is a C function of k and thus convolution with a function in . It
follows that

IIF(Ixl < 1/2 n),ll0 (2.11)
as n.
Now, let L P- l[a’, b’]. By the hypothesis on P, L is a compact set disjoint

from S, tO Ce. Thus we can find, a bounded open set (9 and an , so that
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L + #, c 9 c cIRI’\S U Cr, where B (Ikl, I1 < } Now let f be a
positive function in $ with supp f c , and let f be given )y 2.6. We will take

+
I(1 <(1/3)n

By (2.10) and (2.11), we have IIn, wll 0_ which is conclusion (2) of the theorem.
Next let D(k)-)P/Ok. Since (9 is bounded and disjoint from Cp,

(D(k) k (9) is contained in some set (D 1‘4 < Il B) for 0. Pick two
functions Gin, Gou in C(R) so that

(a) Gin(D) + Gout(D) if A < Ivl < B.
(b) Gin(D) ---0 if A < Ivl < B and the angle between v and (1, 0, .., 0) is

smaller than 45 o.
(c) Gout(D) 0 if A < Ivl < B and the angle between v and (- 1, 0,..., 0) is

smaller than 45.
(Note" 45 plays no special role; any angle strictly less than 90 but larger

than 0 will do). For a Z ", let R be a rotation taking a to (11, 0,..., 0) and
finally, let

gn(k) Gin(Rap(k)); gUt(k) Gout(R,v(k)).
Then, gn and gOUt obey the hypotheses of Lemma 2 so that

n, in gn(k)f,(X)n
la >(1/3)n

tn, out ff:Ut(k)fo(X)n
Icl >(1/3)n

obey conclusion (3) of Theorem 2.2.
Moreover, since supp f C B,-, supp(f,,) C (9 so (glen +g,OUt)(fq],,),,

(fq)^ and hence tn tn in "1" n, out + tn, w"
inNow, let q; in-- g (k)fa(X)n. Since one has uniform bounds on derivatives

of gi, and f $, we have bounds on Ix- c14,. . n[I, uniform in n and c.
Thus, using lemma 1, and some geometry, we have that

le-itHtb in(X)l < Cm(1 "k" I1 + Ill)Tn a,

for all x with Ixl < 6(n + Itl), all t< 0 and all c > (1/3)n. (This follows from
the fact that no velocities in supp (/),; , in point within 45 of c. Here is some
number depending on ,4, the minimal velocity). Using the Its! falloff to sum on
a, the It + lal falloff to sum on Ixl and the levi falloff to translate into n falloff,
we see that for < 0

liP(Ix < i(n + Itl))e-i’"rn, inll < C(1 + n +

which proves conclusion (4). Similarly, we see that

IlF(Ixl < 6(n + It[))e-itHo(Ikl2N -I- 1)tn, in] C,(1 + n + 1tl)
for < 0 and analogously with in replaced by out and < 0 by > 0. These
estimates and the argument following lemma 1, prove conclusion (3).
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3. Bound States. In this section, we wish to make a few remarks about the
connection between bound states and phase space analysis. We expect that there
is much more to be said about this subject than we do here! We begin with the
proof of Theorem 2.1(d). We remind the reader that for local or pseudo-local
V’s, this kind of result is a consequence of the Agmon-Kuroda method.

Proof of Theorem 2.1(d). Suppose to the contrary. Then we can find an
orthonormal family n with Hn En and E - Eq C U Sv By throwing out
finitely many qbn’s we can suppose that each E [a, b], an interval disjoint from
C t S,,. Thus Eta,,I(H),, =,,. Moreover, since F(]x] < R)(H+ i)- is
compact by (iii), and 0 weakly, we have that IIF(lxl R),II--Ig /

IlF(lx] < R)(H + i)-lll0 so that, by passing to a subsequence we can
suppose that []F(]x < n)ll-0. Thus the Enss Decomposition Principle
(Theorem 2.2) is applicable so - 2+ ,in- 2-q, out-0. Since ,, as an
eigenfunction, is orthogonal to Ran 2+ t Ran 2-, this is impossible. [-]

Results related to Theorem 2.1(d) will be of importance in analyzing n-body
systems since it will be important that scattering thresholds have a countable
closure. Our other result on bound states is:

THEOREM 3.1. Suppose that Ho obeys II[Ho,j>](Ho / i)-lll < cR - for
R > (e.g. if Ho is an elliptic polynomial) and that

f0ll V(Ho + i)-lF(Ixl > R )llaR <

and that D(H)= O(Ho). Let n E with E o(Ho). Then

f0llF(Ixl > R )eIIdR < . (3.1)

Proof. By the arguments in the fourth remark following Theorem 2.1, the
commutator estimate and L condition on V(Ho / i)-1F(Ix > R)II imply that

fll Vj>n(no- E)-I[dR < o, so running the argument back"

f0ll V(Ho E)-lF(Ixl > R )IIdR < c. (3.2)

For later purposes, we note that the only E-dependence in the estimate in (3.2)
comes from estimating (Ho E)-I(Ho-I-i) and so the integral in (3.2) is
uniformly bounded for (Eldist(E, o(Ho)) > e >0}. Now, since V is
Ho-operator bounded, H E implies that

-(/40- )-v
so that

IIr(Ixl > R),/,II < IIr(Ixl > R)(H0 E)-VII I1,11.
Thus (3.2) yields (3.1). [-i

Theorem 3.1 is of interest because it implies that "effective potentials" in
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multiparticle systems will obey (2.1)-type conditions (See [28, 29] for multi-
particle notation)"

THEOREM 3.2. Let ho -A on L2(Iq ’). For each i, j, < < j < N, suppose
that fllvij(ho + i)-F(Ixl > R)IIdR o. Let Ho be the operator on L2(Iq,(u-))
obtained by removing the center of mass from S’.(-2/i)-Ai and let
H Ho + , Vij where Vii % (R) according to the coordinate decomposition
(r rj, orthogonal coordinates). Let D be a cluster decomposition D

(C,..., CI), let a (/l, /l) be a family of bound states H(Ci)li Eili
and let P be the corresponding channel projection operator onto ((r*li) a

function of differences of cluster c.m.). Let Iz =E.-.i Vij be the intercluster
potential and let Rij difference between the center of masses of clusters and j.
Suppose that fllF(]’;[ > r)li(i)lldr < x where i is the internal coordinates of
C Then

IIF(IRo. > R, all i,j)Po,(Ho + i)-llolldR < m. (3.3)

Proof. It suffices to consider a single V/j term in Iz, say with C and
j C2 Then r/j RI2 + 1 + 2 with 1’ 2 internal coordinates of C and C2

respectively. Clearly, if IRIEI > R, either Irij[ > R/3 or 111 g/3 or > R/a,
so

F(IRkl > R all kl) < F Irijl > - + F [’ll > R+ F(I’2[ >/ff ) (3.4)

and therefore, we need only prove (3.3) with Iz replaced by V/j, and F replaced
by each possible F on the right of (3.4). The condition on IIF(l’l > r)*/;[I implies
that the F(lfjl > R/3)P terms are in L 1. Writing

RF(Ir/j.I > T
it suffices to prove that

and

o R dR < o (3.5)

R F( R>)P [r0-I < -6- ) dR < . (3.6)

(3.5) follows from the hypothesis on Vi(ho + i)-lF and the uniformity noted
after (3.2).
To prove (3.6), we note that rjl > R/3 (resp. < R/6) implies that either

IRl2[ > R/4 (resp. < R/5) or some [’[ > R/24 (resp. > R/60). The object in
(3.6) is thus dominated by a sum of 9 terms. 8 of them have a PF([j[ > 6R) or

F(Ij > R)P and so L norms by the hypothesis on F([’i! > r),/i. The ninth
term is F(IR12 > R/4)PF([R2 < R/5) which is zero since Rl2 commutes with
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Example 3.1. If V is a local potential, it is well-known that E o(Ho) implies
that liE(Ix > r)ll falls off exponentially in r for Hrt---E. But Theorem 3.1
applies to any V including non-local V’s. For example, pick any r/ D(Ho) and
E 4 (rl, H0rl). Let q (Ho E)/and

so that (H0 + V)rl E. The condition V(Ho- E)-F(Ix R)ll L is
equivalent to [lF(Ixl :> R)II L, so that there may bc no more falloff then
that guaranteed by Theorem 3,1.

Example 3.2. If V is a one dimensional potential which is asymptotically
a(a + l)Ixl - at infinity (a >0), then a solution of -"-Vp=0 will
asymptotically look like x at infinity. If I/2 < a < 3/2, then L- but
F(lx >: R)d: is not in L. This shows that Theorem 3.2 will not extend to general
bound states at thresholds. This may produce difficulties in the multiparticle
scattering theory.
Wc expect that Theorem 3.1 extends to any E not in Cv U Sv. For local

potentials, this is a result of Agmon-Kuroda theory.

4. Forms. The hypotheses of Theorem 2.1 require V to be a densely
defined operator. In many cases of physical or mathematical interest, V is only a
quadratic form. In this section, we want to describe modifications to
accommodate V’s which are only forms. We suppose that V is positive. One
easily accommodates relatively form bounded perturbations of H0 which are
negative.

THEOREM 4.1. Let Ho be a positive, vaguely elliptic operator. Let V be a
positive quadratic form so that for some N

(i) (k-v + 1)-V(k2V + 1)- is bounded, i.e., V is a relatively form bounded
perturbation of kaN.

(ii) H= Ho+ V is a closed quadratic form on Q(Ho) fq Q(V) with
Q(no) D(lkl2N) as form core.

(iii) V-- W* U
(iv) W(H + 1)- /2 is bounded.
(v) fWllV(k2 + )-’r(Ixl :> R)IIdR < o.

Then H obeys the conclusions of Theorem 2.1.

Remarks 1. V W* U is meant in the sense that U, W are operators from
D(Ikl) to so that

(q, Vq) ( Wq,, U) (4.1)
Given (i)-(v), (4.1) then easily extends to q Q(H) and q D(k2N) f) Q(H).

2. U, W may be maps from L to another Hilbert space K. By following with
a unitary map from K to L2, we can restate everything in terms of K-- L2. If we
take K 7= Lz, we can accommodate V--, W’ Ui.

3. Hypotheses (i) and (ii) imply that Co (k-space) is a form core for H. For,
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given Q(Ho)N D(Ikl"), the obvious Co (k-space) approximants converge
in H-form norm.

4. Hypothesis (ii) holds if V is a form bounded perturbation of H0 since then
Q(Ho) N Q(V) Q(H0) and it suffices that Q(H0) N D([k[2N) is a form core for
H0, which is obvious since C0 (k-space) is a core for H0.

5. If V is a closed form, then Q(Ho)t Q(V) is a closed form. The core
hypothesis does not seem to be automatic. In case H0

-A and V is in Loc,
C0 (x-space) and hence D(Ho) D(Ik[2N) is a form core; see e.g., [37].

Proof of Theorem 4.1. The proof exactly follows that of Theorem 2.1 with
two changes: (a) One must modify the proof of lemma 4 (b) Cook’s method
must be modified to accommodate forms following [35].

(a). The proof of lemma 4 estimated [(H- z)-1 (H0 z)-l](k2N -[- 1)-/as
(H-z)-V(Ho z)-l([kl2N+ 1)-]. If we use hypothesis (iv), it suffices to
show that U(Ho- z)-l(]k]2N + I)-/’>RI]---- 0 and this follows by the argument
in lemma 4. The formula

-1[(H- z)-- (Ho z)-’](lkl2N + l)

[w(. z)-, ],[ +

which is required follows from the extended version of (4.1).
(b). Let Q(s)= eime -is. Since

II(Q(t) Q(s))Oll2= (Q(t)q,, [Q(t) Q(s)]O) + (Q(s)O, Q(s) Q(t)]q,)

we need only show how to estimate (Q(t), [Q(t)- Q(s)]). Following [35], we
write for C (k-space)

(O(t), (Q(t)- Q(s)))=(e-itH, e-i(t-z)He-i")il
< Su,UvP WeiuHe-ivHd? 1] f/ll ge-ixHdpl[ dx" (4.2)

The estimates necessary to justify evaluating dido’(--) as (W-
from (4.1) are proven below.
By hypothesis, (H + 1)/2(Ikl2N + P(k)+ 1) -1 is bounded so that

IIWeiVne-iundpll < [IW(H + 1)-l/2l] I[(H + 1)l/2(Ikl2N + P(k)+

X II(k- + P(k) +

is bounded uniformly in v and u. Given (4.2): the proof of Theorem 2. l(a) and
Theorem 2.2 go through easily. [-’]

In applying this theorem, we must choose a factorization of V. This must be
done in such a way that W(H + 1) -1/2 is bounded. Since Q(H)= Q(Ho)
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Q(v), there are two natural ways of trying to do this; either bound
W(V + 1) 1/2 or V(H0 -[- 1)- 1/2. We do this for A + V in examples and 2
below. Note that the first possibility allows worse local singularities at the cost
of requiring more falloff.

Example 4.1. Suppose that V > O, f’[suPl,l>R(f,a.Ig(x)ldx)l/2ldR < oo

(e.g., (1 + Ixl)2+’V L, the function uniformly in Lloc)1 and let H0 --A. If
2N > ,, W(k2N + 1)- is bounded so long as W L,2 so (i) holds. (ii) holds
according to remark 5 above. We take W U IV[ 1/2. Then (iv) holds since
Q(H) c Q(V)= D(W). (v) holds as in Example 2.1.

Example 4.2. Suppose that e(k)> c(Iklz- 1), and that 0 < 1- (1 +
Ixl)’+’v tu where p-1 (1/2 + 2/h,) for h, > 4, p-1 if h, < 4 and
p- < if h, 4. Then one can factor V W* U with U le/2(1 / Ixl)-1-,
and W 117"12e/t. Then (1 + Ixl)l/’u tu so U obeys (v). By a Sobolev-type
estimate [40], W obeys W(no / 1)-1/ll < and so (iv) holds. (i) always holds
and (ii) will hold under suitable circumstances.
We summarize these two examples with

THEOREM 4.2. Let H -A + V (where V > O) be defined as a form sum.

Suppose V V + V2 with V 0 and
(a) sups(1 + Il)2+’[faol gl(X)ldx % .
(b) sups(1 + Il)l+[fol V2(x)[edx] <

withp-= 1/2 + l/t, (u > 2),p -1= (u 1) orp -1 < (t, 2). Then H obeys
the conclusions of Theorem 2.1.

This result should hold with p for general ,. The only previous results on
completeness only supposing Llloc conditions are those allowing purely local
singularities (see 6) and those appealing to the Kato-Birman theory and thus
faster falloff.

Example 4.3. One might think that a V which is singular (i.e., non-closable)
form cannot be factored but this is false. For example, let V--=/ be a finite
measure on (-oe, m). Then (1 A)-l/2/(1 A)-/2= A is bounded so we can
take U W A 1/2(1 A)1/2. Since V is -A-form bounded with relative bound
zero, (ii) is obvious as is (i). (iv) holds easily and (v) will hold if/ has Ix[ -2-’
falloff. Presumably Ix1-1-’ falloff can be accommodated. Higher dimensional
measures of the type treated by Davies [8] can be accommodated.

This example illustrates the fact that (iii) is only a formal way of writing (4.1)
for the W here is not closable as an operator, i.e., W* is not densely defined.

Example 4.4. Following Schechter [32, 33] and Combescure-Ginibre [6], one
can handle highly oscillatory potentials. For example if V= V W with
(1 + Ixl)l+’w L,2(R 3) (e.g., W(x)= (1 + Ixl)-2cos(elXl)), then -A + V obeys
all the conclusions of Theorem 2.1. For V W’ U + W’ U2 with W’ V,
g W, W’ (1 + ]xI)I+’w, g2 ----(1 + [X]) -l-e 7. (i), (ii), (V) are easy since

Ui2, 14/.2 are -A bounded. (iv) follows as in Example 2.1; see note added in
proof.



138 8AggV SIMON

{}5. Other eigenfunction expansions: solids, magnons. In this section we
want to consider what happens when H0 is not a pseudo-differential operator
but rather an operator with a distinct but still nice eigenfunction expansion. The
two cases we have in mind are solids, i.e., H0 -A + W with W periodic and
magnons, i.e., H0 is a finite difference operator on l(7’). We will see that
(generically) solids can be accommodated using a Bloch wave expansion in three
or fewer dimensions but that there are difficulties, perhaps soluable, in four or
more dimensions (see Example 5.3).
The precise nature of the Fourier eigenfunction expansion for the H0 of 2

enters at four technical points:
(I) Lemma 1, "the no stationary phase" argument yielding power falloff

outside of the classical region.
(II) The existence of mapsf which sum up to so thatf, is localized near a

while f doesn’t destroy much strict localization in the eigenfunction transform.
(III) Lemma 2, the result bounding g(k)f(x).
(IV) Lemma 3-5, in proving Ilia(H)- #P(Ho)]j>RE(,b)(H)[[ 0.
The fourth problem is easily solved if we don’t allow extremely singular V’s

and require that [[V(H+i)-F(lx > R)[[=h(R) is in LL. Then
[[[(H- z)-- (Ho z)-]F(Ix[ > R)[[-0 so, as in lemma 4, [[[(H)- (I)(Ho)
F(Ix > R)I 0 for any q) in Co(). The third problem is solved by using

LEMMA 2’. Let {f}z be a family of positive operators on so that
s-lim f 1. Let g(),..., g(m) be a finite number of bounded operators and for
each a, let g be one of g(),..., g(m). Then

Th E gofh
is a bounded operator.

Proof. Let A (alp =--gi)). Then

IlThl < Y IIg(i)ll Lh < Ilg(i)ll Ihll
i= aA i=

since Ysaf < 1. [-i

In section 2, we picked g which were different for infinitely many a’s but this
was a luxury which was not really necessary. What was important was that the
velocities in supp got have a gap in some cone about -a. We arranged this by
choosing the cone, C of open angle 45 about -a, but clearly we could have
used a finite number of cones, K,..., K, of opening angle 60 and been sure
that one contained C. In this way, we could have arranged to have only finitely
many g<i)’s and this is what we will do below.

This reduces the difficulties to a detailed consideration of problems (I) and
(II).

Example 5.1. (One Dimensional Solids) The necessary "stationary phase"
analysis of lemma has already been noted by Davies-Simon [10]; we repeat
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their argument since we need the notation for overcoming (II): Let W be a
periodic function on (-oo, oo); say W(x + 1)= W(x) and suppose f] W(x)ldx
< oo. Let Ho =-d2/dx2+ W. Then, [29], there exist functions, ,/,(x, k),
-oo < x oo, -rr < k < r, and e(k), with the following properties;

(a) .(x, k)= eik;u.(x, k) with u.(x + 1, k)= u.(x, k),
(b) %(k) and f(x)u.(x, k) (for f e Cf) are real analytic in k for k

and (-rr, O) (fu. analytic as an L2-valued function); they are continuous up to
the boundary points O, +_

(c) el(k) < e2(k) < < e.(k) < 00, with strict inequality for k : O,
_

r.

e.(k)=%(-k).
(d) for g e L’ Cq L2, gt,(k)= f,1,,,(x, k)g(x)dk obeys Y, f’-l gtn(k)[2dk
(e) For a, a, a, Co[( rr, 0) U (0, rr)],

ab(i) E fo,,(x, k)an(k)dk

obeys [[ab[[22 E,, f:,[ gn(k)[2dk.
(f) b and * extend to unitary operators between L2(-oo, o) and
o L2(_ r, r) and are inverse to one another
(g) For g D(Ho):

(Hog)t,(k) (,(k)
We define the critical values of Ho to be the values (,(0), %(+_ rr) and the value
(,(ko) for any n, k0 with (d#/dk)(ko)= O. Since the (, are analytic and
as --> oo, the critical values are discrete in (-oc, oc), i.e., their only possible
limit point is o0. (We note that generically, the (, are all analytic on [-
with end points associated; then by symmetry (0%/Ok)(ko)= 0 for ko O, _+

so that the ,(0), (,(+_ rr) are critical values in the usual sense. However, it can
happen that (, continues smoothly through 0 and continues into %+ in such a
way that (O(,/Ok)(O) O. In this case one can, by giving some additional
arguments, remove this ((0) from the critical values.)
Now fix n and an interval [a, b] in (0, rr) or (-r, O) containing no critical

points for (,,. Let ( be an open set containing the set of velocities
(19e.,,/19k k [a, b]). Then for r/ C(a, b) and 4,(x)= fa rl(k)d?n(X, k)dk and
x/tqt

t -I1(2 C,(1 / Ixl / Itl) 1-

(5.1) follows by writing
b

i%(k)t + ikxdk(e-’tH)(X) q(k)u,,(x, k)e

using e -,(k)t+k* ([ix- it(Oe,,/3k)]O/Ok}te -i’(k)t+ik and integrating by
parts. Since i}u/3k is periodic in x, it has no growth in x. The fact that the
local L2-norm occurs on the left of (5.1) follows from the fact that we only
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stated analyticity of u(x, k) in local L2-sense. By a little more work one can
prove for x/t (

I(e-itno)(x)l < RHS of (5.1) (5.1’)

for ()/Ox)u(x, k) is also locally in L2 and periodic which yields L bounds on
u(x, k). This solves problem (I).
To solve problem (II), we first note that it isn’t necessary to define x-space

localization operators for all ’s at once. We need only consider of the above
form fb l(k)’(x, k)dk. Let j be a function on the circle (-r, r;) which is
positive definite as a function on the group, of very small support, and with a
normalization condition given below. Letjm(k) elmS’(k) (m Z) which is also
positive definite. Define

Am (jm * ?)(k)’(x, k)dk.

A, is a positive operator since jm is positive definite and (t,Amt)
f_rl(k)(jm * )(k)dk. Moreover, using (5.1’) and translation covariance, we

see that for x- m/ f ("

I[e-itH(Amt)](X)[ < Cz(1 / [x- m + Itl)-’lll12 (5.2)

so long as supp r/+ suppj C [a, b] (sum mod 2r). In addition, if j is normalized
so that

[feim’(k)dk]
then Am (to obtain this result expand ,/ in a Fourier series). The Am’S
solve Problem (II).
We can now prove"

THEOREM 5.1. Let W, V be functions on (-, c) with W(x + 1)= W(x),
fol W(x)ldx < o and sup,, fnn+ l[(1 / Ixl)’ +’1 V(x)l?dx < Let H
-d2/dx + V + W and Ho dZ/dx2 / W. Then the conclusions f Theorem 2.1
hoM.

Proof. Existence of --- follows from (5.1) and the argument following lemma
in Section 2. The other conclusions follow if we can prove an Enss

decomposition principle since F(Ix < n)(H + i)- is compact on account of
Q(H) Q(-da/dx2). If [a, b] contains no critical values, we can decompose
any Eta, bl(H0) as a finite sum of terms of the form f ,l’(k)n(x, k)dk.
Using (5.1), (5.2) and the Am’S we can now mimic the proof of theorem 2.1. I-’1

Example 5.2. (Quasi-1 dimensional periodic systems). Let W be periodic on
R with independent periods a,...,av. Here we want to consider
--A + W + F where F is periodic under translation by a, aa a_ with
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falloff in the a direction. This is somewhat artificial but the analysis will be
useful in the next section to analyze "half-solids" and dislocations in solids. The
point is that one can make direct integral decompositions H0-----A + W
---f[0, 2r)-, ho(O)dO, H H0 + V ft0*, 2r)-’ h(O)dO where ho(O ) is -A + W on a
one dimensional tube with 0-dependent boundary conditions on the boundary
of the tube; see [10]. The analysis of Example 5.1 goes over without any real
change to study ho(O ) and h(O) for fixed 0. ho(O ) still has a nice eigenfunction
expansion. We single out as singular points those points where some eigenvalue
%(k, 0) is degenerate and the degeneracy is removed by varying k. Again the
singular and critical values are discrete. The only real change is that (5.1’) fails
in general; rather L2 can be replaced by a suitable Lp. The result is:

THEOREM 5.2. Let V, W be functions which are uniformly locally L where
p 2 (, < 3), p > 2 (, 4) or p v/2. Suppose that a 1,... a, is a basis for Iq

and that both V and W are periodic under translation by a1,..., a,_ i. Suppose
moreover that W is periodic under a, and (1 + Ix. a,[) +" V is uniformly locally Le.
Let ho(O ), h(O) be the fibers of the direct integral decomposition of Ho A + W
and H -A + V + W induced by the translation symmetry under a1,..., a,_ i.

Then ho(O ), h(O) obey the conclusions of Theorem 2.1 for each fixed O.

Example 5.3. (u-dimensional solids) Let W be periodic on Iq with
independent periods al,..., a. We want to discuss H -A + W + V where
V has falloff in all directions. We take H0 -A + Wo By a standard analysis
[29], H0 has an eigenfunction expansion similar to that in the one dimensional
case; namely, for k B (the Brillouin zone, a suitable set in Iq"), there are
eigenvalues e,(k) and functions 6n(X, k) in Lo so that

(a) q,(x, k) eik:CUn(X, k) with u,(x + a2, k) u(x, k); j 1, ,.
(b) g,(k) and f(x)u, (x, k) (for f C0) are real analytic in the neighborhood

of any ko in B for which %(k0) 4: ej(ko) (j 4: n).
(c) e(k)< ./" <e:(k)< .. o.

(d) For g , gt,,(k)= fqnfC, )g(x)dx obeys ,, fa[ gtn(k)12dk =l[ gl[2
(e) For 01, O c(n), olb(x)-" Zn f q,,(x, k)andk obeys Ilabll
n faltxn(k)l2dk"
(f) b and * extend to unitaries between LZ(Iq") and ) LZ(B) and are inverse

to one another
(g) For g D(H0):

(Hog)*,,(k) e,,(k) g(k).

We define a singular value of Ho to be the value en(ko) at a point ko with a
en(ko) degenerate eigenvalue i.e., e,(ko)= ej(ko) and a critical value is the value
g,(ko) at a point with Ve,(ko)= 0. As in Remark 6 following theorem 2.1, the
only possible limit points for C lie in S, so that C, tO S being countable is
equivalent to S being countable. By following the arguments in Example 5.1,
one immediately sees that
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THEOREM 5.3. Let W be a function which is uniformly local Lp where p 2
(ux<3), p>2 (u=4) or p=u/2 and where W is periodic in n independent
directions. Suppose that (1 + Ix[)l+’v L + L and moreover that S the
singular values for -A + W has countable closure. Then the conclusions of
Theorem 2.1 holdfor H =-A + V + W, Ho =-A + W.

The key difference from the one dimensional case is that we do not know that
S is countable in case , 4: 1. Indeed, we expect that "usually" S contains
whole intervals if , > 4 while if u < 3, S will "usually" be discrete. For, Wigner
and von Neumann [42] have proven that the variety of n n self-adjoint
matrices with a degenerate eigenvalue has codimension 3. Thus, when u < 3, the
singular points are to be expected to be discrete but for u > 4, whole "curves"
will occur on which e need not be constant. One can ask whether the
degeneracies that occur at singular points are really serious or whether we might
accommodate them with more effort. Typically, the form of band function that
worries us is of the form:

(5.3)

The occurrence of the two dimensional square root means that the behavior of

f eitk)t-ikx,l(k)dk- u(x, t) will be similar to that of the two dimensional wave
equation rather than what we have when e is smooth; in that case, u(0, t) only
falls off like a power of (namely t-1) so that any Cook-type method is likely to
fail when a band function like (5.3) is present. Of course, a trace class method
can still work (and will if V= O(]x[--)). Notice that while (5.3) is
three-dimensional, the Wigner-von Neumann result says that such functions are
very unlikely as band-functions until u > 4.

Example 5.4. (magnons) The framework for magnon scattering is given in
[39, 28]. The basic operators are now finite difference operators on/2(7 ’). Using
the appropriate complex exponentials, it is easy to make a "stationary phase
analysis" and prove an analog of lemma 1; indeed, this is done in [28] among
other places. For the two magnon sector, it is easy to obtain an analog of
Theorem 2.1, indeed, one can add longer range potentials than the natural one
that arises from the usual nearest neighbor coupling. Since most of these
conclusions (except for absence of singular spectrum) are known [28], we will
give no details except to note the potentiality for treating n-magnon scattering
once the Schr6dinger case is completed.

6. The Kupsch-Sandhas method: local singularities, the half solid. In this
section, we wish to discuss situations that occur when some bounded region of
configuration space is badly behaved due to obstacles or severe local
singularities of the potential. Cook’s method in this case was discussed by
Kupsch-Sandhas [24] whose method we combine with that of Enss. In the
discussion below, J is typically multiplication by a function which is smooth,
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identically one near infinity and zero on the bad set. Suppose that Ho is a
constant coefficient pseudo-differential operator and that for some self-adjoint
H

JF(k K) C D(H) (6.1)

for any compact set K in k-space. Then one can define

Q HJ- JHo (6.2)

as an operator from LJ K Ran F(k K) to L2. While one could presumably
(with only a little more effort) handle cases where Q is a form or where only
Q(k2N+ 1) -1 is bounded, the discussion is simpler if we assume relative
boundedness:

THEOREM 6.1.
operator and J a bounded operator so that

(a) Jf(Ix > R)= f(lx > R) for all large R.
(b) F(Ixl < R)(H / i)- is compact for each R < .
(c) (6.1) holds.
(d) For each z

_
o(H0): the function h(R)=_ Q(Ho-

given by (6.2)obeys

Let Ho P(k) with P vaguely elliptic. Let H be a self-adjoint

z)- ’F(lxl R )II with Q

h(0) < oz (6.3)

foCh(R)dR < . (6.4)

Then the conclusions of Theorem 2.1 hoM.

Proof. We will indicate only the changes needed in the scheme of section 2.
By Cook’s argument and lemma (of section 2), one easily sees that

s-lim e itHje itH fi +-

exists in just the way we proved Theorem 2.1(a). Writing

(1- J)(Ho + i)-= (1- J)F([x < R )(Ho + i)-’

+ (1 J)F(Ix > R)(Ho + i)-1
and using the fact that, by hypothesis (a), the second term is zero for R large, we
see that (1 J)(Ho + 1) -1 is compact. By a standard approximation argument
[281,

s-lim eitH(1 J)e -itn= 0
t.--> o

so f +- exist and equal f-+.
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The proof is completed if we describe the changes necessary in the proof of
the Enss decomposition principle since once this holds, all three conclusions of
the theorem follow easily. The main change is in Lemmas 3-5 of section 2. We
first claim that for as in lemma 4:

a(R) =_ [[[(,)J Job(no)IF(Ix > R)I[0 (6.5)

as R z. As in the proof of that lemma, one need only consider the case
(x)--(x z)- with z near _+ i. But in that case

a(R ) < II(n- z)-l llQ(no- z)-lF(Ixl
goes to zero by (6.4).
Now let , obey the hypotheses of Theorem 2.2. Let be the function used in

the proof of Theorem 2.2. Then, by (6.5) and hypothesis (a),

Moreover, since O(H0) is convolution with a fixed function in

Since, by hypothesis (a), (1 J)F(lxl n/2)0, we see that

II(1 J)O(Ho)F(lxl n)Onll 0.

Using these estimates and liE(Ix < n)0ll 0, we see that

Given this, the proof follows that in Theorem 2.2 except that in estimating
( 1)0,, one uses and Cook’s argument for eitHJe -itH.

In the example below, we obtain a variety of results on the absence of singular
spectrum. The only method of proof previously available was the "twisting
trick" of Davies-Simon 10].

Examp& 6.1. (Severe local singularities) We can recover the results of a
variety of authors [7, 12, 25, 34] on completeness and absence of singular
spectrum [10] for - + V where V is allowed to have severe local singularities.
We suppose that V V+ V_ where V+ is locally L away from some closed
set K of measure zero and positive and where V_ is -A-form bounded with
relative bound strictly less than one. Moreover, we suppose that F(IxI R0)v
obeys the hypothesis in Enss’ original paper for some R0 i.e., W F([x[ Ro)V
obeys (2.1) with N 1. Taking J to be multiplication by a function which is
smooth and equal to 0 (resp. 1) for Ixl < (3/2)R0 (resp. 2R0), it is easy to
verify the hypotheses for Theorem 6.1 for H, the form sum of -b and V.



PHASE SPACE ANALYSIS OF SIMPLE SCATTERING SYSTEMS 145

Example 6.2. (Schr6dinger obstacle scattering) Let f2 be a closed bounded
set and let H be some self-adjoint extension of -A on FI \2. Pick any basis, ,... for L2() and let H H n(9, .) on L2(F:{’’) L2()
LE(lq\). Pick J to be a multiplication operator obeying J C and J 0
on a neighborhood of f]. All the hypotheses of Theorem 6.1 hold trivially with
one exception" hypotheses (b) will hold or not depending on the boundary
condition in H For Dirichlet boundary conditions, it is automatic; for
Neumann boundary conditions, it will hold if, for example, f obeys the segment
condition [11]. In any event, if it holds, then H as an operator on LE(lq’\) will
have empty singular spectrum and only zero as a possible accumulation point of
eigenvalues (in this generality, this is a result of [10]). There is also a
completeness result.

Example 6.3. (Accoustical scattering from obstacles; Example 1.2) Given
Kato’s analysis [23], the results of Example 6.2 immediately recover
completeness results for acoustical scattering, i.e., for the equation Utt --HIU.
One also obviously gets the absence of singular spectrum for the generator.
These results can also be obtained directly by combining the methods of
Example 2.4 and Theorem 6.1.

Example 6.4. (Half-Solid=Example 1.5). For one dimensional and
quasi-one dimensional problems, one can use the Kupsch-Sandhas "J-trick"
with J’s that are zero on a half-line. Consider, for example a bounded function
V periodic on (-oe, oe) and let W be equal to V (resp. 0) for x > 0 (resp. < 0).
Let H-- -dE/dx2 + W, Ho(O -dE/dx2 and Ho(0 -d:Z/dx:z + V. Then one
can show (recovering results of [10]) that (b), (d), (e) of Theorem 2.1 hold and

lr--- s-lim eitHj -itH(t’r)

exist, where Jt is multiplication by a smooth function which is 0 (resp. 1) for
x>l (resp. x<-l) andJ,=l-Jz.

Ran f+ @ Ran fir+ Ran f2r+ @ Ran

absolutely continuous space for H. (c’)

To do this, one need only follow the proof of Theorem 2.1 with the following
changes" (i) Rather than deal with q)(H) (Ho) we deal with (H) ((Ho<O)
Jt + P(Hor))Jr). (ii) When analyzing 9n on make a further breakup into left and
right. (iii) Use Example 5.1 to analyze ’H0O. With no additional effort, one can
allow V to have local singularities and add a "short range," i.e., Ix[ --’ and
locally singular perturbation to W. By using Example 5.2 one can handle the
fibers of a potential which is periodic in z,- directions and "half-periodic" in
the last direction, e.g., a potential which is a periodic function times the
characteristic function of a half-space {xlx.q > 0} (so long as q has "rational
indices," i.e., {x x.q 0} fq {periods for V} is a u- dimensional lattice). Or
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the potential which is two different periodic functions on the left and right of the
plane x.q 0 can be treated. Such a potential can be used to describe scattering
from lattice dislocations in solids.

7. Magnetic fields. In this section, we will describe scattering in a constant
magnetic field, a subject recently analyzed by Avron et al. [3], using both trace
class methods and the Agmon-Kuroda method. Roughly speaking, we will
recover the results of [3] with two differences:

(a) In their trace class theory, [3] allows form perturbation V’s; we could do
this, but for simplicity, do not.

(b) In the azimuthally symmetric case, we will allow considerable growth in
the direction perpendicular to the field; in [3] the trace class theory but not the
Agmon-Kuroda theory is done in this generality so that our results on absence
of singular spectrum are new in this situation.

Throughout this section, we fix a number B > 0 and let

Y + O.y 2
x + -z (7.1)

on L2(lq 3), which is the Hamiltonian of a particle of charge in a magnetic field
(0, 0, B). Notice that in terms of the operators L (1/i)(y(3/Ox) x(O/Oy))
and Hos -(2/x2) ( 2/y2) + (B2/4)(x2 + y), we can write

2Ho + Hos BL (7.2)
Z2

Viewed as operators on L2(2), Hos and L can be simultaneously
diagonalized: There is a complete set of functions f,,,m(X,y) such that
(m O, +_ 1,..., n O, 1,... ) Lzfn, mfn, Hoscfn, B(2n + Iml / )
fn, m" Moreover, fn, m(X,y) is a polynomial in x and y times exp[-(B/4)(x2+
y2)]. These results are proven in 3 of [3]. Thus, we can define an eigenfunction
transform:

n, m(k) (2r) ’/ J e -ikz L, m(x’ Y) (-)dF (7.3)

so that

and

f lq’(- )lZd r E f dkl@,,,m(k)l :z (7.4)

( e itHd?)(-) Z L, (x, .)2)f exp(- i{ (k2 + En, )t AZ })@n, m(k)dk

(7.5)
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where

E,, m B(2n + ([m[- m) + 1). (7.6)

Our goal is to compare H0 + V and H0. Our results are much stronger in case V
is azimuthally symmetric, i.e., commutes with rotations in the x,), plane; for, in
that case, F(lz < a)(H + i)-IF(L m) is compact, so the RAGE theorem
implies that a wave function in cont must make large excursions in z.

TrIEOREM 7.1. Let Ho be given by (7.1). Let V be a symmetric operator
obeying:

(1) V commutes with rotations about the z axis.
(2) Ve-CI-IoF(L m) is bounded for some c > 0 and each m.
(3) Ho + V F(L m) is boundedfrom below on Ran(e- Cqo) for each fixed m

and the corresponding quadratic form closure defines an operator H with

Q(H F(L m)) c Q(HoF(Lz m)). (7.7)

(4) Let h(R ) Ve-CF(Izl > R )II, Then

foh(R )dR < o. (7.8)

Then the conclusions of Theorem 2.1 hold with two changes: in (d) C U S must be
replaced by ( E., m ) o= 0 and "limit points of the point spectrum of H" bv "limit
points of the point spectrum of H F(L m)" and (c) reads

OCss(H F(L, m))= Oess(HoF(L m))= [(-m + Iml + 1)B, ].

Proof. In this proof, fix m and use H, H0 to stand for HF(L m),
HoF(L m). As in the proof of Theorem 2.1, we need only prove: (1) the
Enss decomposition principle where F(lxl < n) is replaced by F([z[ < n) (i.e.,
vector x replaced by its component parallel to B) and S U C by (En, m)=0" (2)
Compactness of F(L m)F(lzl < n)(H + i)-1. The second fact follows from
(7.7) and the compactness F(L m)F(Iz < n)(Ho + 1)-1/2 (compactness in the
x, y directions comes from the discreteness of the spectrum of Hose).

In the proof of the Enss decomposition principle, we must replace lemma of
2 by lemma below. Otherwise the proof is directly patterned on that in
section 2, except that only the z-direction is singled out: the decomposition into
cubes is replaced by a decomposition into slabs: a < Izl < / 1. We use
the fact that Ho-(-d2/dz2) is quantized so that if Eu(Ho)q=q and
dist(f], (En, m)no) d, then supp n,m(k) C (k [k2 > d} for all n. Lemma 2 is
not needed since only two directions are involved; in Lemma 3, we deal with
[f(Hot(L m)), gR(z)] and [f(k), gR(z)]. (k is the k of (7.3), i.e., (1/i)(O/Oz).)
Moreover, Ikl2u + is replaced by e -cI4o in lemma 4. Finally, in Lemma 5 where
hypothesis (iii) of "regular perturbation" is used, we use (7.7) which implies that
nd/2E(a,b)(n) is bounded (and (H0 + 1) < C,e -Io + e). [
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LEMMA 1. Let be a function with Ld? m and supp n,m(k) [(1/2)a,
(1/2)fl]for all n. Then, for z_[zo + (a 6)t, zo + (fl + 6)t]

f l(e-itl4)(x, y, z)]2dx dy]
(7.9)

Proof. By (7.5):

)2
1/2

LHS of (7.9)= [n (fexp(--i(k2, kz)),, (k)

and by (7.3), (7.4):

II(1 / z2)M/2dPll2= n 1- n,m
L2(dk)

so that (7.9) follows from (2.5).

Example 7.1. (Local potentials) Using the explicit formula for the kernel of
the operation e -too, one easily shows that for large enough, (1- dZ/dT2)
e-OnV4e-Cl-Z(Lz=m) is bounded. Thus, for local potentials, h(R)
< suPll> where

a e(1-OB2/21 g(o z)12dx dy dz
<z<a+l

For a local potential (7.7) will hold if V V + V2 with V -c02- d where
c < B 2//4 and V2 in L2 + L. Thus, V can obey the hypotheses of Theorem 7.1
and still have considerable growth in the p direction, e.g., if 0 < V(O, z) < C(1 +

In order to treat the non-azimuthally symmetric case we need weak
information on the changes of the x, y support of e-itUo. Since H0 is quadratic
in the velocities, one might hope that some kind of classical allowed trajectories
lemma like Lemma extends to the x, y directions. The problem is that the
components of the velocity (namely v i[Ho, x] and vy i[Ho,y]) do not
commute so one cannot talk about the "values" of v, vy. However, one can talk

2+ 2about v v. We have:

LMMa 2. Fix Oo
2 and let O(x, y, z) (x, y). Fix D > 0 and M 2. Let

be any vector with (, H) < D(, ). Then, for aH and R

le-itn12dx dy dz < C (1 + R)-2MII(1 + (o- Oo) ) 112 (7.10)
ool > R

Remark. At first sight, the lack of dependence seems surprising in (7.10).
But the projections of the classical orbits in x, y are periodic in time and so is
the LHS of (7.10).
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Proof. Write Ho o- d2/dz2. Then since d2/dz2 commutes with/o and
F(I#- #01 > R,), Ho in the (LHS) of (7.10) can be replaced by Ho. Since the
spectrum of Ho lies in (Bn), we see that the left side of (7.10) is periodic in t. We
therefore need only prove (7.10) for 0 < < 2r/B. Moreover (see [4]), there are
operators U(a) (not the usual translations) commuting with Ho so that
U(a)pU(a)-1 10 .{_ a so that we can take Po 0 in (7.10). Next notice that

(1 + R )2Mflp[/> RI1 f (1 + IPl)TM

Thus, (7.10) is reduced to showing
(, H) < O(, ), we have that

that, for 0< t<2r/B

(oh, [1 + (p2(t))M]q) < Ct,o (q’, (1 +

and for

(7.11)

where p(t) e / itHpe itH.
We prove (7.11) using ideas of Radin-Simon [26]. Clearly, it suffices to show

that

t=0
< C’(O, (1 + (7.12)

for then if the left side of (7.11) is f(t), we have df/dt < c’f whence
f(t) < f(O)exp(c’t). To prove (7.12), we use: (i) [tSj, Oi] -2i6/j. (ii) b2 commutes
with H0 and is less than 4H0 so that (, (b2)Mq) < 4MD II,/,112, (iii) The Schwartz
inequality repeatedly. For example, if M 2"

((104)") (/. 10102) ._ (10. /102) d" 2 others

4(/5.002) + b(102) (using (i) above)

4(05" 10)2)1/2 104)1/2 " b(102)

2((16" 10)2) + 2(104) + b(102)

< 2(tSt51010) + 2(104) + b’(102}

3(104) d- b’(10z)

(using (iii))

(using (i))

< C’(, (1 + 02)2q) (using (ii)). I"1

Remark. Using the Frohlich-Lieb method [15] of proving chessboard
estimates for lattices of length M 4:2n, one can probably extend this result to
M2n.
We can now prove a result for non-azimuthally symmetric 1/.
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THEOREM 7.2. Let Ho be given by (7.1). Let V be a symmetric operator obeying
(1) Vq]l < allHoq’ll + bll’/’ll
(2) h(R)=-- V(Ho + i)-F(Izl > R)II is in L 1(0,
(3) I(R )=-- V(Ho + i)-lF(p > R)II goes to zero as R .

Then all the conclusions of Theorem 2.1 holdfor H Ho + V except that C t S is

replaced by ((2k + 1)B )k=O in (d) and (e) reads Oess(H) Oess(H0) [B, c).

Proof. Once again, we need only follow the proof of Theorem 2.1. Now
F(lzl < n)F(Ipl < n)(no / i)-’ is compact, so in the Enss decomposition
principle (a) becomes IIF(Izl < n)F(lpl < n)qll0 and in (b), Sv Cv is
replaced by ((2k + 1)B ). We still decompose into slabs in z in forming
The only new feature is in the proof that

ll Ve-itHod-n, out[I tit--> 0 (7.13)

as n--> (and the analog for n, in)" Let us denote the integrand in (7.13) as
G,(t). We have that

a,,(t) < V(no + i)-F(z > at- )11 II(n0 / i)n, out[[
+ (a + b)llF(z < at- fl)e-imo(no + i)n, outl["

By using lemma of this section and choosing a suitably, we obtain an upper
bound uniform in n, on Gn(t) which is in L l(dt) so (7.13) holds if we can show
that

To prove this, we write

Gn(t) 0 as n---> , fixed. (7.14)

VP_.-itHcb I + II + III + IVrn, out

where q’n,,out is the contribution from the slab
construction of On, out"

I= g(Ho+ i) 1f ]z[ > e-itH(Ho + i)l)n, out

n HII= V(Ho+ i) ’F([z[<)F([pl>)
Ill= V(Ho+i) 1F(IzI<:)F(O]<:)
IV= V(Ho+ i) IF z <- F IPl <-

a<z<a+l in the

e -itH(Ho + i)dPn out

e -iti-io(Ho + i) ?,, , out

Il>n

e -itH(n0 q- i) dpn , out"

]]Ill--->0 since it can be bounded by const, h(n/2), IIIIIl0 since it can be
bounded by const, l(n/2). IIIIIll goes to zero in the usual way by controlling
each term using lemma and getting a 1/(11 / 1)m falloff for fixed. To show
that IIIVII goes to zero, we introduce a smooth partition of unity Y,, X,(O) in the
x, y plane, with X/(P) centered in the square close/3 in Z 2. Using lemma 2 of
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this section, the fl contribution is bounded for fl[ (3/4)n by const.(1 +
[fll)-u and the sum of the terms for fll (3/4)n is controlled by the
hypothesis F(Iz n)f(ll n)-0.

8. Electric fields. In this section, we want to consider scattering for the
pair (H, Ho) with H H0 + V and

Ho-- -A-x (8.1)
with x the first component of x in R . H0 is the energy of a particle of charge
in a constant electric field E=(1, 0,..., 0). Existence of f-+(H, H0) was
considered by Avron-Herbst [2] and Veselic-Weidmann [41] exploting Cook’s
method. Using the Agmon-Kuroda method and special properties of Airy
functions, Herbst [17] proved completeness and the absence of singular
spectrum. We will recover these results here with the Enss method.
We begin by recalling two results from Avron-Herbst:

LEMMA 1. ([2]) Ho is essentially self-adjoint on (Pl) and

e -itH e-it3/3eitXte-itpxe -i(p2t + t2p) (8.2)
where p i- 10 / 0X andp A p2.

Proof. ([2]) One easily checks that on "
Ho e-it,/3(p2x xl)eie/3

(since x iO/Op). The self-adjointness follows, and

e itHo e ipte ip3/3e iX,te ip3/3

e-ipteiXlte-i(p+t)3/3e ip3/3 (8.2). ["]

(8.2) is the basic formula used by [2] in their analysis of Ve-itnq[I and it will
also be used by us in a similar way. It says that except for phase factors
(e-itn) (x) is obtained by first translating by units to the right and then
applying e / iAt.

LEMMA 2. (essentially in [2]) Suppose that V V + V2 with V2 bounded, VI,
-A-bounded with relative bound a and VlX -A-bounded. Then V is Ho-bounded
with relative bound a.

Proof. ([2]) Write (with T A).

VI(Ho + ib)-’= Vl(T + ib) -l + Vl(T + ib)-lxl(Ho + ib) -1

VI(T + ib) -1 + VlXl(T + ib)-I(H0 -+ ib) -I

+ 2iV,(T + ib)-’p(T + ib)-(Ho + ib) -.
Using the fact that A-bound of B limb__,ollB(A + ib)-l[, the result follows.
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We will also need the following result of Herbst [17]:

LEMMA 3. ([17]) Let p (1 + x)l/a. Then for any real, p-Rp= RF with
F bounded. (R =(H0+ i)-). In particular, if Vp is Ho-bounded, then
F(H0 + i)- lp (= FpRF) is bounded.

Proof. See Lemma 2.2 of [17]. [--!

Lemmas 2 and 3 are mainly needed to identify which potentials obey the
hypotheses of the theorems below. We begin with the one dimensional case
which is somewhat simpler than the general case.

THEOREM 8.1. Let Ho (- da/dxa) x on La( , ). Let V be symmetric
and Ho-bounded with relative bound less than and let H Ho + V. Let

h(R ) V(Ho + i)-1F(x ) g)ll (8.3)
Suppose that

foh(R 2)dR < c. (8.4)

Then (H, Ho) obey all the conclusions of Theorem 2.1 with S U C replaced by
in (d) and Oess(H0)= (-o,

Remarks. Note x > R, not Ixl > R in (8.3) and h(R a) not h(R) in (8.4). This
is because e -itH pushes one to + m (never -o) and as a, not t.

Example 8.1. By lemmas 2 and 3, if V is a function and (1 + xa)l/a+’v is
uniformly in Ll2oc, then the hypotheses of the theorem hold. Actually, as noted
by Herbst, (1 + xa)/a+’v need only lie in Lloc on (0, c) and one only needs
that (1 + x2)-l/4+’V lie in L12oc on (-, ).

Example 8.2. By combining the ideas in the proof of Theorem 8.1 and the
ideas of Section 6, one can analyze H =-d2/dxa- Ix + V. There are now
wave operators 2tr(H, H’r) with H -dEj/dx2 x and H -dE/dxa + x.

ft+ and 2+ have orthogonal ranges and span the orthogonal complement of the
eigenvectors for H.

In trying to follow the scheme of Section 2, one difficulty immediately arises.
Suppose that a state has more or less definite energy: H E0 As - , x goes
to , so p2__ H / x gets large. Thus, lemma in 2 will not suffice since it
deals with functions supported on a compact set in p-space. We thus prove:

LEMMA 4. (1-dimension) Suppose that L2 and has support in (-1,
(resp. (- , 1)). Then for all M, and all > 0 (resp. < 0):

I(e-im)(x)l < CM(1 / Ix- a- Xcrit(t)l / Itl)

1- (1 +(x--a)2)M/2dp
dx2 2

in the region x < a + Xerit(t) a + 2- 3It I.
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Proof. Suppose that a =0. Let 9(x, t)= eit3/3e-iXt(e-itnod?)(x). Then, by
(8.2):

e(x, t)= (2r)-’/Zfexp(-if(k, x, t)),(k) (8.5)

where f(k, x, t) kZt + k(t2- x). In the region x < xit, k > 1, > 0 (resp.
x < xi, k < 1, < 0), f’= Of/Ok is non-vanishing; indeed in that region"

f’= 2kt + 12- x > -Zig + 2- X [Xcrit- X " Ill.
Thus, by (8.5)

f exp(- if(k, t)) dk.,(, t) (21-1/ ,
When we integrate by parts, some derivatives of f’ enter. Using

m (2t)nn!
1)"Okm f, (f,)n+, (

we see that in the region in question wheref’ > Itl, IOn/Okm(1/f’)l < clf’l-’.
Thus +---(1 + )Mq obeys

I(x, t)l < C -a=0

< C’ E + k2) - (by Schwarz)
a=O 2

<C" (l+k2) 1--
2

This proves the lemma for a 0. If U, is the conventional translation by a units
UHU,,-= H + a so that Ue-iI-Iu-= e-iae-im. Thus, the result for a 0
implies the result for a 0. [
The next lemma is related to results of Herbst-Simon [18] and uses some of

their ideas in its proof:

LEMMA 5. (u-dimensions) (a) Suppose that g is C oo with all derivatives in L oo

and suppose that supp g c {x Ix, < 0). Then pjg(Ho + i)-’ is a bounded oper-
ator.

(b) If g is as defined in (a), then Ix,l’/2g(no / i)-’ is bounded.
(c) In one dimension, F(x, < a)(Ho+ i)-’ is compact for an), a. In ,

dimensions, F(x, < a)F(lx+/-l < b)(Ho + i)- is compact where X_L X-

(x, 0,..., 0).
(d) If g C has support in {x Ix, < 0}, then pZg(Ho + i)-’ is bounded.
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Proof. (a) Let q (H0 + i) which is dense. We need only show, for such q,
that IIPg(no / i)-,/,11 < D II,/,11. Since -gx g > O, we have that

Z IIpjg(no + i)-11z < ((no + i)-1, gHog(Ho +
J

(8.6)

Using [Ho, g] 2j pj(iOjg) + Ag, we can write the right side of (8.6) as a sum
of three terms. Two of them, viz ((H0+ i)-lq,g2Ho(Ho + i)-q) and
((H0 + i)-q,g(Ag)(Ho+ i)-lq) are bounded by cllll 2. The third, viz;

-2.i (pjg(Ho + i)-lq, Ojg(H + i)-q) is clearly bounded by cll,/,ll(jll pjg(no /
i)-’,ll), so using ab < (1/2)ea2 + (1/2)e-lb2:

((Ho + i)-’, (Ho + i)(Ho + i)-lq) < IlPjg(no + i)-112+ dllll 2 (8.7)
J

(8.6) and (8.7) imply the desired result.
(b) By (a), (8.7), and -gx g < gHog, we see that

_((H + i)-lq, (gxl,g)(Ho + i)-q) < cllll 2,

(c) As in the proof of lemma 2, F(-n < x < a)F(Ixl < b)(Ho + i)- is
compact, so we need only show that I[F(x
Pick g obeying the hypotheses of (a) so that g for x < 1. Then, for n > 1"

IIF(x < -n)(Ho + i)-’11 < IIF(x < -n)lxl-/211 IIIx,l/2g(no + i)-11 < cn-’/2

goes to zero.
(d) p2g(Ho + i)- [p2, g](Ho + i)-1 + gno(n + i)-l + gx(Ho + i)-1. The

first term is bounded by part (a); the second and third are trivially bounded. [-]

The next lemma will allow us to control the right side of the estimate in
Lemma 4.

LEMMA 6. Consider Ho in 1-dimension. Let f C(R) be positive with

ff(y)dy and let f(x) f+ f(x y)dy. Let l +_ (k) be two C functions with

l+(k)=rl-(-k), 0< 1+_ < 1, l+ +l-=O and supp,/+ c[-1, ). Let
C(R). Then for a > 0 and m an even integer"

I1(1 + k2)(1 + (x- o)m)Tl+ (k)f(x)(no)ll < C(1 + a)

where C is independent of a.

Proof. Since II(H0 4- a 4- i)(Ho)ll < C(1 + a), it suffices to prove that

I1(1 + p2)(1 + (x- o)m)T/+ (/9)L(x)(n0 +i+ a)-’ll < C (8.8)

But the left side of (8.8) is independent of a since HoHo-a under
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x x + a. Thus, we can take ao so negative that suppf,o c (-oo, 0). Since
(Ho + + ao)(Ho + i)-l is bounded we are reduced to showing that

I1(1 + p)(1 + xm)+ (13) g(x)(n0 + i)-ll[ < c (8.9)
where g is in C0 with support in (- , 0). (8.9) holds with the (1 + p) dropped
since the x m can be commuted through the rl / (p) and xag(x) is bounded. Next
replace (1 +p2) by pj. Then pj can be commuted through to give
p.lxlag(x)(no / i)-’ which is bounded by lemma 5(a) and terms of the type
already treated. Repeating this argument using lemma 5(d), we are done. [
The final lemma is needed to handle the following problem: in proving the

Enss decomposition principle in 2, we needed the fact that (I)(H0) does not
greatly destroy the localization of states in x-space; specifically, we used the fact
that IIF(Ixl < (1/2)n)O(no)F([xl > n)ll0 as n---) . Since (I)(H0) was fairly
explicitly known as a convolution operator, this was quite easy. In the present
situation, H0 is more complicated so that it will be easier to use a piece of soft
analysis"

LEMMA 7. Let {Am} o. be a family of compact operators and let (Bn)noo=l be a

family of bounded operators with s-lim B, 0. Then, one can find M(n)--> o as
n---> oo so that

IlnnAml <- (8.10)m

for m < M(n).

Remarks. 1. The application we have in mind, Am --(P(Ho)F(x < m) and
Bn F(x > n).

2. Since (Ho)=e-ip3/3(-x)e ip3/3 for Ho=-d2/dx2-x, one can
probably prove directly that (8.10) holds for the case of interest by exploiting
properties of Airy functions--one would then obtain information on M(n). As
in the case H0=-A, we suppose that if in C O all that is needed is
n M(n)---) +

Proof. Fix m. Then IlBnAmll0 as n---) c so that we can find N(m) so that
N(m+ 1)>1+ N(m) and IlBnhml < 1/m for n > N(m). Now let M(n)
--sup{m In > N(m)}. i’-’1

Proof of Theorem 8.1. Given the compactness result Lemma 5(c), it suffices
to prove the Enss decomposition principle under the hypotheses: IIF(x < n)q)nl
---)0 as n---) and E(a,b)(Ho)qn q)n" Suppose such a (Dn is given. As usual,
II[(I)(n)- (I)(H0)]O,l ---)0 as n---)c, so we pick - in (a, b) with support in
(a-1 b + 1) and let #,o) =q,n-(I)(H0)q, which goes to zero as n
Moreover by lemma 7 and lemma 5(c) of this section, we can find m(n)--) so
that

IlF(x < m(n))+(no)q),ll--+0. (8.11)
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(Since (H0 + i)gP(Ho) is bounded, F(x < m)(Ho) is compact.) Now pick
f C(R) with ff(y) 1, f > 0 and supp f c (- 1, 1). Let f(x) f+l f(x y)
and let r/+, r/_ be as given in lemma 6. Let

(<2) E fa(x)dP(Ho)dn
a<m(n)-2

By (8.11), 11(,2)wll0. By lemmas 4 and 6, for 2x
a>.>m(n)-I and +_t>0,

le-itHn, _+,a(X)l <

so that, in the usual way,

IIF(x < 1/2(re(n)- 1+ 2- 31t[))e-itH,.././, 2tll C(1 + [tl) TM

for +__ > 0. A similar result (with slight extension of lemma 6) holds for
IIF(..)e-"o(n0 + 1)q,,o, I. [3

Remark. There is an interesting distinction between the proof of Theorem
8.1 and that of Theorem 2.1: in 2, the f are chosen so that f has compact
support; in the above, we take f, itself to have compactsupport. Since there are
no bad regions of momentum space, the restriction on f, is not needed. It turns
out above to be somewhat simpler to take f, to have compact support, so we do
so. However, this is not essential: for the proof of lemma 5(a) only used
supp g C (x IX < 0) to assure that -gx g >/O. If g has falloff as x -)(X), then
-gxg/ c > 0 for suitable c. With this observation, f $ can be ac-
commodated.

In the ,-dimensional case, our result is:

THEOREM 8.2. Let H0 =--A--Xl on L2([q’g). Let V be symmetric and

Ho-bounded with relative bound less than and let H Ho + V. Let

h(R ) V(Ho + i)-’F(x, > R )1t

and

k(R ) V(Ho + i)-’F(Ix_l > R )II.

Suppose that (8.4) holds and that

k(R )--->O as R oz. (8.12)

Then all the conclusions of Theorem 2.1 hold with SvtA Cv replaced by q in (d) and
oodHo) (-
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Example 8.3. Suppose that (1 + x)+l/2+eV(Ho + i)-1 is compact and V is a
multiplication operator. Then, as in Example 8.1, (8.4) holds by lemmas 2 and 3.
Since V(Ho + i)-i is compact and F(lx.+/-[ > R)-->0 strongly, (8.11) holds. Thus
the "potentials of type A" of Herbst [17] obey the hypotheses of Theorem 8.2 so
that this theorem includes Theorem 1.3 of Herbst [17] as a special case.

Proof of Theorem 8.2. It is no longer true by compactness alone that if we
wait long enough the particle will have to enter the region x > n; rather it will
have to enter either that region or the region x < n, Ix.1.1 > Rn where Rn is any
sequence with Rn . The part of the wave function in x > n will be treated
as in Theorem 8.1. For the remainder, we will use a new idea: namely in the
region x < -n, H0>p2 + n so conservation of energy makes it very unlikely
that the particle enters that region. What remains is the piece Ix,I < n,
Ix.+/-] > Rn. If we wait a time n /2, the particle will get to the region x > n
where we can use the method of Theorem 8.1. Thus, we need only pick R so
large that there is negligible interaction in the time period < n 1/2. In the formal
proof below, the reader should keep this heuristic sketch in mind. Set
Fn= F(x < n)F(lx+/-[ < R,,) where R.--> will be picked below. Since
F,,(Ho + i) -l is compact, we only need a version of the Enss decomposition
principle supposing [IF.q.l[--->0 and E(a,b)(H)q.=+0. Since 1-F.= F(x
> n) + F(Ix+/-l > R,,)F(xl < n) (8.4) and (8.11) imply that [(H) q(H0)]q, --->0
in the usual way. Moreover, by lemma 7, we can find m(n)--->z so that
IlFm(.)q(H0)q]l0. For a an integer, let f(xl) be given as in the proof of
Theorem 8.1. For a > m(n), we decompose f,(Ho)6n into an in and out piece,
q.,>in, and q’.>,out, and show that

F(x, < 1/2(m(n)- 1+ - 31tl))e -i’I-I < C(1 + Itl)-
as in that proof by extending lemma 4 to replace I(e-itIIq)(x)[ by
[f dx+/-l(e-itHoqO(x x+/-)12] 1/2. Let -.,b(0)’ln, (0).rn,out be similar sums for < m(n).
By using lemma in the extended form and lemma 6 we see that for
X < 2- 3It + m(n)=--yc(n, t)

itHo.. (O) l" 2dx.1.le ,, ". X_l_)l

< CM(1 + Ix,-y(n, t)l + Itl)-t(m(n) + 1)M+I (8.13)

(Do not decompose into strips in X o) For > m(n) and xL < m(n) + (1/2)t2 the
left hand side of (8.13) is dominated by C(1 + m(n)2 + Itl + Ixl)-(m(n) +
1)M+l < Ct(1 + m(n)2 + Itl / Ix,I) and thus

F x < m(n) + - 2 e-itH(no + i’()u’,-n, ,.
O0

dtO (8.14)
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To control fm(n):.’" we use the ideas of section 2. Use q,0) to denote
(Ho + i)q,,!.,. Since p_ < Ho + X ,we have that

(ep) pz+/-d?)) < m(n)+ c. (8.15)

Let Gn (p+/-) be a smooth function in the p x-space which is if p +/- < m(n)2 and 0
if p+/- > 2m(n)2: Choose G so that Gn(p+/-) g(p+/-/m(n)2) for a suitable
g Co Let q})= G,(p+/-)q), q,2)= [1- G,(p+/-)]q). By (8.15) Ilq,2)ll 2
< m(n) -3 so that

m(n)

Next notice that

IIF(... )e+--i’no+(n2)l[ < m(n)m(n)-3/2---O.

IIF(Ix.[ < 1/2 Rm(,O)G.(p)F(Ix +/-1 >

IIF(I x+/-l < 1/2Rm(n)/m(n)2)g(P+/-)F(I x+/-l >

goes to zero in norm so long as R./n O. Thus

F(Ix +/- < 1/2 Rm(n))d?(’)ll -’ O. (8.16)

Thus, as in section 2, so long as .rn(n) + m(n) < (1/4)Rm(n) we can decompose
q’) F(Ix+/-[ < (1/2)Rm(,O)q,, + qn’). [We throw the first piece into the waste
basket, checking that the resulting change in qo) does not invalidate (8.14) and
that

holds.] Thus

IIF(Ix+/-l <IRm(,))e-i’H@()l <(1 + Rm(n)+ Itl) -4.

m(n)ll Ve-itH(no "- i)- l)lldt

< 0((1 + Rm(n)) -1) + m(n)k( 1/4 Rm(n)).

If we pick R,, so that R,,/n2O, R,, > 4(n + n) and nk((1/4)R,,)O, then the
q}o) pieces can be controlled.

Finally, we must deal with q<, the sum of [(Ho)q over a < m(n). Since
]xlll/ZF(xl < --1)(Ho + i)- is bounded, IF(c < -m(n)+ 2)(Ho + i) Ill 0
as n and thus IIr(xl < (- m(n) + 2))(Ho)ll0 so Ilq<ll 0. Thus q< can
be thrown into the wastebasket. [’]

9. Schr6dinger operators with absorption (optical models). In this last
section we want to consider operators H Ho + V, H0 -A, where V is no
longer symmetric; rather Im(q,, Vq,)< 0 for all , in a suitable dense domain.
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Under suitable circumstances, .B e -itH for > 0 will be a well-defined
semigroup of contractions and we will analyze the large time behavior of Btq.
Such operators are of interest in part because they arise in the study of the
"optical model" in nuclear physics. Typically in that case V is not a local
potential even if H is obtained by making an "optical approximation" to a
many-body Schr6dinger operator with local potentials.

In a recent paper, Davies [9] has advocated the study of B of the above type
and he has begun their study by developing a trace class theory. In particular,
for V with (H- i)-nV(no- i) trace class for some n, m, he proved that

W6 limeitHBt (9.1)
t---) o

exists for all qb in a certain subspace %a" (Since a C , the space defined
below, when V obeys (2.1) with N 1, our conclusions below imply those of
Davies.)
We will follow the suggestion of Davies [9] and continue the study of such

operators by developing some abstract features (Theorems 9.1, 9.2 below) and
then apply the Enss method. We note that one can also extend the
Agmon-Kuroda theory to this situation if V is a local potential with r -1-’

falloff. Indeed, if one follows the proof of Theorem XIII.33 in [29], the
self-adjointness of V enters in only one place: namely in the proof of Lemma 8,
on page 176. So long as Im V < 0, that proof still goes through for the case
(H0 x- i0)- but not for (H0 x + i0) -1. The net result is that if V is an
Agmon potential in the sense of [29] with Im V 0 replaced by Im V < 0, then
away from the real eigenvalues, considered as a map from Lg to L# (8 > 1/2),
(H + V-x- ie)- has a nice limit as e0. Presumably this can be used to
provide an alternative proof to Theorem 9.3 below when V is local and has strict
r-l-, falloff.
We begin with some general theory.

LEMMA 1. Let iH be the generator of a contraction semigroup on a Hilbert
space, (we use the conventions of [27] so B e -itn is the semigroup). Then
-ill* is also the generator of a semigroup; indeed, B (resp. Ct) is the semigroup
generated by iH (resp. -ill*), then C B.

Proof. Let C B which is clearly a contraction semigroup. Let -iJ be its
generator. Then

[(-/J+l)-’]*=(iH+ 1)-’
by the formula relating the resolvent of the generator to its semigroup. That
J H* is now just some graph chasing.

THEOREM 9.1. Let iH be the generator of a contraction semigroup on a Hilbert

sace . Suppose that H E with E real. Then H* E. In particular:
(a) IfH E, H with E and at least one real, then (, ) O.
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(b) If (b span of the eigenvectors of H with real eigenvalues then hb and
J({ are invariant spaces for H.

Proof. If H E, then Btdp e-iEtt (n e-ttH). Thus (, (nt*Bt)d)
(, ). Since Bt*B is a self-adjoint operator of norm 1, this implies that

BBtdp SO e-itEnt*d?-- and thus, by the lemma H* E.
Under the circumstances of (a), suppose that E is real. Then (E- ?0(, +)
(H*, ) (, H+) 0, so (, q) 0. To prove (b) note that b is clearly

left invariant by H and also H* so - is left invariant by H* and also H. I’!
Next we need to extend the result of Ruelle [31] to this situation. Since the

spectral theorem is not available, we cannot use Wiener’s theorem and fall back
on the mean ergodic theorem"

THEOREM 9.2. Let H and b be as in Theorem 8.2. Suppose that C is a
bounded operator with C(H- i)-l compact. Then

T Ce 112dt 0 as Tc for any q -Proof. Since H leaves -suppose that D(H). Writing
invariant, D(H) fq - is dense so we can

Ce-itHdp C(H "b i)-le-itHI(n q-i)]

and thinking of (H + i) as a new , we are reduced to the case where C is
compact. By an approximation argument, we can suppose that C is finite rank
and hence rank 1. Let Pb be the orthogonal projection onto %-. Then for

%-, we can replace C by (Pb C* CPb)1/2 without changing ce-itHd[[ SO we
are reduced to the case where C is a rank one projection and b (0).

In that case, define a one parameter contraction semigroup t on 52, the
Hilbert-Schmidt operators on %, by

,6-f t(A ) nt*An

We claim that if t (A) A for all t, then A 0. For t (A*) , (A)* so, (A) A implies that (1/2(A + A*)) 1/2(A + A*) and similarly for
(2i)-l(A -A*). Thus, without loss we need only prove the claim for A A*.
Since A is Hilbert-Schmidt, and we can take A -A, we can suppose that
either IIA 0 or that IIA is an eigenvalue of finite multiplicity. In the second
case, if h--Ilall,/,, then (Btd,ABt%) IIAII II,/,112 > IAII IIB,,ll 2 so AriA,
--IIA IIBtq, and IIn,ll- I111. Thus B is a semigroup of isometries on the finite
dimensional space V (/IAn IIAII). Thus V C b which is assumed to be

,* (A) ,A,*{0}. Thus IIAI] 0, i.e., our claim is proven. Similarly, since ,
* (A)= A all t, has no solutions and thus , Ran(t I) iswe have that t

dense in 2"
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Let A t (C)- C. Then:

,So ii, so, m;+,- @s(A)ds < - + II@(C)ll < - IIC112

goes to zero. By the above density result,

T m3dsll0

for all A. Choosing A (rl, )1 and Q (q>, )q,, we have that

lS0 ( ’s0 )- I(/, B,)12ds Tr Q* (A)ds O.

which is the required rank result. I"!
Remarks. 1. The last paragraph of the proof is just a transcription of part of

the proof of the mean ergodic theorm.
2. These last two theorems show that in many ways 6 is the natural

candidate for the "bound states of H".
We need one last technical result of a general nature:

LEMMA 2. Let H, b be as above. Then {(H i)-2Hg> D(H) N OC }
is dense in

Proof. Let ll OC- be orthogonal to all such vectors. Since (H- i)-2Hq,
(n- i)-2H[(n- i)(H- iX)-1]2q, (H- i)(H- iX) -1 is bounded and leaves- invariant and since (-iX)(H- iX)-l-- strongly as X oo, we conclude

that (rl, Hq,) 0 for all q> -. Since 1 %-, this is also true for q> 0C6
Thus H*rl 0 so 1 %6 Thus 1 0. It follows that the set in question is total
in %-. [’-!

The main result of this section is

TI-IEOREM 9.3. Let Ho -A. Let V be an operator on L2(Iq) with
(i) Vll-< alln0,/,ll + bll,/’ll, some a < 1.
(ii) Im(q, Vq,) < 0 for all qJ D(Ho)
(iii) The Enss condition (2.1) holds where

h(R ) V(no- i)-’F(Ixl > R )11.

Let H Ho + V and B e -itn. Then
(a) f + s-limt_ oo B e -itHo exists

(b) For all q - the limit WqJ of (9.1) exists.
(c) The only possible limit point of real eigenvalues of H is 0 and any non-zero

real eigenvalue has finite multiplicity.
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Remarks. 1. Under hypotheses (i) and (ii), H H0 + V is automatically
closed on D(Ho) and -iH is the generator of a contraction semigroup; see
Theorem X.50 of [27].

2. No special role is played by H0 -A and one can presumably extend this
theorem to the setup of Section 2.

3. There are a number of significant questions left open by this theorem. If
V(Ho -i)- is compact, then Oess(H) [0, ) in the sense that away from
[0, m), o(H) consists only of eigenvalues of finite multiplicity (see Theorem
XIII.14 of [29]) and [0, m) c o(H). This is presumably also true only under the
hypotheses of the theorem. How can it be proven? Similarly, can a non-zero real
be a limit point of complex eigenvalues?

4. Nothing is said about Ran f+. By the intertwining relation Bs2+=
2 + e -I-I, proven in the usual manner, one deduces that for H*q E, and
s>0:

I((Q+ )*, e-iSh(l+ )*)1 e-S(Im E)I](+ )*q)ll 2" (9.2)

This shows that (2 + )*b 0 since e -iI-Io0 weakly. Thus Ran 2 + C -.
However, it will not be all of %-; for (9.2), the Paley-Wiener theorem and the
positivety of H0 imply that (f+)*g, 0 for an eigenvector of H* with Im E > 0.
It is natural to conjecture that Ran 2 + is the orthogonal complement of the
eigenvectors of H*, but is it true?

5. Nothing is said about Ran W. Is it all of L27
6. Under very special circumstances where V is "short range" and "small",

Kato [22] has shown that H and H0 are similar under two invertible maps that
are defined in a "time-independent" way but which presumably equal W and
(f + )-l; that is W and 72 + should be invertible in those circumstances. Are there
other circumstances where 2 + is invertible from L2 to its range or where W is
invertible, at least on some reasonable space like the Range of 2+?

7. We remark that the stated conclusions of the theorem do not exclude the
possibility W 2 + 0 so that H -iI obeys the conclusions of the theorem!
However the methods of proof do show that W 0, 2 + 4 0. Indeed with
stationary phase methods, one easily finds lots of O’s obeying

and lots of q;s obeying

Ve -itHl dt " + () < IIfl[

Letting 2 B_ e
that for < s < 0

(9.2a)

0
IIVe- itnl at-- () < I111. (9.2b)

-itno for < 0 and using IId/dt(fA,)ll Ve-i’nq’ll one finds

Ve-iUIlldu (9.3)
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so that under the condition (9.2a),

116 / 1)q, < IIq, ll,
Moreover writing

(B e -itH)) fot _u (Bt_u iunod?)du
one finds that for > O"

II(B, e-itH)epll < f0tll Ve-imllds. (9.4)

Using the unitarity of e -itH and (b) of the theorem, w-limt eitnBt WP
where P is the projection onto { Thus, by (9.4) and (9.2b):

II(Wp- 1)ll < IIll
Of course, II(A 1)11 < I111 implies that A+ # 0 and that PRanA # 0.

Proof of Theorem 9.3. As already noted by Davies [9], Cook’s method works
for +, essentially since (9.3) holds so (a) is easy.
Now let D(H) and let (H- i)-2H+. We will prove that W

exists, so, by lemma 2, W exists on all of . As usual, by using Theorem 8.2,
and the compactness of F(lxl < n)(Ho + i)- we can find t, so that

and

F([xl < n) 0; e-itn (9.5a)

IIF(Ixl < n)q’ll 0; q, e-it"Hd? (9.5b)

Suppose that we find a function e(M)-O as M-c and for each M a
decomposition

,(1) 4- (2) + n, M, out + n, m, in (9.6)n ’In, M, ’In, M,

with (all limits as n with M fixed)

(n (M)

n, , inll 0, ge-itHnn M, outll dt O.

Then letting

sup II(Bt e-itH)lnl
t>O

and using (9.4) on the r/out piece we see that

lima,, < 2(M).
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Taking M---> , we see that

lim an 0.

But for t, s > we have that

e + itHoBt
< e-i(t-t")n)lnll + s-term < 2c

so the sequence e +itHnt’l is Cauchy. Thus, the existence of the decomposition
(9.6) proves conclusion (b).
The main differences from the scheme of Section 2 are two-fold:
(1) We do not have the full functional calculus, so we will make do with a

special which does not yield a function with compact support in momentum
space but rather one which cannot peak near p 0 or as n- m. The pieces
near 0 and m will be put in 0 (2)

"In,

(2) We will need a direct argument that ]]*/n, M, in][ 0. This argument is due
to Enss [14] and we are grateful for his permission to use it.
Now let (x)= (x- i)-2x (x- i)-2 + i(x- i)-1. Let q’M(X) be a function

which is C and which is 0 if Ix[ < M-I or Ix[ > M and if ]x] > 2M-I and

Ixl < (1/2)M. Notice that if II’I’.ll < 1, then

1(M) I1(1 ’I’M)II0 as Mm (9.7)

since vanishes at 0 and c. Let f,,(x), gn,(k), _outg,(k) be functions of the
type used in section 2 for decomposing functions supported in M- < k2 < M
with P(k)= k2. Let (drop all the M’s as subscript except on ,I,),

0(1)n, 0(H ) (I)(Ho) ]q),, + Z
Il <(1/2)n

f. (x)4lu(Ho)(P(Ho)q)n

r/(2) H0)(n,w (1 ’’M)( no)On

’n, ex
ll>(1/2)n

gex(k)f, (X)M(Ho)O(Ho)d?n

for ex in or out. Clearly ’lw
(1) "" ’Ow(2) q- "r/in "+" "l/out-’- (H)d?n n as required. By

the usual argument, since (x) is a polynomial in (x- i)-l, ii[(n) (H0)]
F(Ixln)l --->0 and moreover, q’M0, as a fixed function in C0 doesn’t delocalize
much, so () 0, Next ((1 given by (9.7)),"01,

11 (2)’ln, < ,(M)llq’n < l(M)llll (M).

The standard argument shows that fll Ve-itHln, outlldt--->O so all that remains
is the promised direct argument of Enss [14] that I1, inl[---> 0.
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inLet A. be the operator lal>(l/2)n gi (k)f,(x)9t(Ho)CP(Ho). That A.q,. goes to
zero will follow from the two facts:

s-lim Ane -it"H 0 (9.8)

lim[]An(e -it"H B.)ll 0, (9.9)

(9.9) is clearly equivalent to II(B- e+it"m)All O. By the B* analog of (9.4)
this follows from

lim g*e+"*lld. (9.10)

(9.10) follows from the calculations in section 2 if we notice that the order of
factors ing is irrelevant to the arguments and that all estimates are uniform
in the vector. Thus (9.9) is proven. To prove (9.8), we note that by the proof of
(9.10),

g(Ixl < R )e + itnHo $ll0
for each R, so that Ane-it"HO for any with compact support. This
completes the proof of conclusion (b).
Now suppose (c) is false. Then by Theorem 9.1, we can find an orthonormal

sequence with H, H*, E,, and E, E 0. Letting (E,- i):E, we obtain a decomposition of the form (9.6) with all the properties of that
decomposition except that II,inll0 is not directly proven. Rather:

ll g*e+itHn, inlldtO.

Given this decomposition, write

(n., n.) =a+ b+ c+ d

where:

t) goes to zero as n , b (., .,
/a (., .., /

2) is smaller than (M),

Icl ](B?n, Bn, out)[ I(n, BtBn, out)[

lim(. (B e

< sup [I(B e-""o)., outl
t>0

goes to zero as n . Similarly, using Idl I<B,, ,in>[ we see that d0.
Thus

lim ., .) < (M)

which violates the normalization condition if M is properly chosen.
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Appendix: An amusing inequality. Clearly, the development of lore about
phase space decompositions should be useful in further developments of the
Enss method. In a preliminary version of the proof of lemma 3 in Section 2, we
found an inequality that may be useful in further developments. Let X, P denote
the v-tuples of operators on L2(FI), X multiplication by x] and P - V].
Let [[’112 Hilbert-Schmidt norm. The inequality:

(A.1)

A fa(y, k)eXeiedy dk

is well-known. One way of verifying (A.1) is to note that

(Aeo)(x) fb(x,

where is the Fourier transform and

b(x, p)= (2)-/"fa(y, k)eiyXeikpeipxd.,v dk

so that Ilbll (2ry Ilal122 by the Plancherel theorem.
Our result is"

THEOREM A.1 I[[f(X), g(P)]ll2 < (2r)ll Vfll211V gll:.

Proof. Clearly

f(X), g(P)] =ff(y)g(k)[e iyx, e ik’P]

f } (y), (k)e O’Xe ,,e (1 e iyk )

so [f(X), g(P)] has the form of (A.2) with

la(v, k)l < I}(9,)1 I(k)l I,1 Ikl.
Now use (A.1) and the Plancherel theorem.

Note added in proof
E. Mourre has noted that Ex. 4.4 (treating V V- W with W O(r-l-)) can

be extended to treat potentials V which are -A bounded and which are of the
form V AW + 7- W2 + W with Wg(r -l-) at infinity. For one can write
-AW,=,. [p, [p, W]]. Noting that when D(H)= D(Ho), and (H0 + 1)--(H + 1) -1 is compact, Theorem 4.1 can be extended to allow V’s with
(H + i)- V(Ho + i)- IF(x > R) h(R) Ll(O, ), one finds a complete
spectral analysis of such objects. An example of such V’s would be sin(r)/r
with a> and fl+2(a-1)> 1. It is clear that if one knows that
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D(Hm) D(H) for some m, then V can be the 2m-th derivative of a function
which is O(r-1-,) at infinity. In this way one can treat potentials of the above
type so long as/3 > 1/2 and c > 1.
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