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We introduce an extension of complex scaling which is applicable to molecules in the Born—Oppenheimer approxima-
tion and which reduces to the usual complex scaling when that theory is applicable.

The method of complex scaling has become a stan-
dard tool in the understanding of atomic resonances.
The theory is closely related to the notion of Gamow—
Siegert [1] boundary conditions, i.e. of looking for
solutions of the Schrodinger equation with exponen-
tial falloff in some complex direction. Versions of the
theory on the level of ordinary differential equations
[2] and deformations of integrals [3] were byproducts
of the development of Regge theory. A version of the
theory which is regarded as the definitive one follows
a suggestion of Combes [4] that one deal with analytic
continuation on the operator level of hamiltonians
moved under the real scaling

U@YU(ry, ....ry) = 3N0/2y(efry, .. efr,). 1)

This suggestion was implemented by Aguilar, Balslev
and Combes [5] with further development by others
[6—8]. The scope of application runs the gamut from
subtle mathematical questions like the absence of sin-
gular continuous spectrum [5], and the convergence
of time-dependent perturbation theory [8], through
detailed theoretical features of resonances in Coulomb
fields, such as the absence of resonances at energies
sufficient for total breakup [7—12] *!+2 and the reso-
lution of the Stillinger problem [13] and finally to
the detailed calculation of resonance positions in few-
electron atoms [14].

* Research partially supported by USNSF under Grant
MCS 78-01885.
»* See next column.

In this context, it is of obvious interest to be able
to apply the theory to the study of molecular reso-
nances. At first glance, there appears to be no problem
here since Coulomb potentials are dilation analytic so
that one can scale all the coordinates, both electron
and nuclear and get a system to which the Balslev—
Combes theory applies. However, as emphasized by
McCurdy and Resigno [15] *3, there are problems
with this view: (i) Because of rotational and vibration-
al excitations, there are so many thresholds in the fuil
problem that even if one could do the full calculation,
in some finite basis, it would be difficult to determine
which eigenvalues were associated to a cut and which
to true resonances and which resonances were relevant
in some particular physical process *4. (ii) The neces-
sity to scale the nuclear variables prevents one from
working in a Born—Oppenheimer (BO) approximation.
This means that one has a much more complex prob-
lem both from the point of view of calculation and in-

*1 1t should be noted that there is one experiment (of Peart
and Dolder [9]) which violates the general theorem, see
ref. [10]. Since the general theorem depends on no ap-
proximation (other than that of taking a hamiltonian with
purely coulombic potentials, i.e. dropping relativistic cor-
rections) and since the energy is too large for the *“‘reso-
nance’ seen to be some kind of threshold effect pretend-
ing to be a resonance, it seems imperative that the experi-
ment be checked.

*2 Ref. {11] sketches a very elementary proof of Hunziker
[12] of the no-resonance resuit.

*3 This paper in preprint form stimulated the research de-
scribed here.
*4 This argument was given to me by W. Reinhardt.
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terpretation then in the BO approximation., (iii) Most
significantly [15], there should be BO resonance
curves which do not correspond to resonances of the
full system: after all, even on the level of bound states,
there will be BO electronic curves which are repulsive
— these will not correspond to bound states of the

full system but are very useful for the understanding
of certain processes.

We thus see that it is important to be able to dis-
cuss resonances for several electrons moving in the
Coulomb field of several fixed nuclei and here the
crunch comes since the resulting potential,

k
V(r)=§)1 zlr —rl-1, )

is not dilation analytic about any center [11]. This
can be seen by noting that (17 —74)? =0 (r = (x, y, 2)
and rg = (0,0,ry) real) corresponds to

z=rgcosd, x2+y2=(rosin¢)2, (3)

so, under scaling the singularity at r, turns into a circle
of square root branch points! One might thus give up
on applying complex scaling to this situation but our
experience with complex scaling and the Stark prob-
lem *5 should convince us of the flexibility of the
method and lead us to find some modified approach
which is applicable to this situation.

We wish to describe such an approach here; some
of the more technical aspects of the problem will be
described in a longer paper [18]. The method is moti-
vated in part by consideration of the Gamow—Siegert
boundary condition [1]; also, it clearly has some over-
lap with R-matrix ideas. For obvious reasons, we sug-
gest calling the method “exterior complex scaling”.

Consider first a one-dimensional problem on a half-
line with a potential ¥'(x) which is not necessarily
analytic in (0, Ryy) but which is analytic in {z|Rez
>R0}. The Gamow —Siegert method suggests we look
for solutions which falloff exponentially along a curve
x> R(x) (8 =i¢, ¢ real) with *¢

*5 Asin the present case, the extension of the theory to a sit-
uation not covered by the Balslev—Combes paper was moti-
vated by calculational work, especially by Reinhardt [16].
The mathematical theory can be found in ref. [17].

*6 There is nothing sacred about this curve from the Gamow —
Siegert point of view. However, it has the important prop-
erty that when 6 and 8’ are real, R(R(r,6),0') =R (r,0
+6"), which will yield the group property for our unitaries
UR,(8) defined below.
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R(x) =x, 0<x<R,, (42)

=Ry +ef(x —Ry), Ry<x. (4b)

The boundary conditions for matching that one would
try in this case are clearly (for Y (R(x)))

YRy —0)=y(Ry+0),
V' (Ry—0)=ey'(Ry +0). (5)

Motivated by this we introduce an operator on wave
functions ¥ of n three vectors r; = r;w; with r; €(0,),

(URO(G) \b)(rl s (:)l s ety (;)n)

=J(ry) - Jr)VR(r)), 0, ..R(ry), @,), (6)
where J(r;) is (the square root of the jacobian):
J() = [R(@)/r] [dR/dr]1/2 |

necessary for U to be unitary when 8 is real and R is
given by eq. (4) with 6 real.

Since Ug,, is a one-parameter group it will have vec-
tors analytic in 8 say in the region |Im 8| <n/4.In
fact [18], when n = 1, any vector dilation analytic in
the usual sense (i.e. for Ry = 0) is analytic for Ug in
this strip: this can be seen, for example, by making
partial-wave expansions and reducing the result to the
fact that a function analytic in |Argz| < ¢ and 12 for
|Argz| < ¢ is also L2 for |Arg(z — Ry)| <¢.Forn
electrons the situation is more complicated [18] but
the critical fact is that there is a set U of vectors ana-
lytic for Ug, which is dense in these vectors in the
norms U, (i¢) I, 16| < 7/4 with U universal in the
sense that it is independent of Ry. For example [18],
one can let U consist of vectors 1 so that exp(8 Zriz)n
is dilation analytic in the usual sense in each electron
coordinate separately and has

n
exp(6 bD; riz)n €D ( H] (1 —Ai)l/z) :
=
8 runs through all strictly positive reals.
Let HO = _FA, and

H,gog (6)=Ug (6) HyUg ()" .

This operator is analytic for [Im ] < @/2 in the sense
that it has an analytic resolvent [18]; it is not analytic
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of type (A) but rather of type (B) [19] — that is, the
operator domain is not invariant essentially since,
after passing to partial waves, it involves both bound-
ary conditions in eq. (5) but its form domain is invari-
ant since that only involves the first boundary condi-
tion which is 8 independent . Moreover

oHR(0)) = e=2[0,%9), (7)

which might be surprising at first blush, can be proven
as follows: the essential (= continuous) spectrum of
H}?) comes from states that live near infinity ¥7 where
J ~¢30/2 and the particle is unaware of the special
nature of a tiny region near zero. Thus

SEHR)(0)) = 0 (H(6)) = =2 [0,9).

There can be no eigenvalues since solutions of the equa-
tion Hﬁo)(()) ¥ = EY regular near r; = 0 are sums of
products of Bessel functions tlmes spherical harmonics
and so not square integrable.

One can now mimic the usual theory [5] and in
particular consider

Hg,(6) = Hgy )

+]_2:_‘{ Vi, ©)) +i§ Wr,@),1)). 8)

For molecular resonance theory, the main results [18]
are the following:

(i) If Vis local, central and dilation analytic in the
usual form sense [7] under scaling centered at some
point r; with |r;| <R, then Vis Ug,(6) analytic. In
particular, the V of eq. (2) is Ug,, analytic. Moreover,
since (R (r)), &1) — R(ry), “’2))2 0 implies that
@y = @9, F] =Ty, the Coulomb repulsion (ry —r,)~1
is Ug ,(8) analytic. Thus eq. (8) makes sense for (BO)
hamiltonians. One defines resonance, etc. in the usual
way.

(if) Oeg (HR o () consists of (E +Xe=28 A >0
E € T) where *8 X is the set of possible eigenvalues
for 1,2, ...,n — 1 electrons. This is proven in the same
way as eq. (7) *7.

*7 This attractive intuition can be used as the basis for a proof
of eq. (7); see ref. [20] or ref. [19], § XIILS.

*#8 That £ has this form depends on the fact that W is a repul-
sive Coulomb potential. Otherwise [18], the description
is more complicated.
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(iii) If ¢ is Ug o(0) analytic, then (¢, (Hg,(8)
—2z)~1¢) can be continued in the usual way. Because
the set U described above is dense in the Ug,, analytic
vectors, one can show that E'is a discrete eigenvalue
of Hg, (0) if and only if it occurs as the pole of some
(@, (HR (6) — z)~1y) for some ¢, ¢ in U. Since U is
mdependent of Ry, this has the important conse-
quences that the positions of resonances are indepen-
dent of R so long as one runs through permissible R,
and in particular, if V is dilation analytic in the usual
sense, the positions coincide with those in the Balslev—
Combes theory.

In this way one has a framework for defining reso-
nance BO curves *% % This procedure is clearly not
as convenient as in the atomic case where the same
matrix elements needed for bound-state calculations
can be used for resonance calculations; indeed, it is
clear that one needs some considerable thought before
attempting calculations in our framework. We had orig-
inally hoped that we would find a justification for the
calculational procedure suggested by McCurdy and
Reseigno [15]. It does not appear that we succeeded
on that account. It remains to be seen whether some
synthesis is possible which retains the firm mathemat-
ical basis of our approach and the calculational con-
venience of the approach of McCardy and Reseigno.

It is a pleasure to thank Bill Reinhardt for stimula-
ting my interest in this problem and both he and
Bob Junker for useful discussions.

2 of course, as the nuclear separation changes, we have to
change R but by the independence of the curves on per-
missible Ry, this does not matter.

*10 The framework also implies a number of other results, all
familiar in the Balslev—Combes framework, e.g. conver-
gence of time-dependent perturbation theory.
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