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Abstracts

We prove by elementary geometric methods and within the Born-Oppenheimer approximation
that as the nuclei of a molecule are dissociated into spatially separated clusters, the discrete molecular
energies approach sums of the energies of isolated subsystems. Our methods also show that the
spectral projections associated with the discrete molecular spectrum asymptotically approach direct
sums of suitable spectral projections for the isolated subsystems. These results apply to any system of
particles interacting by asymptotically vanishing pair potentials. We prove that the 1/R expansion for
discrete molecular potential curves is asymptotic as R -0, and we discuss the behavior of the
coefficients of the 1/R expansion for the ground state of H,".

Nous prouvons par des méthodes géométriques élémentaires et dans le cadre de 'approximation
de Born—Oppenheimer, que quand les noyaux d’une molécule sont dissociés en amas séparés dans
I'espace, les énergies moléculaires discrétes tendent vers la somme des énergies des sous-systemes
isolés. Nos méthodes montrent aussi que les projections spectrales associées au spectre moléculaire
discret tendent asymptotiquement vers des sommes directes de projections spectrales convenables
pour les sous-systémes isolés. Ces résultats s’appliquent 2 n’importe quel systéme de particules qui
interagissent par des potentiels de paire s’annulant asymptotiquement. Nous prouvons que le
développement en 1/R pour des courbes de potentiel moléculaires discrétes est asymptotique quand
R, et nous discutons le comportement des coefficients de ce développement pour I’état
fondamental de H,".

Wir beweisen durch elementare geometrische Methoden und im Rahmen der Born-Oppen-
heimer-Naherung, dass, wenn die Kerne eines Molekiils in raumlich separierten Clusters dissoziiert
werden, die diskreten Molekiilenergien Summen der Energien der isolierten Untersysteme zustreben.
Unsere Methoden zeigen auch, dass die mit dem diskreten Molekularspektrum assoziierten Spek-
tralprojektionen asymptotisch direkten Summen von geeigneten Spektralprojektionen fiir die iso-
lierten Untersysteme zustreben. Diese Ergebnisse sind fiir irgendein System von Teilchen giiltig, die
durch asymptotisch verschwindende Paarpotentiale wechselwirken. Wir beweisen, dass die Entwick-
lung in 1/R fiir diskrete molekulare Potentialkurven wenn R o asymptotisch ist, und wir dis-
kutieren das Verhalten der Koeffizienten dieser Entwicklung fiir den Grundzustand von H,".

1. Introduction

In this paper we want to consider a class of problems of which the simplest is
the following: Fix a positive integer N. Let Z4, Zg be two positive numbers. For

* Chaim Weizmann Postdoctoral Fellow; part of this work is contained in thesis submitted to the
University of California at Berkeley in partial fulfillment of the Ph.D. in Chemistry.

t Also at the Department of Mathematics, Princeton University; Research partially supported by
U.S. NSF under Grant No. MCS-78-01885.

© 1980 John Wiley & Sons, Inc. 0020-7608/80/0017-1143$02.40



1144 MORGAN AND SIMON

every R>0, let H(R) be the operator

N
H(R)= I (-4, ~Zalt | -Zpk, -RE™M+ Y In-x (11)
l=i<j=N

asan o;?eragor on L}®R*M), where a pointinR*V is (ry, . . . , In) and é is a fixed unit
vector in R”. The problem is to show that as R - oo the discrete eigenvalues of
H (R) approach precisely sums of those of isolated atoms or ions. More generally
we want .to prove that the asymptotic vanishing of the potential between tW(;
syster.ns implies asymptotic separation of variables for the discrete eigen-
functions, modulo a finite sum to incorporate symmetry.

There are several reasons for our interest in this problem, which is quite
transparent physically. In the first place, there are subtleties associated with the
fact ‘that some of the eigenvalues of the isolated atoms may lie inside the
continuum for another allowed breakup of the system into two ions. Ahlrichs’
previous zfnalysis [1]of the 1/R expansion is incomplete in his lack of treatment of
t!us question and of the general asymptotic question. Secondly, the only previous
rigorous progf of the asymptotic result is by Combes and Seiler [2] (for the case
N= 1, there is an earlier result of Aventini and Seiler [3]); their proof depends on
a detal!ed analysis of Weinberg-van Winter equations for H(R). Such an intui-
tlvely' s1mp|‘e result should not depend on such elaborate machinery and our goal
here is to give a very elementary proof. Indeed, since we choose the kinematics
carefully, the proof is a rather effortless application of the min-max principle. Our
use of geometric ideas to replace resolvent equations is motivated, in part, by the
recent success of such replacements in various problems [4-7]. ’

To state our main results, we need some preliminary notation. We label 2V
ways.of breaking {1, ..., N}into two disjoint sets, Cy(a) and C; (a),byanindex a
running from 1 up to 2. We let §;(a)=0if i e Cola),=11ifie C,(’a).

N
Ha=n§1(—An)— Y Zin|'- T Zgn?

ieCola) ieCy(a)
+ Z ".—r,_l+ f'_r-_l
i<i;i,ieCu(a)| ) ]I i<,‘;,;,'2‘;c,(a)| ! 'I : 1.2)

Finally, we take a new Hilbert space
2N
o= P L*R™),
a=1
and let
2N
Heo=® H,.

a=1

Intuitively, as R - o, the electrons in bound states must choose one or the
(;zther nucleus t9 stay near and the resulting 2V choices are labeled by a. For
R >, the pgssngl:}e electronic configurations are thus better handled by . than
in a single L°(R*").
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Finally, we recall that given any operator A which is bounded from below with
spectral projections E;(A), one defines

ui(A)=inf {C|dim E(_w,c)(A) = k}.

Then clearly po = limy-. g« is the bottom of the essential spectrum andeither (a)
fk < [hoo, in Which case p is the kth eigenvalue (counting multiplicity) from the
bottom, or (b) fx = fe, in Which case there are at most k — 1 eigenvalues (counting
multiplicity) in (=, u«). Moreover [8], u is given by the min-max principle

pe(A)= max [min {(&, Ad)ll¢l=1, ¢ € Q(A), & Li}].

Our main result proven in Sec. 2 is
Theorem 1.1.
fim i (H(R)) = pe(Heo)

for all k including k = 0.

Note that to list ux(Hw), one need only list all the u.(H,) and then combine
them into one list. As it stands, Theorem 1.1 is of only limited interest for N>2,
since in this case the continuum on the physical subspace (that obeying the Pauli
principle) typically lies above the continuum with no symmetry and Theorem 1.1
only deals with eigenvalues below the continuum. To state a version of Theorem
1.1 with symmetry we first single out:

Definition. By an allowed symmetry we mean a linear map S which is a product
of (a) rotations about an axis running from 0to é; (b) reflections in planes contain-
ing 0 and é; (c) permutations of the electrons; in case Z = Zpg, rotations
or reflections interchanging Ré and 0. By U(S) we mean the unitary map on
L%(R>), which realizes the symmetry. By Ux(S) we mean the obvious map on
%, ; explicitly: In cases (a) and (b), Ux(S) leaves each L*®R>") set-wise invariant
and operates in the obvious coordinate-wise way on each factor. In case (c), for
fixed a, we write S = S, S, where S; interchanges particles in a given Ci(a) and S,
interchanges particles between clusters. Then on the ath factor U(S)=
U(S1)U(S2), where U(S,) leaves the ath factor in ¥ set-wise fixed and acts in the
obvious coordinate way, and U (S)) takes the ath factor into the bth factor with
Ci(b) = S1[C;(a)] and acts in the obvious way. In case (d), where § is reflection in
the plane {x|x - é = R/2}, U(S) acts by taking the ath factor into the bth factor
with Ci(b) = C,_:(a) and by interchanging coordinates and reflecting in the plane
{x|x - ¢ =0}. Any S of type (d) can be written S = §,S, with S, of type (b) and S,
the above reflection. We take U(S)= U (S)U(S2).

In Sec. 2 we also prove

Theorem 1.2. Fix a subgroup K of allowed symmetries and an irreducible
representation W of K. Let #w ={¢ € L*®R>") so that ¢ transforms under W}
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and H"(R) = H(R)%y. Define % and H"’ similarly. Then, we have
Jim u (H™(R)) = e (HE)

for all k including k = co.

Remarks. (i) ¢ transforms under W, means that
N
v= ;l a;$;, N=dim (W)

and

N
[US)pil= T Wu(S)¢;
j=1
forall Se K. I
(ii) If K contains symmetries of ty '
pe (d), then U(S) and hence ¥, R-
depe:‘qdent and should really be written Ug(S) and ¥z w. v
(iii) Fgr examp{e, we can take K to be the group of permutations and W the
totally antls_ymt.ne_tnc space or W can be one of the other representations allowed
by tl}e Pauli principle (Young’s tableaux with at most two columns).
| (iv) For the_ case of many nuclei, the symmetries of type (a), (b) are those which
eave all nuclei fixed and those of type (d) permute nuclei of identical charges.
We want to indicate certain extensions of th v
it o} ese theorems that one can make
(i) One can allow many nuclei at R R, i
B 15-+., Ry in [ clusters, Qy,..., Q. Fix {
dlstlpa vectors‘ V1,..., Vi and for each R, let H(R) be the Hamliltonian lwhere
the ith nucleus is at R; + RV, with A(/) equal to the cluster number of i. Then a

haS to run thlough 1 llldlces. Othetwlse the plOOf given (ll extends Wlth no
leal Change. )

(i) The proofs in Sec. 2 extend with no real effor i
' L t to
Vi i~ A or B allowes) oborims general local potentla!s

(¢, |Vil#)=a(R)(¢, (Ho+ 1)) (1.3)
for all ¢ € Sg with a(R)->0as R >c0. In (1.3), Hy = (-4), and

Sk ={¢ € L(R’)| supp ¢ e {x||x|> R}
and obeying

Vii =0 and local; all i, j both electron coordinates. (1.4)

(iii) By an extra argument indicated at th imi
condition (14) e end of Sec. 2, one can eliminate

(iv) One can also accommodate nonlocal potentials with extra argument. .

We nofe that the Combes-Seiler proof [2] accommodates (i). It also accom-
modates (ii) under the hypothesis that V;; is H, compact; this is somewhat stronger
than (1.3). (Combes and Seiler begin their paper by saying they assume all
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potentials are dilation analytic and this hypothesis is used in some of their other
results, but their proof of the analog of Theorem 1.1 does not use dilation
analyticity.) Finally, Combes and Seiler do not discuss the theorem with symmetry
but it should be possible to do so with their methods since the Weinberg-van
Winter equations combine nicely with a symmetry analysis [5, 9, 10].

We can now explain our criticism of the Ahlrichs paper [1]. Let Ao be adiscrete
eigenvalue of some H, which lies above poo{Heo) = inf, po(Ha). For example,
take Za =2, Zg =1, and N =2. For the a with both electrons in Cj, there is a
bound state formed, the ground state of H  at energy Ao= —14.3eV. The
continuum begins at the binding energy of He"=-54.4¢V.

For any finite R, one expects the eigenvalue Ao to dissolve into continuum; i.e.,
a process like H +He**>H'+He"+e~ occurs. There is, therefore, an
important difference between eigenvalues below poo(Hw) which are stable (this is
precisely what is proven in Theorems 1.1 and 1.2) and those above peo(Hw).
Ahlrichs implicitly assumes that for every eigenvalue of H, there are eigenvalues
of H(R) nearby. We prove this for discrete eigenvalues and, given this proof, the
Ahlrichs paper is basically correct (at least for eigenvalues which are nonde-
generate after complete symmetry reduction). Nevertheless, it seems to us that it
is worth rearranging the argument to avoid certain difficulties in the Ahirichs
method; we do this in Sec. 3. For the case Ao>pw, the Ahlrichs method
establishes the existence of what is called a pseudoeigenvalue (see Section XI1.5 of
Ref. 8) and as a result the existence of spectral concentration in a suitable sense.
We would presume much more is true; namely, there should be a resonance E(R),
in the sense of exterior complex scaling [11, 12] for all large enough R, with
E(R)>A¢as R» and ['(R)=-2Im E(R)= O(R™") for all n. Because of the
singularities in exterior scaling as R -, this is probably difficult to prove.

In Sec. 4, we consider the coefficients of the 1/R expansion for H,". In many
ways H, " can be interpreted as a double-well problem. For by using scaling, H(R)
is unitarily equivalent to

R (-A+Rx[""+R|x—¢é|™,

which is clearly a double-well problem, somewhat analogous to the double-well
oscillator

p2+x2+2)(x3+A2x4.

For the double-welled oscillator, it has been determined numerically (and within
the formal application of Euler’s method in path space) [13] that the Rayleigh—
Schrédinger coefficients diverge as n! (with an asymptotically constant sign). Our
analysis in Sec. 4 suggests that the same is true for H,". In addition, the doubling
of eigenvalues that occurs due to exchange (in our language, there are two H,’s
each unitarily equivalent and so two eigenvalues approaching each one of H,) is
like the doubling which takes place for the double-welled oscillator [8]. The
theory which Harrell developed [14, 15] to obtain rigorously the asymptotics of
the size of the splitting of the double-well levels works also to control rigorously
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the asymptotics of the exchange splitting in H," thereby making rigorous earlier
results of Damburg and Propin [16].
2. Basic Theorems

Here we prove Theorems 1.1 and 1.2. The basic idea will be to use eigen-
functions for H, as variational functions for H(R) to show that

ui(H(R)) < ue(Ho) + O(R™") @1
and eigenfunctions of H(R) as trial functions for H, to show that
tie(Heo) < i (H(R))+ O(R ™). 2.2)

[We only prove (2.1), (2.2) when wui(Hw) < ool Hoo). If pur (Hoo) = ptoo{ Hwo), then
we do not know that the error is O(R ™), only 0(1).]
To prove (2.1), we define a map I : #ow—> ¥ =L*R") by

Ir(W)(r) =L Ya(ri + 8. ()RE).

Thus, Ir puts the ¢, component in the proper region of configuration space. For
later purposes we note that for any allowed symmetry

U(S)IR =IRUm(S) (2.3)
Lemma 2.1. For any fixed ¢, ¢ € ¥,
Iyﬂ) (IR¢9 IR‘/’) = (¢’ lﬁ)- (2'4)

If moreover ¢, ¢ € Q(Hy), the form domain of H, then
lim (Ir¢, H(R)IrY) = (¢, Hod)). (2.5)

If moreover, fle**', lle®™'yl], lle®*| Hu|"2¢|l, lle**|H.0|"*¢| are all bounded for
some a > 0, then the error in the limit in (2.4) is O(e“s'R I) for suitable 6 >0 and in
(2.5)is O(R™").

Proof. For (2.4), we need only show that for a # b, we have
lim [ GG 5.0RE) wnr+ 8,(IRE) 4, =0
and is O(e *®') when ||le®*'¢,||, < 20, [le || < c0. This is obvious.

For (2.5), welet D = IKH(R)Ir — H, and let D,, be the matrix components of
D in %=, L* Then, for a # b, we have

(¢m Dab‘,’b) -0

[respectively, O(e %)) as in the above argument]. For a = b, we have

(b0 Ducthe) = | B2 7 5.0RE) Walr R+ 8, (RE) 4™,
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with - .
W,(r,R)=— ¥ Zg|r,— Ré| - Y Zalrl
ieCqla) ieCy(a)
-1
+ ¥ Im-nlm
ieCop,jeCy ,

Using the fact that V¢ € L? to control the local sinlgularities of W, one easily sees
that (¢a, Daatba) goes to zero [respectively, O(R™ ). B

Theorem 2.2. If 1, (Hw) < poo(Hoo), then (2.1) holds. If pi (Hw) = pi(Ha), then
(for k <o) ,

pi(H(R)) = pi(Hw) +0(1). (2.1)

Proof. If s (Ho) < po(Hw), then we can find 71, .- -5 Mo faigenvectors of H,
with Heon; = Emi, Ei = px(Ho). Then the ni’s have exponential falloff (see Sec.
XIII.11 of Ref. 8).

Let V be the span of the n’s. Then

px(H(R)) =sup {(Irn, H(R)Igm)/(Irn, Ien)lme V. |nli=1}

This quotient is (n, Hxon)+O(R™") by Lemma 2.1 and l?y compactness of the
sphere, the O(R ~1) error is uniform in 7 for fixed k (es'sentlally we need only look
at convergence of finitely many matrix elements). This proves (2.1). '

If pi(Hw) = po(Hw), then given g, we can find 14, . .., 7k orthonormal in
E (oo (Hooy+e) (Ho) and proceed as above to see that

;lzi—.?}o ue(H(R)) = pi(Heo) *&.

Since ¢ is arbitrary, (2.1) holds. B
For the opposite direction, we use an idea from Ref. 17; namely, let {J,}.cr be a

family of real-valued functions with
Y72=1 and Y[VI[' <o,

Then, we have

T IvLel =L{(v4, T3Vg)+o, (V)01 +(Ve, JuVatp) + UuV I, Vi)}

(2.6)

1)

1/2
~wel+|[z ] e
since
IV, = lv(z J?,) =0.
Define a function 8 on R> by
0, ifx-6>3
0(x)=im(—3%- é+2), if5=x-¢é

2
=3,

im ifx-é<}
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Let no(x) =cos [6(x)], n1(x) =sin [6(x)], and let
Jor(r)= igl Nsati) 1%

Thus J,,,’R‘ is unity precisely in the region where the electrons are in the clusters
appropriate to a. Note that

§J§.R =1, 2.7)
ZI(VIe) ko = cR 2, 2.8)
Let Jr: 3> Ho by (Jré)a(ri) = (Jo,rd)(r: — 8.(i)R). By (2.7), we get
Wzl = I8}l (2.9)
Moreover, we note that for any allowed symmetry
Uw(S)Tr =JrU(S). (2.10)
Lemma 2.3. For any ¢ € Q(H(R))and R=1:
(Jrd, HoJrd) =<(6, H(R)$)+dR ||, (2.11)

where d is a universal cogstant.

Proof. By (2.6), the only terms in H(R) —J£H.Jx are
@ L (VLY,

(b) {:fczz,k( Iri_'il—l);

ieCola),je C1(a)
2 A-
© LK T Zali-ReM+ 3 zun™).
a i€ Cola) ieCy(a)

nytl:lq.t 1?.(8’), the first term is an o?erator which is O(R ~?) and the operator norm
of the third term is clearly O(R™"). Since the second term i iti
the inequality in (2.11) follows. W & positive operator,

Theorem 2.4. Suppose that limg. po(H(R))=
+00 Moo = uo(He) and Hy)<
#(Hx). Then (2.2) holds. In any event, for k <o, we get ” s (Hi)

i(Ho) = i (H(R)) +0(1). (2.2"

Proof. Under the hypotheses of the first sentence we know, b

, by (2.1), that
pi(H(R)) < uo(H(R)) for 15 large. Thus, we can find a subspace V of dim & with
(¢, H(R)$) = ur(H(R))|#* for all ¢ € V. Then by (2.11) and (2.9), we get

Uz, Holrd) <[px (H(R))+dR ' YJr, Jr))
for all ¢ € V. Thus, (2.2) holds.
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In the general case, we only know that (¢, H(R)¢) = (u«(H R +e)lglP, so
one only gets (2.2). 1

Proof of Theorem 1.1. The result for k <o follows from Theorems 2.2 and
2.4. To get the k = co result, we use the HVZ Theorem (see Sec. XIIL5 of Ref. 8)
which asserts in this case that uo(H(R))= p1i(H(R)), po(H,) = p1(Hx), where
H(R), H. is obtained by considering N —1 electrons inplace of N. 1

Remark. We have been careful to keep track of the errors to see that if
ie(Hoo) < ool Hoo), then (ue(H(R)) — pi(He)) = O(R 1. [In applying Theorem
2.4 we note that by induction on N, p«(H(R)) > ool Hoo).] Of course, one can say
much more; see Sec. 3.

Proof of Theorem 1.2. By (2.3) and (2.10), the maps Iz and Jr take #w.o
(respectively, #w) into ¥w (respectively, Hw.0) and thus for k <o, the proof is
identical to that above. For k = 00, we need the version of the HVZ theorem with
symmetry [9, 10, 5], which implies that

ool ™) = min p,(H™?)

for an explicit finite set of W;’s determined by W. W
This completes the main part of this section. We now wish to describe how to
modify the arguments to accommodate somewhere negative potentials between
the “electrons.” We emphasize that the rest of this section is unnecessary for
treating the molecular case. Therefore we shall only sketch the details.
(i) Instead of breaking R® into two regions, x o é € (—~0,3R), x o é€ (R, ),
we break it into N + 1 regions:

) (£ S8 (o0 ) (D)
3N/’\3N’3N/°\3N’3N/""" N
and let a run through (N + 1)V indices rather than through 2V indices.

(i) If a corresgonds to a decomposition with all electrons in one end or the
other, we take H® as in the general case, independent of R. If a is a different
decomposition (we call all such a’s, ), we take an R-dependent operator as
follows: For each a at least one of the N + 1 regions has no electrons, so choose

j(a) so that

XOéE(_m,

((3]' -1R (3j+1)
3N ’ 3N
has no electrons; and let (a) be the decomposition with all electrons to the left of
jr/ N lumped to region 0 and all electrons to the right lumped to region N. Let
H'® = J, HyayJa.r, Where J, g is picked as in the general proof so that J, g forces
the electrons into the regions specified by a and ¥, J Zp=1.
(iii) Note thatif ae P

Aillllv w1(JaHp@ayla) = poo{Hpa))s

since at least one electron in J,Hj)Ja does not interact with either nucleus so that
by the HvZ theorem p1(JaH@)Ja) Z s How) +0(1).
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(iv) Thus, for any fixed k if

“’k( @ Ha) S#ao( @ Ha),
a€P agD
then
(D H.) = @ H.)
a agD
for R large. i .

(v) Since the electrons to the left of j(a)R/ N, and those to the rightof j(a)R/N
are at least 2R/3N from each other, H,(,) and H(R) only differ by terms which
involve interactions between different electrons and therefore for é € Q(H(R)),

(Urd, HS Trd) = (¢, H(R)$)+ O(R ™).

(vi) The steps above replace those in the proof of Theorem 2.4 when there
may be somewhere negative potentials between “electrons.” The arguments
leading to Theorem 2.2 go through without change.

3. 1/R Expansion

Here we consider the situation where H. has a discrete nondegenerate
eigenvalue or more properly, since H., has few nondegenerate eigenvalues on
account of symmetry, where some HS” has discrete eigenvalues E, of
degeneracy n =dim W (HS" is always a direct sum of n unitarily equivalently
operators AY; thus we mean that A™ has a nondegenerate eigenvalue—
henceforth we say “H<Y" has a ‘nondegenerate’ eigenvalue’ to describe this). In
this case, Theorem 1.2 tells us that H"’(R) has a unique eigenvalue E(R) which
converges to E as R - 0. We will recover the result of Ahlrichs[1] that E(R) has
an asymptotic series

E(R)~ § aR7* (3.1)
K=o

{i.e., foreach m, R"[E(R)-Y;_, &R *]>0asR > 0o}, Our method can also be
used to establish a norm asymptotic series for a vector ¢(R) in ¥ so that Izy(R)
is an eigenvector of H™(R) with eigenvalue E(R) (Ir is described in Sec. 2). This
is also aresult of Ahlrichs[1]. Ahlrichs does not anywhere explicitly state that he is
assuming nondegeneracy of eigenvalues, but his proofs exploit formal Rayleigh~
Schrodinger (rs) series. For the case of C* but nonanalytic perturbations, there is
not always a good Rs theory, for there are examples where the eigenvectors are

not continuous although the eigenvalues are C*. Consider the following example
of Rellich [18, 29] for simplicity:

H(/\)=—exp (_A-z)(COS (2/A) sin (2//\))’

sin (2/A) —cos (2/A)
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for real A # 0, H(0) = 0. The eigenvalues are
E.(A)=%xe %,

with eigenvectors

sin (1/A) _{cos(1/A)
”’*(A):(—cos (l/A))’ ¢-A)= (sin (1/)«))’

respectively. E. are C* but ¢.. do not have limits as A >0. '

However, there is a well-defined procedure which one can try .where if the
degeneracy is reduced at finite order, one obtains asymptotic series. We 95:0
strengthen a result of Ahlrichs in that we prove that exchange terms are O(e™")
rather than just O(R M),

Our proof differs from that of Ahlrichs in two ways: . .

(i) Abhlrichs first makes a multipole expansion of the potentla] am'i then agphes
perturbation theory. We do things in the opposite order which is technically
somewhat simple. . )

(ii) We control errors by the method of writing E(R) in terms of mtc;grals of
resolvents and then the perturbation expansion is just a geometric expansion. The
error is then very simple to write down. This method works for virtually all
rigorous perturbation problems [8]. o

Nevertheless, we emphasize that the Ahlrichs proof is similar in s.pmt to ours;
moreover, unlike ours, it works to prove spectral concentratior'x (in a suitable
sense) for eigenvalues of H. which are above the continuum limit.

Lemma 3.1. Let E, be a “nondegenerate” discrete eigenvalue of H W andlet

7w be the corresponding eigenvector. Let n(R) be the corresponding eigenvector
of H(R). Then [after changing the phase of n(R) if necessary], we have

IrM2— n(R)| > 0. (3.2)

Let 0’ be a single nonzero component of 7. (component in the direct sum over a
sense). Then, we have

(Irni, 1(R))~ (N, M) # 0. (3.3

Proof. Equation (3.3) follows from (3.2) and (2.4). TQ prove (3.2) we note tfxtat
by the same method as used in Lemma 2.1, (H(R)Ir — IrHwo)nw| = O(R™).
Thus since E(R)~ Ew, [(H(R)— E(R))Ign«l|~> 0. Let

d(R)=dist[E(R),{A|A e o (H(R)\{E(R)}}]
and let P(R) be the projection onto n(R). Then
(1 = P(R) rneol = d(R)'I(H(R) — E(R))Irneo]| > 0.

Since ||[7r7 |~ Il by (2.4), we have proven (3.2). B
Let us suppose temporarily that the following holds:

Eo< peo(Hw) 3.4)
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rather than just Ee < uo(HS' ). This will allow us to talk about [H(R)—E]™!
without restricting to symmetry subspaces. At the conclusion of the section, we
will discuss what to do when (3.4) fails.

The following result is only needed to show that exchange terms are O(e °F).
If we were willing to settle for O(R ™), then it could be dispensed with.

Lemma 3.2. Fix £ >0 small and a € R*". Then for some >0, and some
C <00, we have

sup [e®**[H(R)-E] ‘e ®*|=C (3.5) .

|E~Ewl=¢
for all R sufficiently large.
Proof. We use ideas of Combes and Thomas [19] to find that
e™™*(H(R))e™®* = Hy(R),

whc.ere Hs(R)=H(R)+8C,+8C,, where C, C, are R-independent operators,
C:is a constant, and C; is —A bounded with relative bound zero. We can thus pick
& so small and R so large that

sup  [ISCIH(R) - ET"'|+&”|ICIH(R) - E] )<}
|E~El=e
Therefore, by standard arguments, we get
IHs(R)— ET|=<2|[H(R)~ E]™"|,

proving (3.5). B
Let

P(R)=Qmi)! §

|E~E(R)|=s

[E-H(R) ' dE.

P(R) differs from P(R), the projection onto E(R), in that we are not projecting
onto a symmetry subspace. Typically, there are several different symmetry
sul(avsvp)aces W=W,...,W, so that E, is a nondegenerate eigenvalue of
HX . HY and generally different eigenvalues E(R) = E,(R), ..., E(R)
each converging to Ew. P(R) is then the projection onto eigenvectors for any
E,'(allil ). The following result will imply that exchange terms are exponentially
small.

Lemma 3.3. Let 0, 7, lie in distinct components of %, and suppose that (3.4)
holds. Suppose that e**'y; € L2. Then for some & > 0,

Iz, P(R)Irny) = O(e™R). (3.6)
If, moreover, n, € D(H,) and e“"‘]Hmm €L? then
(HR)Izm1, B(R)Izny) = O(e ). ' 3.7)
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Proof. Let & be the vector in R® defined in (1.1). Given a decomposition a, let
5. be the vector in R*N whose ith component is 8,(i)é. Let 1, (respectively, 72) be
in %, (respectively, ). Since by hypothesis a # b, we can find v € R*N so that
v - (8, — 8,) = 1. By hypothesis and Lemma 3.2,

= eso»(r—s‘,R)IRm and esw(r—a,,k)};(R)Ian =%,
are ih L? for some & >0 with norms uniformly bounded as R - 0. Thus,
(Irm, ﬁ(R)IRTIz) =e (71, 72)
is O(e™®F), proving (3.6). The proof of (3.7) is similar. W

Theorem 3.4. Suppose that (3.4) holds. Let W, W, be two symmetry types so
that E is a “nondegenerate” eigenvalue of HS'”. Let m; (i=1,2) be the
corresponding eigenvectors and suppose that (1), = c{(n2)a for some nonzero
constant ¢ and some decomposition a. Then

Ey(R)-E(R)=0(e™) (3.8)
for some 6 >0.
Proof. By (3.3), for R sufficiently large:
Ey(R) = (HR)Ir(1)ar PR)Irn)/ Ur (n1)ay P(RMr:)-
By Lemma 3.3, all inner products from components (m)s with b # a are O(e %)
Thus,
Ey(R) = (HR)r(11)as PR)Ir(11)a)/ Ur (11)as PR)r (m1)a) + Oe ™).
3.9

This proves (3.8). @

Example. Let N = 1 and suppose we have an eigenvalue Ex corresponding to
the decomposition a = {1}. Then by symmetry b = {2} is also a decomposition with
eigenvalue Ec. If 7,, 7, are the corresponding eigenvectors related under inter-
change of electrons, then (1, = 1,)/V2 = 7. are eigenvectors with different sym-
metries. By (3.8), the error (i.e., exchange) between the eigenvalues is O(e™°").

Theorem 3.5. Suppose that (3.4) holds. Let E, be a “nondegenerate”
eigenvalue of H. W for some W, and let E(R) be the eigenvalue H W)(R)
converging to E«. Then there exist a3, as, . . ., so that for any N, we have

E(R)-Ew— § a.R"=0R™™ (3.10)
n=1

as R » 0.

Proof. By (3.9), we can find y € #,,an eigenfunction of H, so that E (R) canbe
written in terms of
Ury: [H(R)~ 2] Iry) 3.11)

so it suffices to obtain an asymptotic series for (3.11).
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On %, define
Y(R)=— Y Zgln-Ré|'—= ¥ Za|n+Ré™
ieCo(a) ieCy(a)

+ Y |ri—r;—Ré}™.
ieCola)feCyla)

I is a unitary map of %, onto L*(R*™) and

H(R)Ig = Ir(H, + Y(R)).
Thus,

Ury, [H(R)= 2] ' Iry) = (v, [Ho + Y(R) - 2] 'y) =f(R).
Using the exponential falloff of vy, one sees easily that

LY (RYH. —2) " Myll=< CiR ™.
Thus, we get

N
fR)= T (v, (Ha=2) [V (R)H=2) ' T'1)+ OR™NT).
Now expand Y(R) in a multipole expansion. Explicitly, we get

-~ K N
Y(R)= ¥ R'A;+Bk(R),
i=1
where

I(A+1)""2Bx (R)(-A+1)""?e ™| = O(R™* "),

Thus, f(R) has an asymptotic expansion. B

Rer'nark. The a,’s are thus given by perturbation theory in a multipole
expansion. The usual arguments then lead to a calculation of the leading behavior
e.g., if both clusters are neutral and have no dipole moments or quadrupolé
moment then the leading behavior is a second-order dipole, i.e., O(R¢) [20, pp
319-322]. s

We close ¥his section with an indication of what to do when (3.4) fails. It pays to
bea.r an explicit example in mind, say a case with N =3, Let a be the decom-
position with Co(a) ={1, 2}, and let W be the totally antisymmetric space. If the
continuum for Hy is determined by an eigenvalue of H{3’ which is symmetric
under interchange and for HY’ by an eigenvalue of H'%’ which is antisymmetric
then there can be an eigenvalue Eo of HS With pe(Hw) < Eo < ool HY). ,

In the general situation, pick some a with 7, # 0. In the above case Co(a) =
{1, 2}. Let W' be the representation of the subgroup of the symmetric group
which does not interchange any electrons between Co(a) and Cy(a). W' is not in
general irreducible, W9=w® @D - @WE. In the above special case, W
involves antisymmetry between 1 and 2 only; it is irreducible. Let H(" denote

the restriction of H, to all vectors transforming under some W{®. It is easy to see
that

oH ) ca(HY),
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and, in particular, ;
Eo<poHS)<poH).

Now we proceed as follows: Let P(R) be the projection onto the eigenspace of
H(R) restricted to the subspace of symmetry W', Then, we get

E(R) = (Iznay H(R)P(R)Ixn)/ Irna, P(R)Ir7).
By writing .
(IxNa, P(R)rm) = IrP(R)Na, Irn),

with P(R) the projection onto the eigenspace for H, + Y (R) restricted to the
#7< we can replace n by 1. With only an error of O(e”®%). Then the argument
proceeds as in the case where (3.4) holds except we always deal with H, restricted
to .7 rather than the full H..

4. Coefficients of the 1/R Expansion

After one has proved that the 1/ R series is asymptotic, it is natural to enquire
whether the series approximates the function in a stronger sense. For simplicity,
we will study the 1/R expansion for the ground state (1 22;) of H,". We shall
derive a rigorous upper bound to the |a,|’s and shall present numerical evidence
that the series is neither convergent for small 1/R nor even Borel summable. In
fact, the nth coefficient a, appears to grow like —Co(n +1)!/ 2"+

As we have mentioned in Sec. 1, there is a close analogy between these results
and recent results [13, 14] on the double-welled anharmonic oscillator pr+xi+
2gx*+ g%x*. In that case too the perturbation coefficients grow like (n +a)!B" for
suitable @, 8 (numerical, not rigorous). In the anharmonic oscillator, the 8 that
arises is connected to the y which occurs in the asymptotics of the gap AE(g)
between the two lowest eigenvalues via (AE)(g) = Cg® exp (—y/ g)byy=28.In
our case, the 1/2" is presumably related to the fact that the gap in H:" behaves
like c exp (—R) [16, 21].

If the degeneracy of the double well is removed by replacing p®+x*+2gx” +
gx*by p?+(1+¢)x*+2gx"+g°x*, then the resulting perturbation series is Borel
summable [22]. This might lead one to suspect that the series for the ground state
of —A—r~'=¢|r—R|™" is Borel summable for { <1. However, the proof for the
oscillator [22] does not extend to this case and numerical analysis of the
coefficients using the methods of the Appendix suggest that for 0 </ <1 there is
still a singularity of the Borel transform on the positive real axis. There is some
evidence for Borel summability if £ <0; indeed a.({ =—1)=(-1)"a.({ =1), so
that numerically a,({=-1)~(-1"(n+ 1)12""! which suggests Borel sum-
mability. We now turn to our detailed study of the coefficients of the 1 /R
expansion for the ground state in H.".

Theorem 4.1. The coefficients a, of the 1/R expansion of E(R), the ground
state of H", satisfy
la.|=A™ 'n! (4.1)
for a suitable constant A.
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Proof. By Theorem 3.5 and its proof,
E(R)=[¢, P(R)¢] (¢, HR)P(R)p)+" - -,

where the dots denote exponential errors, H(R)= Hy+ V(R), Ho=—-A>—1/r,
V(R)=—~|R=r|"+R™", where ° ° ’
P(R)=(2mi)™"

|E-Eol=¢

and ¢ is the ground state (1s) of Hy. Moreover, as in that proof,

[E-H(R )]_,1 dE

(H(R)$, P(R)$) = go bR+ ORN,

. PRI$)= T cR™+OR™),

It is easy to see since co # 0 that it suffices to prove an estimate of the form (4.1)
separately for the b, and c,. We consider the latter case; the situation for b, is
similar.

Expand V(R) in a formal multipole expansion V(R)=Y_, M,R™". M, is an
unbounded multiplication operator bounded by Y ie., |M,¢|=r"""|¢| point-
wise. By expanding [E - H(R)] '=[E-Ho— V(R)] 'ina geometric series as i
Theorem 3.5, we see that ¢, is a contour integral of a sum of terms of the form

(¢, (E—Ho) '"Mi,(E~Ho) ™" - - - Mi(E —Ho) '), 4.2)

w_itl.x ky+- - -+ k; = n. The number of such terms is dominated by the number of
distinct ways of decomposing # as a sum j; + - - - + j, with j; =0, i.e., 3*7). Thus,
the number of terms is certainly dominated by 4" and thus we need only prove a
bound of form (4.1) for each term of the form (4.2). .
We now borrow an argument of Avron et al. [23] used to obtain a similar

bound for the Zeeman coefficients. As explained in Sec. 3, we can find some
numbers, C, D >0 so that

le~®(Ho—E) ' e**|=C 4.3)
for all [§|=<D and E with |E — E|= ¢ and so that
le®gll<C. (4.4)
Now write
(E—Ho) "My, - M(E~Ho) "¢ = To$i Ty - - - Ty ™', (4.5)
with

Si=M,, exp (~kDr/n) and T,=e"®""(H,—E) !¢ P
with

¢ POTENTIAL ENERGY CURVES

Note that ||T;| < C and since Mir “*! is bounded, we get

Isil=n""'Cg

for some constant Cy, since
k

sup =" e 21| =sup n*y* e = supla-+y) e 1)
r>0 y>0 y>0

TABLE L. 1/R coefficients for H,".

. -a, afa_; -a, 2" ey
0 0.5 - 1.0

1 0.0 0.0 0.0

2 0.0 - 0.0

3 0.0 - 0.0

4 2.25 - 0.6

5 0.0 0.0 0.0

6 7.5 - 0.190476
7 5.325  x10 7.1 0.338095
8 1.21172 x10°  2.27553 0.170966
9 8.865 x10°  7.31605 0.250159
10 s.29746 x10°  5.97568 0.27179%
11 2.90547_ x10% __ 5.48467 0.248450
12 2.04640 x10°  7.04327 0.269215
13 1.44383 x10®  7.05544 0.271348
4 1.08898 x107  7.54321 0.272878
15 8.83673 x10  8.11470 0.276791
16 7.55200 x10°  8.54615 0.278294
17 6.83126 x10°  9.04563 0.279705
18 6.51458 x100  9.53644 0.280778
19 6.53080 x10*!  10.02489 0.281476
20 6.86982 x10'%  10.51911 0.281988
21 7.56566 x10%3  11.01289 0.282319
22 8.70701 x10™  11.50859 0.282530
23 1.04525 x10'®  12.00468 0.282640
24 1.30676 x10*7  12.50190 0.282683
25 1.69870 x10%  12.99932 0.282668
26 2.29282 x10*°  13.49750 0.282616
27 3.20898 x102%  13.99577 0.282531
28 4.65127 x10°1  14.49454 0.282424
29 6.97382 x10°%  14.99337 0.282300
30 1.08042 x10%%  15.49253 0.282164
31 172778 x10%%  15.99172 0.282018
32 2.84931 x10%®  16.49115 0.281866
33 4.84114 x10°7  16.99058 0.281710
% 8.46724 x102%  17.49019 0.281552
35 1.52324 x10°0  17.98980 0.281393
36 2.8164 x10°0  18.48953 0.281233
37 5.34813 x10°2  18.98926 0.281074
38 1.04230 x10°%  19.48906 0.280917
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Thus, each term of the form (4.2) is dominated by
(C+L)""*Cin"< A" 'n!

for suitable A. A

We have calculated the first 39 a,’s of the 1/R expansion for the ground state
of H,". Our results appear in column 1 of Table I. Qur computational methods are
described in the Appendix. Our results agree with the previous work of Dalgarno
and Stewart [24], who carried out the computation as far as a,;. [Coulson [25]
reported an incorrect value fof a;o, which was repeated in Ref. 26 (corrected in
Ref. 24) and quite recently in Ref. 28.]

For i=<11, the ratio a;/a;_; (given in column 2 of Table I) is not steadily
increasing, so it would have been premature on the basis of such a low order
calculation to conclude that the series Y., a:R ™" diverges for all R™!>0. If
anything, the decrease of the ratio for i =9, 10, 11 suggests that the series might
actually converge for sufficiently small R~ It is only for i = 13 that one sees the
linear growth in the ratio which implies divergence for all R™!>0. Indeed, one
sees fairly strong evidence for convergence of the ratio to 3(i + 1) which suggests
the Ansatz a; ~ (i +1)!12'*!, The normalized quantities

Ni=—-a2"/(i+1)

are listed in column 3 of Table I. These quantities steadily increase for 11 < <24
and then decrease at an accelerating rate for 24 =<;=39, the limit of our
calculation. We thus appear to still be sufficiently far from *“‘asymptopia” to find
reliable values for numbers c; in the natural Ansatz

N,, ~CQ+C1/n +(,'2/n2+‘ ey,
although one would expect that ¢, lies somewhere between 0.24 and 0.30.
Appendix: Recursive Calculation of the Coefficients of the
1/R Expansion for H,"

Here we outline the recursive procedure used to generate the results of Table
L. Our analysis takes off from the idea of Coulson [25] to expand the perturbed
wave functions in terms of generalized Laguerre functions and Legendre poly-
nomials.

With
H,= —%Vz‘ 1/r, Eo= "%,
Yo=cloe "(coo =1), (A.1)
and

H=Hy~ Y, —71 Pi{cos 6),
i=1 R
21

¢=¢0+ Z F‘l’ﬁ (A'2)

i=1

N
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the perturbative equations for i =2 are
(H—Eo)i = :g:) Ei +:§0 r TP y(cos 8)Y;. (A.3)
For j =1, write ¢; as
b=3 T U 1 )Picos ) e, (A4)

ZokZ0 277
where z = 2r. The factor of (j—{)!/2'~" is useful computationally for preventing
the ¢/;’s from increasing too rapidly. Following Coulson, E; =0, E> =0, and we

may take ¢, =0. . .
In order for (A.3) to have a solution, it is necessary that the right-hand side of

{A.3) be orthogonal to yg. Thus

1,2 i-2 o
E=~([0) (TE[uworE [F7 ) a5
j=1 j=1
Using (A.4) to expand the ¢;’s, it follows that
i-2 j i © .
Ei=—l( Yy ]—'-E,-_,» i c{)kI dz 2’ Li(z)Lo(z) e
245 2 k=0 o
o it it 1 .
P =D L I d(cos 6)P;_;_1(cos 8)P,(cos 0)ch
i=1i=0k=0 2' 2J),
0 i—j—1
XI dz zzz';,-,,-, L¥(2) e_’). (A.6)
0
The integral of Legendre pdlynomials is 814-;-1[2/(2i —2j —1)]. Thus
E'=—1 EZL!-E,-_,- i cf,kj dz 2’Li(z)Lo(z) e™*
AV= A k=0 o
21 @Qj-itrEEn
— Ci—j~1,
+,~=Z.-,2 2i-2j—-1 2% L, G
© 221"2]"2 21 2i-2i-1 .
XL dZZZFT LE¥ Y (z)Ls (z)e ) (A.7)
Since [27, Eq. 8.971.6]
zL§(z)=—L5(z)+(a +1)L5(2), (A.8)

E,=—> iiZQE;_, ¥ CGkI dz zLi(z)[2Lo(z)~Li(z)]e™*
' 2\;512 k=0 o

i-2 1 2j—i+1)12dn
+ Y (2f ] Y

iSa2i-2j-1 2

I
Ci—j-1k
k=0

xr dz 25U LU G [(2i = 2))LE T (2) - LT (2)] e

0

)
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1 2j—i+1)!

2kt z —2j-1 2

Sy22i—

--5(L5 b ek~

X [(2i ~2)(2i = 2 = 1)1 y10 — Ri—2])le];1. ])

Qj—i+)i—)QRi-2j-

22

)

(Z 5 Ei-i(cho —cb )+ Z

=if2

X (ci—j-10 _C{:-i—l,l‘))y (A.9)

where we have used [27, Eq. 7.414.3] to evaluate the integrals. It is straight-
forward to see that

z i—1 i=l
5 (H—Eogi= z z c,k( ) (k+DPi(cos 0)z'LY* ' (z) e™*%, (A.10)
and that
i—-1
L Ei-p = EicioPo(cos 6)Lo(z) e /2
i=
+ii2 i—1-1 ti-1 E (] ) P Iy 2041 22
i~ CiPr (cos 0)z2'LE (2) e ;
=0 k=0 j=I+max(l,k) 2
(A.11)
so by [27, Eq. 8.971.6]
7 i-1
2, g i~ = EicooPo(cos 0)[Ly(z) —3L1(z)] e 2
_i—2 i~ L‘ i-1 (] l)y
1=0 k=12 j=t+mantie—1) 2 €l
X Pi(cos 0)z'LY ! (z) e*/?
i~2 i—i— i-1 1
z 2 (k+1+1 g, U=
o )i=l+£xu,k) 0= ST Clk
X Py(cos 0)z'Ly(2) e*/2
i~2 i~-1-2 k - (] l)
- —+1+
1=0 k=0 (2 ! 1), l+zk+1E-’ 2/ Chss
X Pi(cos 8)z'Ly*! (z) e/ (A.12)

09
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Similarly,
23 i
=Y FTTNP i i(cos 6)9,
2=0
.0 Z_' 1 -z/2
=Coo 7 P;_i(cos 8)Loz) e
i~2i=2 j-1 ;-m X (_m)! ! ’_I_l m 2
+ v v i J . ( )
lgo igl m=v n:0‘21+ 1) mn 27" \0 0 0
=y
X Pj(cos 0)%2"'L,2."'”(z) e 2, (A.13)

where we have used [20, Eq. (107.15)].

We need to express z'T"LI"*!(z)e as a linear combination of
Z'L¥*'(z) e *. We work in the space L*([0, ®), zdz), in which these latter
functions are orthogonal, and the square of their normsis (2/ + k +1)!/k!. Expand
(27, Eq. 8.970.2]

-z/2

o B . &a +2m+1\z" _, .
Z' ]+mLim*l(z)e z/2=zm+t i Zo(_l)P(n n:"p )Izje /2’ (A14)
p= :
so by [27, Table Eq. 11]
x
J dZ ZZILiF-l(z)e*:/ZgM*i‘iLimd-l(z)8—2/2
(V]

(—1)(”7'"+l I dze iz "R g
1 Td+m+i—j+p+2)TU+k+j—m—p—i)

E::U (_l)p(n +2m+ 1)_

» n—p /p! k! Ti+j—-m-p—i)
(A.15)
The last ratio of I'’s is
(DTG —j+m—1+p+1)/Ti—-j+m~1+p—k+1)], (A.16)
SO
i-l n
Zi—i+mLim+l(z) e—z/2= z z (_1)p+k
. k=0 p=0
x(n+2m+l)l (I+m+i—j+p+1)!
n—-p /p! Ql+k+1)
Mi-jtm=l+p+1) 'L (z) e (A.17)

Fi—-j+m-1+p—k+1)
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Inserting this expression in (A.13) and using the fact that L (z) = L3(z), we obtain

g rT P 1(cos 8)¢; = oo Z—Pi—l(COS OLY N(z)e™?

2i
i-2 i~ i-2 j—-1 j-m n

DD N CS Vi VRSV

1=0k=0j=1m=0n=0p=0
i (j—m)!( i—j—1 m)
I
X Chun 5 \o 0 P
x2“+f("+2m+1)l (I+m+i—j+p+1)!
n—-p /p! QI+k+1)!
Fi—-j+m-Il+p+1)
l"(t—]+m—l+p k+1)

z!
2

lel+1(z) 8_2/2.

(A.18)

The ranges of the summations can be reduced. For example, I (i —j +m — [ +
p+k+1)=0 unless k—i+j—m+I<p=n. Also, the 3—j symbol vanishes
unless i—~j~1=<l+m=l+j—1,ie., j=3(—1).

We can now write down the recursive equations for the c;
coefficients of the basis functions.

If k=0, /=0, we can set

x’s by matching

coo=0. (A.19)
Ifk=0,1=<l=<i-2,
i i (] ) i—j i
CLO_ (+1) Y Ei; 277 (clo —¢ly)
j=1+1 -
2 i i . i=m)!
+(21+1) Z Y X XD
j=(i~1)/2 m=0 n=0 p=0 -
xz,,,_,(l i—j—1 m)z(n+2m+1)_l_(I+m+i—j+p+l)!)
0 0 0 n—p /p! @2r+1) ’
(A.20)
andif k=0,/=i-1,
i 1
Ci-1,0= 1 72 o (A.21)
Ifilsi-3and l=sk=i-1-2
i 1 _’_‘ il G- i-j j
Gk k+l( 2 j=t+max(1,k—1) ‘_i(i—l)!z €k
—81,08k,1
i—1
rh+1+1) Y B A=,
j=l+k @-1n

] ‘\.
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k i-1 G-n
(2+l+1),‘=l+k+l lI(l I)' cl'k+l
i-2 -1 j-m
+QRI+D-DE ¥
j=(i~0)/2 m=0 n=max(0,k—i+j—m+1)
. i (—m)! m-,(l i—j—1 m)2
X -1)° inn f 2
p=|ntx(0.kz—i+i—m+l)( ye -n 0 0 0
x(n+2m+1)l(l+m+i—j+p+l)! Ti—j+m—I+p+1) )
n—-p /p! QI+k+1) Fi—-j+m—l+p—k+1)/’
(A.22)
Iflsi-2andk=i-1-1,
i 21+1 i— izl j=m
Cli-1-1 = ( -t
j=ti=13/2 m=0n=j-m—1
n CGmm)! (1 i-j-1 m)z(n+2m+l)l
~1)Pp! + —
Z<=,-§,._1( Wem 21 2 o o o\ a-p Jp
(I+m+i—j+p+I) T(i—j+m—I+p+1)
G Tm—j+p+2) (A23)
Ifl<i-2andk=i-|,
N G V= e ol i—j-1 m\?
oy = 12" ). a2
Crit i j=(i—l)/2mz=0( V' remi 0 0 0 ( )
Ifl=i-1,
cia = —(1/i)(1/2" Mego- (A.25)

Notes added after refereeing. (i) The idea following Theorem 2.2 of using
special J's so that (2.6) holds, an idea we attribute to Ref. 17, appears earlier in
Ref. 30. (ii) We are grateful to the referee for emphasizing to us the beautiful
differential equation methods in Ref. 28. (iii) Motivated by our preprint, Brezin
and Zinn-Justin [31] have carried the analogy to the double well further. In a
nonngorous way, they derive an asymptotic formula —Co(n +1)!/ 2! with
Co=2/e*=0.2706705665 consistent with Table I, column 3.

The authors would like to thank R. Ahlrichs, J. Combes, A. Dalgarno, R.
Seiler, and W. Thirring for valuable conversations and correspondence. One of us
(J.D.M.) would like to thank R. Harris for his generous support made available
under a grant from the National Science Foundation. We also thank the Princeton
University Computer Center for the use of its facilities.
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Note added in proof: The figures presented in Table I supersede those in a
preprint of this article, the last few of which apparently suffered from accumulat-
ing roundof errors in the last few digits. The numbers in Table I agree with those
obtained by J. Cizek, M. Clay, and J. Paldus in an independent calculation. We
thank J. Cizek for telling us about their work.
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