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We consider unique continuation theorems for solution of inequalities IAn( < 
W(x) 1 u(x)\ with W allowed to be unbounded. We obtain two kinds of results. One 
allows WE LfO#?“) with p > n - 2 for n > 5, p > f(2n - 1) for n < 5. The other 
requires fW’ to be -d-form bounded for all f E CF. 

1. INTRODUCTION 

In this paper, we want to consider unique continuation theorems in the 
following sense: 

DEFINITION. We say that a function W on 0, a connected open subset of 
R”, has the unique continuation property if and only if every function, U, 
obeying 

IA4x)l G W(x) I u(x)1 

which is equal to zero on some open set is identically zero on Q. 

(1.1) 

The classical theorems going back to Carleman [2] and Miiller [7] require 
that WE Lge. While there is an extensive literature on replacing A in (1.1) 
by more general differential operators (see Hormander [5]), there appears to 
have been no previous attempts at allowing FV’s with local singularities. This 
is a situation first emphasized by Lavine. 
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In Section 2, we will use a method of Protter [8] and show that W has the 
unique continuation property if for any f E CF, there is a, b with 

In Sections 3-7 we will exploit some ideas of Heinz [4] to prove the 
unique continuation property when WE Lf,,(lR”) p > n - 2 for n > 5, 
p > 3(2n - 1) for n < 5. We note that while these results strengthen those of 
Section 2, so far as Lf,, conditions are concerned, it can happen that (1.2) 
holds with W @ Lf,,, p given by the above. In particular, if n = 3N, 
r = (r, ,..., r,v), ri E R3 and W = xi, j Vij(ri - ri) - E, then (1.2) only 
requires that V, E Lieak,,oc (independent of N), while for N > 2, Lp 
conditions require V, E Lp,, with p = 2N - 2/3. 

Our first result is a consequence of the following theorem which may be of 
interest in its own right. Let B” be the unit ball in R” and put 

llfllp= (, lfwqp~ Pa 1. 8” 
Then we have 

THEOREM 1.1. Let p, q satisfy 1 < q < 2 < p and 

(n - 2)(1/q - l/P) < 15 (n - 1)/q < 1 + (n/P), l/P + l/q < 1 (1.3) 

Then there is a constant C such that 

II@f Ilp < c IWf II4 (1.4) 

holds for all integers k and all f E Cp(R”\{O}). 

Since unique continuation is a local property, obviously one need only 
require that W be Lf,, on Q\C, with C a closed set of measure zero so that 
Q\C isconnected. Thus the Miiller theorem includes the important case of 
atomic potentials (Vij(r) = cfij I rl-‘). 

Let us emphasize the unsatisfactory nature of our results here. We are 
reasonable sure that any WE L&m”) with p > n/2 has the unique 
continuation property but we are unable to prove this. 

Finally, we should mention some recent related results of Amrein and 
Berthier [ 1 ] who prove tht for certain potentials, V, with local singularities, 
-A + V has no eigenfunctions of compact support (this is one of the main 
applications of the unique continuation property, see Kato [6] and 
Section 7). Since we have not seen the most detailed results of Amrein and 
Berthier, we cannot make a comparison. 
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2. PROTTER'S INEQUALITIES 

We assume that (1.1) holds with W2 being --d-form bounded in a ball B 
of radius r,, < 1. By this we mean that 

II W412 G ww12 + 11~112), u E c:(B), (2.1) 

holds for some constant C, where the norm is that of L’(B). A sufficient 
condition for (7.1) to hold is that WE tip’, i.e., that 

I 1 W(x)12 Ix- y12-” dx < C,, yE R” 
Bnlx--Yl<l 

(cf. [lo]). In proving unique continuation under this hypothesis we shall 
make use of two inequalities due to Protter [8]. Take the center of B as the 
origin and put w = wq(r) = exp{rp4}. Then there are constants &, and C, and 
a function ~$3) -+ 0 as p -+ co such that if p > /I,, 

and 

~IwVv~2dx~o~)~r~i21wA~~2dx, (2.3) 

where v vanishes outside B WV + 0 as r + 0 for every j3 > 0. Now suppose u 
satisfies (1.1) and vanishes near the origin. Let a be any number satisfying 
0 < a < r,, , and let q be any function in C;(B) such that v, = 1 for (x] < a. 
Put u = VU. Then we have 

1 r<ll 
rot21wAlr12dxgjr0’21wWv12dY 

G Cdl vwI12 + II WV II’). (2.4) 

V(wv) = - pr-4-27wu + wV2), 

we see by (2.2) and (2.3) that the left-hand side of (2.4) is bounded by 

a,@) 
I 

r4+2 1 wAu12 dx, 

where 

a,(p) = 3c,p-2 + 2a@). 
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Take p so large that o,(p) < f . Then 

Combining this with (2.2) we obtain 

where 

a,CP> = Cdl + %GCW4. 

But (2.6) implies 

(2.6) 

This shows that u z 0 for 1x1 < a. Since a was any value <r,, we see that 
u E 0 in B. The argument in an arbitrary domain is standard. 

We have therefore proved: 

THEOREM 2.1. If W obeys (2.1), u obeys (1.1) and it vanishes in a small 
ball, then u = 0. 

3. ESTIMATE IN ONE DIMENSION 

In order to prove the inequality that we shall use for our unique 
continuation theorem, we shall make use of a one-dimensional estimate 
applied to each partial wave. The estimate, which extends estimates of Heinz 
[4], is given by 

THEOREM 3.1. For s real, let 

L,u = U” - s(s + 1)x-*u. (3.1) 

Then 

](2s + l)x”f(x)lP’ 

<(Ip(s+a+ l)~-““+~~(s-~)/-“‘Y~~~~y”+l+l’pL,J(y)~p’dy (3.2) 

for all real a, s, 1 < p < co,fE Cr[(O, l)], where p’ = p/(p - 1). 
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Proof If g = L,f, it is easily checked that (2s + l)f= u + u, where 

u(x)= xxs+‘y-sg(y)dy, 
I 

1 
u(x) = 

i 
xpSyS+’ g(y) dy. (3.3) 

0 x 

Since L,y-“= L,y “’ = 0 and f vanishes near 0 and 1, integration by parts 
yields 

j,’ y-“&T(y) dY = ,: Ys+’ g(u) dY = 0. (3.4) 

If s + a + 1 = 0 or s = a, the right-hand side of (3.2) is infinite, so there is 
nothing to prove. If /3 = -p(a + s + 1) > 0, we have 

Thus 

(X%(X)y ,,-P”PJ-; (ya+‘+“pg(y)(p’dy# 

If /? < 0, we have by (2.4) 

~x”u(x)~ < xs+u+’ 
(1; y”-l dy)“p (1’ y-p’w-llP~+s~ ,g(y)lp.dy) lip’* 

x 

Thus 

(x~u(x)(“.slp(-p,;“i’ (yn+‘+“pg(y)(P’dy. 
0 

Similarly, if CJ = p(s - a) > 0, we have 

which gives 

jx%(x)~~'(o-Y.'p~'~y~+'+"~g(y)~p'dy. 
0 

If 0 < 0, we get 

IXTJ(X)~ <X=-$ 
(,: y.“dy)l’p(jlyp~“i”.‘-lm,g(y),p~dy) “p’ 

x 
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which gives 

~x"v(x)l"~~o~-p~'"j'14'"+'+"pg(y)lp'dy. 
0 

These inequalities give the desired result. 1 

4. SPHERICAL HARMONICS 

In dealing with functions on R”, n > 2, we shall use partial wave 
expansions. If r = 1x1 andf(x) is a function in L’(]x] < l), we can expand it 
in the form 

ryf(rO = C fd-) YdO Y = (n - 1)P7 (4.1) 

where 5 =x/r and the Y,, are surface harmonics (cf. [3]). For each integer 
12 0, there are 

w = v+ n - 2) 
(I + n - 3)! 
(n _ 2)! l! (4.2) 

such polynomials. The {Y,,,} form a complete orthonormal sequence in 
L2(J2), where ~2 is the unit sphere 1x1 = 1 in R”. The “coeffkients”f,,,(r) are 
functions of r alone and are given by 

.fhW = r’j” f(4 Yl,AO* dt. (4.3) 
n 

If u = rYh(r), then 

and 

21” = rY(h” + (n - l)r-‘h’ + $(n - l)(n - 3)rp2h) 

fl(hY,,,) = (h” + (n - l)rP1h’ - 1(1+ n - 2)rp2h) Y,,, . 

From this it follows that 

where 

409!77&1 I 

4f(4 = r-T Lfi,(r) Y,,,(t), 

s(s + 1) = Z(1+ n - 2) + $(n - l)(n - 3). 

(4.4) 
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This will be satisfied if we take 

s = f(2Z + n - 3). 

An Important property of the Y,,, is 

h(l) 
c I &#)I2 = $4 rn=l 

(4.5) 

(4.6) 

where w is the surface area of R (cf. [3]). 

5. Lp INEQUALITY 0~ 0 

Let a(<) be a function in La’(O). We can expand it in terms of surface 
harmonics. Thus 

where 

44 = c a/,, y,,,(r) (5.1) 
1.m 

a,,, = I 44 yl,m(T)* &* (5.2) 
R 

Let Y,(c) be the h(Z)-dimensional vector function Y,(r) = { Y,.i(Q..., Y,h(<)} 
and let’ a, be the vector {a I +,,..., u,,~}. Then (5.1) becomes 

a(<) = ,y a, y,(r). 
I 

Since the Y,., are orthonormal, we have 

ll4l2,w, = F Id* 

Now (4.6) says that ] Y,l’ = h(l)/w. Thus by the Schwarz inequality 

II4 Lco(Q) <co-“* 2 h(z)“* lu,I. 
I 

If we now apply interpolation to these inequalities, we obtain 

IJaIl Lpi(*) < cc h(Z)’ -p”* 1 u,IP’, 2<p<m. 
I 

Moreover, a simple du.ality argument then gives 

T h(l)‘-q”2 la,lq’ < c IlallZb(n,, 1 < 4 G 2. 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 



CONTINUATION FOR SCHRODINGEROPERATORS 489 

6. PROOF OF THEOREM 1.1 

If we apply (5.6), we have 

II raf(rr)llLp;(n) < c F h(Z)’ -p”2 I f?fdr)lP’ (6-l) 

by (4.1), wheref,(r)= {fi ,,,..., &}. If we apply Theorem 3.1, we have 

I(21 + n - 2) r” - ‘fi(r)l”’ 

since s is given by (3.5). Note that 

c-‘(Z + l)n-2 < h(l) < C(I + l)“P2. 

Thus, if we put g, = L,f, and 

m(Z) = 1 p(Z + a)1 - ‘lP + Ip(Z + n - a - 2)1- ‘lP, 

we get 

(6.3) 

II r”.f (rt)II LJ& < cx (/+ qo-wP’/*)-P’ m(l)P’ 

If k is an integer and 6 = (n - 1)/p, we get 

< ~1 (I+ 1)'"-2"'-p~2'-P'mk(~)P' ' Iykt6~Y+'+"pgr(~)/P'dy, (6.4) 

where 

m,(Z) = 1 p(Z + k + S)l- ‘lp + I p(I + n - k - 6 - 2)1- I”. 

We estimate the right-hand side of (6.4) by 

c 2 (z+ 1)- y up p mk(z)p.“) “O 

I 
X 

j P 
(I+ 1)‘“-2”‘~W/2’ Iyk+l-Y+l+llPgk(y)lP’r)‘lr &, (6.5) 

0 1 
where 

P -1 + a-1 + 5-I = 1, pp > 1, p’a > p, p’s = 4’ (6.6) 
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and 

,u=p’ 1+(n-2) $--; . 
[ ( )I (6.7) 

(If p = 0, we take p = co.) 
We shall show that under the hypotheses of Theorem 1.1 one can find ,u, 

p, cr, and t satisfying (6.6) and (6.7). Assuming this for the moment, we note 
that the first factor in (6.5) is finite. The second is bounded independently of 
k provided 6 is not an integer. In fact we have 

2 Ip(l+k+d)l-“<IpI-” f Ij+Sl-“, (6.8) 
I=0 j=-a, 

where v = p’o/p > 1. By (4.4) and (5.7), the last factor in (6.5) is bounded 
by 

c ‘II I rk+d+'+l'pdf(rr)ll~~(n) dr 
0 

PI/9 

(6.9) 

where /3 = (n - 1)/q. Since 

(6.10) 

this gives 

Since 

(6.11) 

Ilrkfll; =r,’ Il~k’“.fW>llL’~cn~ dc 

we obtain the desired inequality. It remains to show that one can find 
constants ,u, 0, and r satisfying (6.6) and (6.7) under the hypotheses of 
Theorem 1.1. Put x = l/p, y = l/q. Then (6.6) and (6.7) are implied by 

P > 0, (n- l)(y-xx) < 1 +x 
or 

fl = 0, p=co, y<2x. 

As a corollary of Theorem 1.1 we have 

(6.12) 
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THEOREM 6.1. For any E > 0 there exists p, q such that the conclusion of 
Theorem 1.1 holds and 

l/9 - l/p = --& 

Proox For n > 5, take x = (n - 3)/2(n - 2), y = (n - 1)/2(n - 2). For 
n<5, take x=(n-2)/(2n- l), y=(n+ 1)/(2n-1)-s. Both (6.10) and 
(6.12) are satisfied. 1 

7. UNIQUE CONTINUATION THEOREM 

THEOREM 7.1. Let u obey (1.1) and WE L[,,(IR”) with 

r=n-2 if n>5 

> 3(2n- 1) if n<5. 

Then if u = 0 in a small ball, then u = 0 everywhere. 

Proof: By a standard connectedness argument, it suffices to show that 
there are some fixed R, depending only on local Lr norms of W so that 
u(x) = 0 for x near zero implies u(x) = 0 for 1x1 < R, . Choose R, so small 
that R, < 1 and (( ,X,<R,, 1 W(x)l’ dx)‘lr < f. Let x be a C” function supported 
in the unit ball which is identically one on the ball of radius R,. Then, for k 
a negative integer, we let p = (1- 1/2r)-‘; q = (+ + 1/2r)-’ and use 
Theorem 6.1: 

1x1 <Ro 
1 rku 1’ dx) “’ < 11 r”flj, 

Q II rk4fll, 

<(j\rkdu\qdx)“q+CR: 

where we use (1.1) and Holder’s inequality in the last step. Taking k + -CD, 
we conclude that u s 0 on the ball of radius R,. 
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8. APPLICATION 

Applications of unique continuation are often to eliminate the possibility 
of positive eigenvalues; here is a typical example; see Section XIII. 13 of [9] 
for more complicated examples. 

THEOREM 8.1. Let W have compact support and lie in L’ with r given in 
Theorem 1.1. Then -A + W (the form sum) has no positive eigenvalues. 

Proof. Let W have support inside the ball of radius R,. Suppose that 
-Au + Wu = Eu with E > 0. Expand u in spherical harmonies and use the 
fact that for x > R,, the components u[,,, obey a second-order equation 
whose solutions are Bessel functions which are easily seen to be non-square 
integrable. Thus u(x) = 0 if ]x] > R,. It follows that u = 0 by Theorem 7.1. 
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