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We consider unique continuation theorems for solution of inequalities |du(x)] <
W(x) |u(x)] with W allowed to be unbounded. We obtain two kinds of results. One
allows We L2 (R") with p>n—2 for n> 5, p>4(2n—1) for n< 5. The other

loc

requires fW? to be —4-form bounded for all f € C{.

1. INTRODUCTION

In this paper, we want to consider unique continuation theorems in the
following sense:

DEFINITION. We say that a function W on £, a connected open subset of
R", has the unique continuation property if and only if every function, u,
obeying

|du(x)] < W(x) |u(x) (1.1)
which is equal to zero on some open set is identically zero on L.

The classical theorems going back to Carleman [2] and Miiller [7] require
that W € L,. While there is an extensive literature on replacing 4 in (1.1)
by more general differential operators (see Hormander [5]), there appears to
have been no previous attempts at allowing W’s with local singularities. This

is a situation first emphasized by Lavine.
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In Section 2, we will use a method of Protter [8] and show that ¥ has the
unique continuation property if for any f € C{’, there is a, b with

(| /WP ) < alVn, Vi) + b(n, ). (1.2)

In Sections 3-7 we will exploit some ideas of Heinz [4] to prove the
unique continuation property when We& L (R") p2n—2 for n>35,
p > 1(2n— 1) for n < 5. We note that while these results strengthen those of
Section 2, so far as Lf,. conditions are concerned, it can happen that (1.2)
holds with W& L ., p given by the above. In particular, if n=3N,
r=(rwry)y, HER and W=3_ ;V(ri—r)—E, then (12) only
requires that V€ L3 . o (independent of N), while for N>2, L’
conditions require V; € Lf,. with p =2N —2/3.

Our first result is a consequence of the following theorem which may be of
interest in its own right. Let B" be the unit ball in R" and put

1/p
1= (] 1rera) . pe
B"
Then we have

THEOREM 1.1. Let p,q satisfy 1 <q<2< p and

(n=2)1/g—1/p)< 1, (n—=1)/g<1l+(n/p) 1/p+1/g<1 (13)

Then there is a constant C such that

1711, < Clirtarl, (1.4)
holds for all integers k and all f € CP(R"\{0}).

Since unique continuation is a local property, obviously one need only
require that W be L{ _ on Q\C, with C a closed set of measure zero so that
M\C is.connected. Thus the Miiller theorem includes the important case of
atomic potentials (V;;(r) = a;;|r|™").

Let us emphasize the unsatisfactory nature of our results here. We are
reasonable sure that any WE L{ R") with p>n/2 has the unique
continuation property but we are unable to prove this.

Finally, we should mention some recent related results of Amrein and
Berthier [1| who prove tht for certain potentials, ¥, with local singularities,
—A4 + V has no eigenfunctions of compact support (this is one of the main
applications of the unique continuation property, see Kato [6] and
Section 7). Since we have not seen the most detailed results of Amrein and
Berthier, we cannot make a comparison.
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2. PROTTER’S INEQUALITIES

We assume that (1.1) holds with W? being —A4-form bounded in a ball B
of radius ry, < 1. By this we mean that

IWol? < CUVol? + (o), veECP(B), 2.1)
holds for some constant C, where the norm is that of L?(B). A sufficient

condition for (7.1) to hold is that W € N, i.e., that

| | W) {x =y "dx<Cyp,  yER"
BNx—yl<1

(cf. [10]). In proving unique continuation under this hypothesis we shall
make use of two inequalities due to Protter [8]. Take the center of B as the
origin and put w = wy(r) = exp{r~2}. Then there are constants 8, and C, and
a function o(f)— 0 as §— oo such that if § > S,

ﬂ“fr'”’"z|wv|2dx<COJr””|wAv|2dx 2.2)
and

f|ww|2 dx@w)j 2l wdv|? dx, (2.3)

where v vanishes outside B wv — 0 as r— 0 for every § > 0. Now suppose u
satisfies (1.1) and vanishes near the origin. Let a be any number satisfying
0 <a<r,, and let p be any function in C(B) such that ¢ =1 for |x| < a.
Put v = pu. Then we have

J 22 wdu | dx<fr“+2|va|2dx
r<a
S CUV)I* + lwo ). 24)
Since
V(wv) = — Br=2"2Fwv + wVu,
we see by (2.2) and (2.3) that the left-hand side of (2.4) is bounded by
al(ﬂ)j 22 |lwdv|? dx,

where

0,(8) =3CoB~% + 20(B).
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Take f so large that 6,(8) < 3. Then
J r5”|wAu|2dx<201(,B)J r2* 2 wdv|* dx. (2.5)
r<a r>a
Combining this with (2.2) we obtain

Jr*w-z |wol? gaz(ﬁ)f |wdv|? dx, (2.6)
r>a
where

0,(8) = Co(1 + 20,(B))B*.
But (2.6) implies

j |u|2dx<aw”02(ﬂ)f |dv|*dx—>0  as B- .
r<a r>a

This shows that u =0 for |x| < a. Since a was any value <r,, we sec that
u =0 in B. The argument in an arbitrary domain is standard.
We have therefore proved:

THEOREM 2.1. If W obeys (2.1), u obeys (1.1) and it vanishes in a small
ball, then u=0.
3. ESTIMATE IN ONE DIMENSION
In order to prove the inequality that we shall use for our unique
continuation theorem, we shall make use of a one-dimensional estimate
applied to each partial wave. The estimate, which extends estimates of Heinz
[4], is given by
THEOREM 3.1. For s real, let
Lu=u"—s(s+ 1)x *u (3.1)
Then
[(2s + 1)x* fAlx)”
' l ’
<(pGs+a+ D70+ pls—a) ™2y [ |y LN dy (3.2)
0

forall real a, s, 1 < p < 0, f € CP((0, 1)], where p’ = p/(p —1).
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Proof. If g=L,f, it is easily checked that (25 + 1)f=wu + v, where

ww =g dy o= x D ()

Since L,y *=L,y**' =0 and f vanishes near 0 and 1, integration by parts
yields

fl yg(y) dy=j1 y*le(y)dy=0. (34)

If s+a+ 1=0 or s=aq, the right-hand side of (3.2) is infinite, so there is
nothing to prove. If f=—p(a + s+ 1) > 0, we have

1/p’

x e, / /
ol <t ([T ([T g0 )
0 0
Thus
l '
|xeu@)l? B[yt () dy.
0
If # < 0, we have by (2.4)

\ 1/p , / yp
|x"u(x)l <xs+n+l (J yB—l dy) (f y—p’((ﬂfl/lJ)+s) |g(y)|" dy) .

X

Thus
el <117 [ 1o g () dy,

Similarly, if 0 = p(s — a) > 0, we have

1/p

. M , V'
R T () B (S e
0 0

which gives
1 ’
XTGP <o [ |yt g(y)dy.
0

If 0 <0, we get

1/p’

X

1 1/p 1 , /
lxav(x)|<xa"(J yﬂ-ldy) (j platI= oD | g( )P dy)
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which gives

' —_nt 1 a ]
oGP <ol [ 3771 () dy:
Q

These inequalities give the desired result. 1

4. SPHERICAL HARMONICS

In dealing with functions on R", n>2, we shall use partial wave
expansions. If r =|x| and f(x) is a function in L*(|x| < 1), we can expand it
in the form

P =3 finr) Yin(&), 7= (n—1)/2, (4.1)

where &= x/r and the Y, are surface harmonics (cf. [3]). For each integer
!> 0, there are

(I +n—3)

W= @1+ n=2)

4.2)

such polynomials. The {Y,,} form a complete orthonormal sequence in
L*(Q), where 2 is the unit sphere | x| = 1 in R". The “coefficients” f; ,(r) are
functions of r alone and are given by

S =1 [ [ ¥y n(O* dE 43)
Q
If v = r’h(r), then
v =rh"+(n—Dr W +3(n—1)(n—3)rh)
and
AhY, )=H"+(n— Dr W —ll+n—-2)r*h)Y,,,.

From this it follows that

Af(ré) = riyz Lsf},m(r) Yl,m(é)’ (44)
where

s+ D=ll+n—2)+3(n—D(n-73).

409/77/2-11
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This will be satisfied if we take
s=32l+n-3) (4.5)
An important property of the Y, is

(D)
Sy =20,

m=1

(4.6)

where  is the surface area of 2 (cf. [3]).

5. L? INEQUALITY ON 2

Let a(¢) be a function in L*(2). We can expand it in terms of surface
harmonics. Thus

a@)=>a,,Y, (&) (5.1
I,m
where
P J a(&) Y, (&)* dE. (5.2)

Let Y,(&) be the A(/)-dimensional vector function Y (&)= {Y, ()., Y1u()}
and let a, be the vector {q, ,,..., a; ,}. Then (5.1) becomes

a(¢) = >1: a; - Y,(S)- (53)
Since the Y, ,, are orthonormal, we have
lallz,) =}; lay”. (54)
Now (4.6) says that |Y,|> = h(l)/w. Thus by the Schwarz inequality
lallp o <w™"? Z/ r(D)"? |a,|. (5.5)
If we now apply interpolation to these inequalities, we obtain

lallfoa < CZ h(l)' =*"*|a,}”, 2 pg oo (5.6)
7

Moreover, a simple duality argument then gives

Z h(l)l‘q’/2 |a1|q/ <C ”a”ﬂ(ma 1<g<g2 (5.7
1
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6. PROOF OF THEOREM 1.1
If we apply (5.6), we have
P f rENEnia) < C; h()' =P eI (6.1)
by (4.1), where fi(r) = {f;.1»»s 1.4} If we apply Theorem 3.1, we have
(21 +n—2) r* ()"

1 '
<(pl+a) " +[pl+n—a=2)7"") f yETIYRIL AP dy
0
(6.2)
since s is given by (3.5). Note that

Cl U+ 1) <A KCl+ )2 (6.3)
Thus, if we put g;,=Lf, and

m(l)=|p(l+a) ™" +|p(l+n—a—=2)""7,
we get

’ t ’ 1 _ 1
1P f (rEnay < C 2 (1 + 1) 2P/ D = (1) J |ye TP g(p)P dy.
0
If k is an integer and & = (n — 1)/p, we get

[P 2 (M Eocan

1
SCX (4 DD " [ phee eV g ()7 dy, (64)
0

where
m()=|p+k+) " +|pl+n—k—=3-2)""

We estimate the right-hand side of (6.4) by

C (Z I+ 1)—“0) v (Z mk(z)”’“)

XJJ (Z (l+ 1)(,,—2)(14;'/2) ka+b—“/+l+l/pgk(y)|p"r)l/1 dy, (6.5)
0

1

1o

where

pl+ot+ri =1, u>1, po>p pr=g (6.6)
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and
w=p' 1+ (- ‘)] 6.7)
rarak .
(If 4 =0, we take p = 0.)

We shall show that under the hypotheses of Theorem 1.1 one can find g,
D, 0, and 7 satisfying (6.6) and (6.7). Assuming this for the moment, we note
that the first factor in (6.5) is finite. The second is bounded independently of
k provided 4 is not an integer. In fact we have

[ee]

2 lpU+k+o<Llpl " X i+l (6.8)

=0 j=—-00

where v= p’g/p > 1. By (4.4) and (5.7), the last factor in (6.5) is bounded
by

C [ P20 AF (D )
0
1 p'la
<C([ 121 a7 ) (69)
0

— C||rk+5~13+1+l/pApr’,
q

where = (n — 1)/q. Since

1 1 1 1
5—,B+1+——=(n—1)<———)+1+—>0, (6.10)
4 p q p
this gives
sup “"k+5f(ré)“u’(m <C “rkAf“q- (6.11)
rgl
Since

1
17715 = 1+ (O dr,
0

we obtain the desired inequality. It remains to show that one can find
constants u, g, and t satisfying (6.6) and (6.7) under the hypotheses of
Theorem 1.1. Put x = 1/p, y=1/q. Then (6.6) and (6.7) are implied by

u>0, (n—1Iy—x)<l+x
or (6.12)
u=0, p=00, y<2x

As a corollary of Theorem 1.1 we have
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THEOREM 6.1. For any ¢ > O there exists p, q such that the conclusion of
Theorem 1.1 holds and

1

> —€ if n<gs.

2n—1

Proof. For n> 5, take x=(n—3)/2(n—2), y=(n—1)/2(n—2). For
n<5, take x=(n—-2)/2n—1), y=(n+1)/(2n — 1) — &. Both (6.10) and
(6.12) are satisfied. 1

7. UNIQUE CONTINUATION THEOREM

THEOREM 7.1. Let u obey (1.1) and W € L (R") with

loc
r=n-—2 if n>5
>i2n—-1) if n<s.

Then if u=0 in a small ball, then u =0 everywhere.

Proof. By a standard connectedness argument, it suffices to show that
there are some fixed R, depending only on local L" norms of W so that
u(x) =0 for x near zero implies u(x) =0 for |x| < R,. Choose R, so small
that R, < 1 and (f 4z, | Wx)|" dx)"" < §. Let x be a C* function supported
in the unit ball which is identically one on the ball of radius R,. Then, for k
a negative integer, we let p=(G—1/2r)"" g=(}+1/2r)"" and use
Theorem 6.1:

1/p
(it ax) <irl,
<l

1/q
< (J'|r"Au|" dx) + CRX

1 . 1/p
<—' P ’
3 ('“r ul dx)

where we use (1.1) and Holder’s inequality in the last step. Taking kK - —o0,
we conclude that u = 0 on the ball of radius R,.
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8. APPLICATION

Applications of unique continuation are often to eliminate the possibility
of positive eigenvalues; here is a typical example; see Section XIIL.13 of [9]
for more complicated examples.

THEOREM 8.1. Let W have compact support and lie in L" with r given in
Theorem 1.1. Then —A + W (the form sum) has no positive eigenvalues.

Progf. Let W have support inside the ball of radius R,. Suppose that
—Au + Wu = Eu with E > 0. Expand u in spherical harmonies and use the
fact that for x > R,, the components u,, obey a second-order equation
whose solutions are Bessel functions which are easily seen to be non-square
integrable. Thus u(x) =0 if |x| > R,. It follows that # = 0 by Theorem 7.1.
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