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We use Brownian motion ideas to study Schriidinger operators H = - +A + V 
on Lp(R”). In particular: (a) We prove that limt+m t-l In /I e&H j111.9 is p-inde- 

pendent for a very large class of V’s where 11 A ll,,,n = norm of A as an operator 
from L’ to L”. (b) For Y > 3 and V E LY/~--E n L”Ip+c, we show that sup jl eetH Ilm,m 

-: (D if and only if H has no negative eigenvalues or zero energy resonances. 

(c) We relate the “localization of binding” recently noted by Sigal to Brownian 

hitting probabilities. 

1. INTRODUCTION 

Our goal here is to use Brownian motion ideas to study Schriidinger operators 

H==-;Ll+V. (1-l) 

As a starting point, we rely on certain estimates of Simon [13] obtained using 
Brownian motion. We emphasize that Carmona [3] independently obtained 
somewhat weaker results using similar methods and that earlier Herbst and 
Sloan [7] had proven some results with vaguely related methods. Moreover, 
both Carmona and Simon rely on beautiful estimates of Portenko [9] which were 
brought to their attention due to their rediscovery by Berthier and Gaveau [2]. 

To describe the results, we need to define two special classes of potentials, 
“y; and Vz . 

DEFINITION. L,~(LRu) is the family of uniformly L* functions, i.e., f EL,” 
if and only if 

llfll,.u = SUP 
0 

(Jd If@ +A 4p < 037 

where il is the unit cube centered at zero. 
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216 BARRY SIMON 

DEFINITION. A function V on R is said to lie in 9; if and only if 1,. is a finite 
sum of functions, each one either of the form 

(1) g is bounded from below and V EL&~ or 

(2) g(x) = I where rr is a linear function from RY onto Rw and 
f  EL,“(R~) for some p > 42. 

DEFINITION. Let v  3 3. We say V, a function on R*, is in 9’; if and only if 
for some p < v/2 and some q > v/2: 

VELP n Lq. 

Remarks. 1. The rather complicated form of Vr is made to accommodate 
two classes of V’s of physical interest: (i) periodic V’s; hence, we only require 
L,p conditions rather than Lp conditions; (ii) multiparticle potentials which are 
sums of functions of fewer variables; if one only deals with D(P) conditions, 
p must get larger as v  does but with the g(x) = I condition, we can have v  
get larger with p fixed and havep fixed. Virtually all potentials of physical interest 
which lead to an H which is bounded from below are included in V’Y; . 

2. The v  >, 3 condition for YCs is due to the fact that for any V short 
range and negative, -i A + I/ has negative eigenvalues for I, = 1,2 but for 
v  3 3, this is not true for V “small enough.” This, in turn, is connected with 
recurrence properties of Brownian motion; see [I 31. 

We can now state two basic results from [ 131: 

THEOREM 1.1. Let VEX>. Then H defined as an L2 quadratic form on C,,= 
is closable, yielding a self-adjoint operator H which is bounded from below. The 
operators emtH (t > 0) defked on L2 extend from LP n L2 to bounded operators 
on LD (p < co; for p = Co, eetH is defined as the dual of the L1 operator). For 
p < co, eetH is a strongly continuous semigroup obeying 

II e-tH lLp G CeAt (1.2) 

for suitable C, A independent of p (but dependent on V). Moreover, for any t > 0, 

P 3 Q? 

II e-?f Ilp < CC P, 9, C V) Ilf Ih . (1.3) 

THEOREM 1.2. If  V E Yz , then for all suficiently small real h, H(h) = 
-6 A + XV obeys 

II exp(--tW))ll,,, < C (1.4) 

for all t > 0 andp. 
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Remarks. 1. We use extensively the fact that for V E VI , the above- 
mentioned H obeys the Feynman-Kac formula, 

(@?f)(x) = E (exp (-lot V(x + b(s)) 4 f(~ + b(t))), (1.5) 

where b is v-dimensional Brownian motion and E is expectation with respect 
to the Brownian motion. Indeed, Theorem 1.1 is proven by establishing (1.5) 
for the L2 semigroup and then using (1.5) to make the extension. 

2. Under very weak additional conditions, e@$C2) consists of continuous 
functions [13], so e-tH cannot be strongly continuous on L”. (1.2) holds for the 
p = co operator. 

3. The small t behavior of (1.3) is discussed in detail in [13], yielding 
Sobolev estimates. 

4. For alternative approaches to defining H on the Ln spaces, see [I 1, 
14, 151. 

With these preliminaries out of the way, we can describe the problems that 
concern us in this paper. 

DEFINITION. For V E V1 and 1 < p < co, 

a,(V) = biz t-l In jj e-tH j)9,8 . (1.6) 

The limit in (1.6) exists by a standard argument (essentially the one that says 
that spr(e-H as an op on Lfl) = eaptY) is given by the spectral radius formula) 
and the convexity of In 11 e-tH llDS2, _ 

In Section 2, we prove that 

THEOREM 1.3. For any V E “y; , a,(V) is independent of p. 

Remarks. 1. By duality and interpolation 

a9 = a91 ; p’ = (1 - p-y 

%I --. < ‘ya for 2<p<q,<co. 

Thus, the theorem follows from the inequality 

% \ < ci2 . 

We actually prove that 

I/ eetH /la,,< C(t + l)““etae 

(1.7a) 

(1.7b) 

U-8) 

(1.9) 
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from which (1.8) follows. We note that by duality and interpolation and (I .9) 

Ii ecrH /I n,l? < C(t + l)ua’2etaz, 

where a = / 1 - 2p-’ j. 

2. I f  oB = (-In X / X E spec(e@ as an op on Z?)), then the theorem 
asserts that inf(a,) is p-independent. Is it true that 

oz, is p-independent ? (1.10) 

This result, which would clearly imply Theorem 1.1, does not seem amenable 
to proof by the methods of this paper. For a much restricted class of V’s, 
Weder [15] has proven some cases of (1 .lO); see also Section 5. Note that even 
were (1.10) known, (1.9) would be of independent interest. 

The above is the only result that we prove for the big class V1 . In Sections 3 
and 4 deal with the smaller class V2 . We begin by asking when 

Pm = ;;op II bH Ilm,m 

is finite. One of the answers we get is the following: 

(1.11) 

DEFINITION. I/E V2 is called supercritical (resp. critical) [resp. subcritical] 
if and only if aa > 0 (resp. a2(V) = 0 but CY.&V) > 0 for all I\ > 1) [resp. 
my, = 0 for all X E [0, (11 with fl > 11. 

Remark. Since V E V2 implies that o,(H) 1 [0, co), ol,(hV) 3 0 for all X. 
Since or,(hV) is convex in h and 1ys(0V) = 0, or,(hV) is monotone-nondecreasing 
in ;\ on [0, cc). 

THEOREM 1.4. Let V E Kz . Then fia, < CC if and only if V is subcritical. 

We prove Theorem 1.2 in Section 3 after some preliminaries of some inde- 
pendent interest involving the relation between p5J and the solution n of Hy == 0 
with 7 EL”. 

In Section 4, we examine the following problem raised by Sigal and 
Ouchinnokov [12]: Suppose that V and W are two subcritical potentials; 
prove that -$O+ V+ W(.-RR) is subcritical for R large enough. For 
spherical symmetric V, W, this was proven by Sigal in his beautiful analysis 
of the Effimov effect [12]. An “elementary” proof of this fact “in general” was 
found by Klaus and Simon [8], who also showed that if V and Ware both critical 
and v  = 3, then 

a2( V + W(. - R)) - c/2R2, (1.12) 

where c = d2 and d is the unique solution of x = e+. Our goal in Section 4 
is to prove the result for V, W subcritical where an attractive intuition is the 
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following: when the wells V and W are far apart, the fact that in three or more 
dimensions hitting probabilities of a distant sphere go to zero should take over. 
The key to this argument is to relate subcriticality to Brownian motion and this 
is done by Theorem 1.4 since as we shall see 

Pm = sty E (exp Lt - V(x + b(4) 4). (1.13) 

Indeed, it was our interest in Sigal’s problem that motivated the considerations 
in Sections 2 and 3 initially! 

2. 01~ Is INDEPENDENT 0~ p 

Our goal here is to prove Theorem 1.3. Our method of proof is motivated, 
in part, by ideas in Carmona [4]. As indicated in Section 1, we prove (1.9), 
from which the theorem follows. By Theorem 1 .l, we need only prove (1.9) 
for all sufficiently large t. As a preliminary, we note that since H is self-adjoint 
on L2, 

II e-““fl12 G eaet llfl12. 

Thus by (1.3) for t > 1, 

In particular, letf be the characteristic function of any ball of radius R. Then 

In particular, using (1.5), 

E (exp (-St V(x + b((s)) ds), 1 b(t)1 < R) < D’RY’2e”et, (2.1) 
0 

where E( f, B) = fB f Db. 
By the Schwarz inequality 

A = E (exp (-[ v(x + N(4) 4) I Wt)l > R) 

< 11 exp[--t(-$A + 21’111 lj?E(I b(t)/ > R)1’2 

< exp(&,(2V)) f (R2(t) 
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by the scaling property Brownian motion. As x + co, f(x) < exp(-ccx), so 
choosing R = at with a large enough, we can be sure that A ---f 0 at t + co. 

Thus, (2.1) implies that 

stp ,?Z [exp (-sO’ V(x + b)(s)) ds,) < D”tvi2eazf. P-2) 

The proof is completed if we note that the left side of (2.2) is j/ e-tH1 /jm since 
(~~~1) 2 0 and that 

II e+ IL = 11 e-tH1 jjm . (2.3) 

(2.3), which we will use again, follows from the inequality If(zc)I f  llfilrn 1 
which implies 1 eetHf j < \lf\lm(e-tH1) since e-tH is positivity preserving. i 

3. Pm, THE GROUND STATE AND SUBCRITICALITY 

Throughout this section we suppose that Y > 3 and V E Yz . We use HT = 0, 
17 eLw as shorthand for 

ectH? = 7, all t; 7) ELm. (3.1) 

Given any real-valued function 71 EL” we define 

71+ = ess;up q(x), q- = essrinf v(x), rl m = esz+lirn 7(x), 

if the latter limit exists. 

PROPOSITION 3.1. If  7 obeys (3.1), then 7 is a continuous function, yrn exists, 
and 

7764 = To3 - [ C” I x -Y l-(“-2) J”(Y) T(Y) dy, (3.2) 

where c, is defined so that c, I x - y  I-(v-2) is the integral kernel of (-0)-l. 
Conversely, any r] E Lm obeying (3.2) obeys (3.1). 

Proof. Let h = -(-A)~l(V~). By the Holder and Young inequalities, 
h cLm. Moreover, both h and 7 obey Of = VT in the distributional sense, so 
h - 7 is a function in L” which is harmonic in the distributional sense. Thus 

h- 7j is a constant --TV, so (3.2) holds. But h is a continuous function going 
to zero at infinity, so the stated results on r] hold. To prove the converse, note 
that if (3.2) holds, then (H+, 7) = 0 for all + E Corn, from which (3.2) follows. 

LEMMA 3.2. If  7 obeys (3.1) and 7 is nonnegative, then 7 (as a continuous 
function) is everywhere strictly positive. 



SCHRGDINGER OPERATORS ON L” 221 

Proof, See Carmona [3] and Simon [13]. These authors discuss the case 
71 E L2, but the proof is really only “local.” 

LEMMA 3.3. Let 7 obey (3.1) with qn = 0. Then C# = j V /1/2 v  E L2 and 

[I V i1/2(-o)-1(sgn V) / V 11/2] $ = -6. (3.3) 

Let V* = max( &-V, 0). Then 4 = V!$ E L2 and 

[VV”(-A + v+)-’ V’l”]yG = *. (3.4) 

Proof. (3.3) is just a rewriting of the form that (3.2) takes when 7m = 0. 
Since / V 11i2 E LY+E n Ly--., 4 ELY-~ and by the Young and Holder inequality 
the operator Q = 1 V 11/2(-4)-1 1 V 11j2 is bounded from Lv to L@ for all 
~E[v/v---l,v]andallq~[p-6,p+S]f or suitably small S (depending on e). 
Thus, repeatedly using (3.3), we find that 4 ELM. 

Since 1 V- 1 < / V 1, I/ ELM. Moreover, since [ e-t(-d+v+,f 1 < e-tA 1 f /, 
(--d + V+)-l has an integral kernel pointwise dominated by that of (-0)-l, 
K = v:~“(-o + V+)-1 V’l” is a bounded operator from LP to L’, for 
p E [V/V - 1, v]. As operators from L” to suitable Lq: 

(4-l = (--A + V+)-1 + (-4 + V+)-1 V+(-Ll)-1. (35) 

Thus, using (3.2) twice and (3.5) 

7] = -(A)-1 v,, 
= -(-fl + V+)-1 VTj - (4 + V+)-1 V+((-A)-1 VT, 
= --(Al + V+)-l( v - V+) q, 
= (-A + V+)-1 v-7. 

Multiplying by Vl’2, (3.4) results. a 

THEOREM 3.4. There is always an 7 E Lm obeying (3.1). If there is a nonnegative 
-q obeying (3.1), then all functions obeying (3.1) are multiples of this nonnegative 
function. 

Proof. Let A be the operator (--d)-t V on L”. Since j(Af)(x)j < 
EN-w I v I&41 llf IL and IG!f &4 - (Af)( y)l < c, J I I x - 2 I-+2) - 
/ y - x I-(V-2) 1 1 V(z)1 dz, the set {Af I jlf Ilrn < 1} is a family of uniformly 
equicontinuous functions, uniformly bounded and going uniformly to zero 
at infinity, and thus A is compact. We seek a solution of 

T = Trn - 4. (3.2’) 

5W35/2-6 
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I f  -1 $ o,(A), then we let g be the function, g = 1 and 7 = (1 mr A)- *g. 
Then 7 obeys (3.2’) with 7m = 1. If  - 1 E o,(A), then by the Fredholm theory, 
the homogeneous equation (3.2’) with rlrn = 0 has a solution 7 which thus also 

solves (3.2’). This implies the existence statement. 
To prove uniqueness, suppose that 7 obeys (3.1) and is strictly positive. 

Suppose first that 7m > 0. For any other nonzero 7’ obeying (3. l), with (7’)% : -- 0, 
suppose that g = max(O, 7’) is not identically zero (by replacing 7’ by -7’, 
this is no loss). Since (7’)a = 0, the extended real-valued function 7/g goes 
to infinity at infinity so, if h = min, (7(x)/g(x)), then 7(xa)/g(x,) = X for some 
finite x0. Let q = 7 - A7’. Then ;j > 0 but 4(x0) = 0 and (7), -/: 0. By 
Lemma 3.2, this is impossible. 

If  7’ obeys (3.1), then q = 7’ - 7:7;’ will obey (3.1) with (+j), = 0. By the 
the above, 7 = 0, i.e., 7’ is a multiple of 7. Thus we have uniqueness when the 
nonnegative solution of (3.1) has 7m # 0. 

Now suppose 7 is a nonnegative solution with rlrn = 0. Let 7’ be another 

solution. If  7: f  0, we can suppose that 7: > 0. It is then easy to see that for c 
large 7; + ~7~ is strictly positive so we are back in the case already treated. 
We are thus reduced to the case 7; = 0, 7m = 0. In that case, by Lemma 3.3, 
# = VL127 and $I’ = Vt127’ both are in L2 and obey B# = $, B+’ = $’ with 
B = V:l’(-A -.L V,)-1 V’l”. S ince B is a self-adjoint operator onL2 (ess sup V-) 
with strictly positive integral kernel, and # >, 0, #’ must be a multiple of $J 
by the general theory of Perron-Frobenius (see, e.g., [lo]). a 

With these preliminaries, we can now turn to the connection between 7 

and Pm . 

PROPOSITION 3.5. If  (3.1) has a solution with 7- > 0 (so in particular, 7 
is nonnegative), then firn < co and 

PC0 G 7+/7- . (34 

Proof. Note that 1 < 71~7, so by (2.3) and the positivity of e--tH: 

Pm = sup !I emtH 1 /jm < sup 711 /I emtH7 /lm 
t t 

= 72l II 7 I/m = 7+7r1. I 

PROPOSITION 3.7. If  pm < co, then (3.1) has a solution, 7, with 7- > 0 and 

7+/7m G Pm . (3.7) 

Proof. Write V = V+ - V- with V, = max( f  V, 0). Note first that 

E (j-f V+(x A b(s)) ds) = 2[(-A)-lV+](x) (3.8) 
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since E(Sr V+(x + b(s)) ds) = Sr (e+(i/a)A.V+)(~) ds. Thus, 

a = sup E 
2 

[ 

by Young’s inequality and V E Vi . It follows by Jensen’s inequality that 

obeys 

We take 

f(x) = E (exp (--p v+(x + b(s)) ds)) 

era <f(x) < 1. (3.9) 

T(X) = p+; (e-““f)(x). (3.10) 

To see that the limit exists, we note that the right side of (3.10) is just 

E (exp (-St V(x + b(s)) ds - Irn V+(x + b(s)) ds)), 
” t 

which is monotone-increasing in t. Since 

(e-W(4 < Pm llfllm = Pm 

the limit in (3. IO) exists and 

7+ d Pm . 

Clearly, by the monotonicity of (e-“*f)(x) in t, q(x) 3 f(x) so 

(3.11) 

Next, we note that by the monotonicity, 

(g, 7) = Wg, e+Ylf) t+ui 

for any g E L1. It follows that (eesHg, 7) = (g, 7) for any s, so by duality 71 
obeys (3.1). 

To complete the proof, we need only show that 

7m 3 1 (3.12) 

so that (3.11) implies (3.7). But n(x) 3 f(x) and, by Jensen’s inequality and (3.8) 

f(x) 3 exp(--2K-W v+lW- (3.13) 

The right side of (3.13) goes to one at x -+ cc. a 
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Remark. Actually, in the above, qm = 1. To see this, let Q(x, 6) = 
sr V(x -1 b)(s) ds. Then q(x) = E(eQ(“s’)) and Q(x, .) obeys: (i) supz x 

e(14-E)Q(r,‘)) < co for some E > 0; (ii) supz E(e81Q(z*‘)l) < co for some 6 ;.- 0; 
zii) E(i Q(x, .)I) + 0 as x -+ co. (ii) and (iii) imply that (iv) E( 1 Q(x, .)I”) 4 0 
for any q < GO. Now use the inequality / eu - 1 1 < y(eg + 1) and Holder’s 
inequality to see that E((eQ - 1)) < E((eQ +- 1)“‘) E(l Q j1+c-1). (i) and (iv) 
show that T(X) + 1 at infinity. 

We symmarize the last two results in a theorem: 

THEOREM 3.8. There exists an 7 solving (3.1) with 7p > 0 ;f and only if 
jIm < cc and 

11,-/%J < p, < 17+/q- * (3.14) 

If  V < 0, then rlrn = T- and equality holds in (3.14). 

Proof. All that remains is the equality when I’ < 0. In that case our above 
proof shows that for the 71 constructed there, 1 < T- < rlrn = 1, where we 
use the remark above. 1 

To complete the proof of Theorem 1.4, we need to examine the connection 
between 7’s obeying (3.1) and criticality. Recall that a,(A) = spectrum of A 
as an operator on Lp. ub = a,\(O). 

LEMMA 3.9. 1 E a,(( --d + V+)-l V-) ;f  and only if - 1 E um(( -0)-t V). 

Proof. One direction is the argument at the end of Lemma 3.3 and the other 
direction follows by a similar argument reversing the roles of --d and 
-Ll +- If+. 1 

LEMMA 3.lO.(compare with [Sj). ui((sgn V) j I’ ll/z(--d)-l 1 I’ lljz) = 
u;((-A)-1 V) and uL( VW--4 + V+)-l Wz) = a;((--d + V+)--l V-). 

Proof. The two cases are virtually identical, so consider the first. Note that 
A = (sgn I’) / V l1/2(-4)-1 1 V 11j2 is compact on L2 and B = (--d)-l I/’ is 

compact on L”. I f  By = hq with 17 E Lm, then the argument in Lemma 3.3 shows 
that (sgn V) / I’ l1/2 7 = 4 E L2 and A+ = X4. Conversely, let A+ = $5. Using 
the H6lder and Young inequalities, we saw in Lemma 3.2 that A maps LJ’ 
to LQ for ~E[v/v-l,v] and qE[p-6,p+6]. Thus #eL2nLY so that 
Y) = (-0)-l I I’ l1/2 4 lies in L”. Clearly Bv = hv . 1 

Proof of Theorem 1.4. By Lemma 3.10, u~(( --d + AI’+)--i AI’-) C [0, 00). 
Thus 1 E a,((-A + XV+)-r /\I?) for some X < 1 if La, - spr((--d + 
I’+)-r V_) > 1. It follows using Lemmas 3.9 and 3.10 that if V is subcritical, 
then LX - spr((--d + I’+)-l U) < 1 so that 

7] = (1 - (--d + V+)-’ I,-))’ 1 
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is given by a Neumann series, each term of which is positive. Thus q 3 1, 

so (3.1) has a solution with T- > 0 and so pm < 00. If  Y is critical, then, by 
Lemmas 3.9 and 3.10, (3.1) has a solution +j with +jm = 0. By the uniqueness 
result, Theorem 3.4, there cannot also be a solution with T- > 0; hence, & = co. 
If  V is supercritical, then 01, = 01~ > 0 so & is surely infinite. 1 

4. LOCALIZATION OF BINDING 

Throughout this section we fix two potentials V, WE VI both subcritical 
and both supported in a sphere of radius Y. Fix a unit vector e” and let 

H(R) = -4 A + V(x) + W(x - R&). 

We show that H is subcritical for R sufficiently large. We begin with con- 
sideration of the case V, W < 0, which is somewhat simpler: 

THEOREM 4.1. Let V, W be as above and let b = max(/3,( I’), p,(W)). Then 
for (4r!R) b < 1, V + W(. - R&) = qR is subcritical and 

pm( V + W(. - R&)) < b( 1 - 4R-4 b)-l. 

Proof. Fix x,, and R. Let T = (x j 1 x 1 = r or /X - R& 1 = r} and let 

S = {X 1 1 x ) = R/2 or 1 x - RB 1 = R/2}. Define stopping times ol, 71 , ~a ,..., 
inductively by: 

or = inf{t 1 b(t) + x0 E S} 

7i = inf{t > u’i 1 b(t) + x0 E T} 

ui = inf{t > 7i--1 / b(t) + x0 E S) 

with the convention that inf (empty set) = +co. Let 

Ai = {b 1 Ti(b) = 00, Tiwl(b) < CD}. 

Then 

UiAi = all paths (4.1) 

since any path eventually leaves the space bounded by S and is Holder continuous 
up to that time. If  b E Ai , then for t > ui , V(x + b(s)) = W(x + b(s)) = 0 
so for any T, 

- f: q(x + b(s)) < -Iom q(x + b(s)) = $’ -4x + b(s)). 
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Thus, 

E (XA( exp c-jr dx i 4)))) < E (exp [-Ja”i a(~ ?- b(s))) xotcrn) 

= E (exp (-JO”-’ q(x + a)(s)) x,,<~E (exp (-JO’ q(x + b)(s))1 b(s); s < ~~-r)) 
‘i-l 

where we use the definition of pa0 and the Dynkin-Hunt theorem (Brownian 
motion starts afresh at a stopping time) to get the b factor and then 

E(xTicrn 1 b(s); s < ui) < 2 ($itting probability for sphere of radius r at a distance 
R) = 4r/R. Thus, E(xAie-loQ) < @r(4~/R)~. (4.1) yields the theorem. i 

Next, we consider the case where I/ can take both signs. This is more difficult 
since we cannot use e-l:, < e-j;n and we are indebted to M. Aizenman for 
several useful suggestions. 

THEOREM 4.2. Let V, W be as in Theorem 4.1 but no longer required to be 

negative. Let 7fv) , 7’“) be the corresponding 7’s and let b = rnax(qy)/Ty); 
$“)/$“)). Then --d + q is subcritical for 4br/R < 1, 

L(a) d b(l - JWR)-l. 

Proof. The proof follows the pattern above except that we must estimate 

q(x + b(s)) ds I b(s); s < *i-l d max(a(V), ++‘)I 

with 

+‘) = ;fT E (ev c-s,’ V(x + b)(s) ds)) 

by the Dynkin-Hunt theorem. Here 7 is a suitable stopping time 

< [d”‘]-’ E (exp ( -lT V) ‘I(” + b(T)) 

= q(y)-‘E (exp (-JOT v(x + b(s))) E (exp ( -JTm V(x + b(s)) ds) / b(s); s G ~1) 

= [$‘)]-l r](r) < b, 
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where we use the Dynkin-Hunt to rewrite q(x) = E(exp(- Jr V(x + b(s)) ds)) 
as the stated conditional expectation. 1 

5. SOME EXTENSIONS, REMARKS, AND CONJECTURES 

In this final section we want to discuss a number of directions for further 
research on the questions treated herein. 

A. p-independence of ov 

We emphasize the question (1 .lO) in Section 1. For I’ E Vz we have 

THEOREM 5.1. If V E Yz , then u,( - & A + V) is independent of p. 

Proqf. Write H = H,, + V, H,, = -4A. Let Cf =& Then C[(H - x)-l]* C = 
(H - x)-t, so by duality and interpolation for 2 ,< p < CO, a,(H) C uJH) C 
a,(H), so it suffices to prove that u,(H) = u,(H). Since uz(H,-,) = u,(H,,) 
and VIJz(H,, - x)-l 1 V lljz is L2-compact and (H, - z)-l V is La-compact, the 
essential spectra are equal. As in the proof of Lemma 3.10, u;l(i V 11/2 x 
(Ho - x)-l F/2) = uI(Ho - $1 V), so using the facts that when z 4 [0, co), 
.z E u,(H) if and only if -1 E; u,(H,, - z)-1 V and z E u,(H) if and only if 
-1 E 02(1 v 1”2(E& - x)-l V/2), we see that the result is proven. 1 

Remarks. 1. The above proof extends to V E Lv/2+E + (Lm)E . 

2. The basic point is that Lm eigenvalues for z $ [0, co) automatically fall 
off exponentially so that they lie in L 2. Moreover, by Theorem 1 .l, L2 eigen- 
functions are automatically in La. 

B. Existence of Lm Positive Eigenfunctions 

There is some interest in finding 77 > 0 so that HT = ET since H - E is then 
automatically a Dirichlet form on q2 dx [l, 5, 6]. If one combines Theorems 3.4 
and 3.8 and the fact that a supercritical V always has a strictly positive L2 
ground state [lo], then 

THEOREM 5.2. Let V E Y2 . Then, there exists an E and an 17 in Lm with 
(H-E)? =Oandv >O. 

Question. Does this result extend to rY; and are the E and 11 then unique? 
For V E *y; , can one at least find E, q with (H - E) 7 = 0 and 17 > 0 without 
requiring that 7 E Lm ? 



228 BARRY SIMON 

C. Extending Theorem 1.4 to supercritical potentials, I 

One way of extending Theorem 1.4 to supercritical potentials is to ask about 
supt // exp[--t(H - ~~,(l’))]ll,,, . Here we note that 

THEOREM 5.3. Let V E Yz be supercritical. Thenfor p # 1, co 

sup II exp[--tP - 4VNlll,.. < *. 

Proof. Let P be the L2 projection onto the lowest eigenvalue for H. Let 
U, = exp[-t(H - ap(V Then 

U,P = P 

il u,(l - p>II m,m < c(1 + t)Y’2 

II UJ - f%2,2 G (e+) 

(5.1) 

(5.2) 

(5.3) 

where a = inf a((H - a2( V))r(l - P)L2) > 0. The result now follows by 

interpolation. 1 

Remark. It should be easy to extend the result to p = CO. 

Question. What can be said for general V E Vi about I/ exp(-t x 

[H - ~zG’)l)ll,,, ? 

D. Extending Theorem 1.4 to Supercritical Potentials, II 

For V E ?‘Zs , let Q be the L2-projection onto the negative eigenvalues for H. 
A natural extension of Theorem 1.4 would be 

Conjecture. supt // e-tH(l - Q)llm,m < 00 if H has no zero energy eigenvalues 
or resonances. 

The situation when there are zero eigenvalues is apt to be somewhat compli- 
cated since the corresponding eigenvector may or may not be L1. One result 
we can mention (presumably of note only when v  = 3,4): 

THEOREM 5.5. If V E Yz and if HI = 0 has no solution with r] ELM but has 
a solution with 7 E LP for some p < 03, then 

sup II e-Y1 -Q>llm,m = 00. 

Proof. We first note that as a map from Lp to Lp, Qq = 0 since Hqi = Erli 
with E < 0, implies that qi ELQ (q = dual index to p) and (TV , 7) = 0, whence 
Qq = 0. Suppose supt 11 e-tu(l - Q)]lmVm < 00. Interpolating, with s-lim,,, 
e-tH(l - Q) = 0 in L2, we see that s-lim,,,( 1 - Q) = 0 in LP, which is im- 
possible since e-tH(l - Q) 17 = 7. Thus, the sup is infinite. 1 
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