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Consider —4 + AV with V short range at a value A, where some eigenvalue e(A) — 0
as A | 2. We analyze two questions: (i) What is the leading order of e()), i.e., for what «
does e(A) ~ c(A — A)*? (ii) Is e()) analytic at A = X, and, if not, what is the natural ex-
pansion parameter? The results are highly dimension dependent.

1. INTRODUCTION

In this paper we will consider a family of Schrddinger operators, H = —4 -+ AV,
or more generally, —4 4 W + AV, where V (and W) go to zero at infinity fairly
rapidly (in fact, for simplicity we suppose ¥ < 0 and V vanishes outside some sphere
for much of the paper). H has continuous spectrum [0, c0) and some discrete negative
eigenvalues, e/A). Fix some value of i and consider the A dependence of e()). In the
region e,(A) < 0, the problem is well studied with rigorous results going back to the
celebrated work of Rellich [14], Kato [7] and Sz.-Nagy [25]: the e/(}) are analytic
(if e is taken to be strictly the ith eigenvalue, then due to level crossing, this is not
strictly true, but one can always label the eigenvalues for A near a fixed A, to get strict
analyticity). Here we want to consider a situation where as A | A,, some eigenvalue
e/ 10,i.e,as A | A an eigenvalue is absorbed into continuous spectrum. Conversely,
as A 1 A + ¢, the continuous spectrum “gives birth” to a new eigenvalue. For obvious
reasons, we call this phenomenon a “coupling constant threshold.”

This paper is the first in a series. In later papers, we intend to say something about
long-range and also certain multiparticle cases. Two questions will concern us: (i) Is
€(}) analytic at A = ), and if singular does it have a convergent expansion in some
singular quality like (A — Ag)*? (ii) What is the rate at which e()) approaches 0? In
general we discuss here —4 + AV for x € R*. There will be considerable v dependence.

The problem of analyzing perturbation of discrete eigenvalues of —d4 + AV is
solved by thinking of the problem as a special case of the more general family of
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252 KLAUS AND SIMON

abstract problems A4 + AB. Thus, we begin with a few remarks about very gengral
problems of this sort. We know of only one thing one can say in this great generality.

THEOREM 1.1. Let A + AB be a family of self-adjoint operators with the following
properties for A\e (A\y — €, Ay + €)
(i) D(A + AB), the domain of A + AB is independent of A,
(i) oess(4 + AB), the continuous spectrum of A + AB, is [0, oc) independently
of A
Let py(A) < po(d) < - denote the negative eigenvalue of A 4- AB (counting multi-
plicity) with the convention that u(A) = O if there are at most n — | negative eigenvalues.
Then for any A, ,

exists and is finite. In particular, if py(A) ~ CQA — Ao)* then o > 1.

Proof. Let Fy()) = uy(A) + -+ + pafA). Fy is the bottom of the spectrum of the
k-fermion operator with k independent fermions each with Hamiltonian 4 + AB.
Since this is linear in A, Fi(}) is concave by the minimum principle. Thus

lim () — QA — A)

exists, so by induction the theorem is proven. ||

The other general result is due to Simon [20]; we state it for simplicity in the non-
degenerate case even though the result is more general:

THEOREM 1.2. Let A be an operator with spec(4) = [0, o) and Ker A = {0}. Let
B be an A-compact operator. Suppose that as A | A, , a unique negative eigenvalue, e()),
approaches zero. Then

lim (= A ) # 0

if and only if 0 is an eigenvalue of A + A.B.
1t is hard to imagine saying much more than this in an abstract setting, for consider
the following:

EXAMPLE. Let o = LXR, dx) and let k be the operator k = —id/dx and let
Hy= k[

for 3 < 8 < 1. Then a simple analysis shows that the integral kernel Ky(x, y; E) of
(H, — E)™* obeys
K, 7 E) = &1 | x — y "0 + c(—E)1-918 4 of(—E)o-0%)
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as E $ 0for ¢, , ¢ > 0. The methods we develop in this paper prove that if V e C,(R),
V < 0 and if e(}) is an eigenvalue of H, + AV with e(A) $ 0 at A } A, , then

Q) ~ (A — Ay,

As Bruns from } to 1, /1 — B runs from 1 to co skowing that any power consistent
with Theorem 1.1 is possible.

As a result, the analysis at coupling constant thresholds must depend on detailed
features of the operator H, = — 4 and its relation to V. This will be seen by the rather
strong dependence on dimension we will discuss below.

We should say something about previous work on the subject. Some partial results
in v = 3 dimensions were obtained by Rauch [12], whose work, in parts, motivated
ours here. Without being explicit, we should mention that Rauch proves that there are
only three possibilities that may occur for e(A) as A | A, . He does not discuss which
actually do occur nor how to simply determine which occurs although he does conjec-
ture that one possibility (his case (i)) is generic. We will show that one of his possi-
bilities (his case (ii)) never occurs and, indeed, that his case (i) is generic (Section 2).
However, this genericity is rather special: Rauch’s abstract arguments. hold in » =
5, 7, 9,..., dimensions but then his “generic” case also never occurs and only his case
(iii) occurs.

The discussion of Newton [10] for central potentials is illuminating as to the possi-
bilities. The discussions of scattering thresholds in Newton [11] and Jenson and Kato
[6] have some bearing on our analysis since in both cases the low-energy behavior
of Green’s functions is crucial. We also note that there is previous work 2, 4,9, 19]
on the special case of the threshold at A, = 0 which occurs in » = 1 and v = 2 dimen-
sions.

- Our results are summarized in Table I, where * indicates the convergent expansion

Y Cam — A)*NA — AP DA — M)

nSLMS0
and 1 indicates the convergent expansion
Y Cam[—(A — A/ — X" —1/In(A — AP {—In[In(A — A)~1)/In(A — ANt
n>2

The meaning of the columns in the table is the following: in dimension » > 5,
there is universal behavior (different in odd and even dimension) at each threshold
but in 1, 2, 3, 4 dimensions there are several different behaviors. The numbers of
possible behaviors is listed in column 2 and then we label the types in column 3.
Type 1 is always “generic” in the sense that it will occur unless a certain integral
involving ¥ and the solution of (—4 + V)u = 0 vanishes: Type 2 is generic in
those cases where this integral vanishes in the sense that type 3 only occurs if two
additional integrals vanish. The next two columns are self-explainatory: we note that
e()) is only analytic in v = 1, 3 dimensions (type 1 only in 3 dimensions). The column
marked “Max. muit.” (maximum multiplicity) indicates the following: as A | A, , it
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TABLE 1
No. of Leading Convergent
Dimension types Type order expansion Max. mult. Aug. mom.
517,9,.. 1 1 QA=A Y ad — A © 1>0
L]
6,8, 10,... 1 1 A —2) * @© 1>0
3 2 1 Q=2 Z ba(d — A)* 1 1=0
2
N ) T ar — 2 © 1>1
]
4 2 1 A — 2)/In(d — A)) t 1 1=0
2 A=) * © 1>1
1 1 1 A= Y baA — 2 1 1=0,1
2
2 3 1 exp(—c/A — Ap) 1 =0
QA — A)/In(x — X) t 2 I=1
3 @A —2) * © 1>2

Note. Sce text for explanation of table.

might happen that several eigenvalues approach 0 at once. The symbol 1 in the max.
mult. column for v = 3, type 1 indicates that if k eigenvalues approach 0 at A, at
most 1 is in type 1 and k¥ — 1 (or k) must be in type 2. The last column indicates what
happens in the special case where V is spherically symmetric. Then just knowing
the angular momentum suffices to determine the type.

We empbhasize that the table gives the behavior for thresholds A, # 0. In one and
two dimensions, where A, can equal zero, there is an additional possibility; namely in
one dimension e(A) ~ cXt and in two dimensions e(A) ~ exp(—c/(A — Ag)?); see [19].

We note that some relations between different dimensions must occur since the radial
equation for angular momentum / (= degree / spherical harmonics) in v-dimensions is

—u"+L(L+Dr2u+ Vu

with L = I + 3(» — 3). Thus / = 0 in » = 5 dimensions must be the same as / = 1
in v = 3 dimensions.

We should also remark on the fact that “non-generic” behavior always occurs for
spherically symmetric potentials. This is not surprising: the integrals that have to
vanish for non-generic behavior happen to vanish for reason of symmetry.

S
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Finally, we should remark on the complicated nature of the results summarized
above; if one writes A as a function of e rather than e as a function of A things are much
simpler. The complications enter in the inversion process. Indeed, we will initially
solve for A as a function of e.

We end this introduction with a summary of the contents: in Section 2 we treat
v = 3 dimensions. We will give full details here and then skimp on some in the later
sections. In Section 3, we treat v =5, 7, 9,...; in Section 4, v = I; in Section 5,
v = 6, 8,...; in Section 6, v = 4; in Section 7, v = 2, which is by far the most complex
dimension. For simplicity of exposition, we assume ¥ < 0, ¥ e C,°(R*) in Sections
2-7. In Section 8, we discuss what happens if ¥ is not non-positive and in Section 9,
what happens if V" does not have compact support. In Section 10, we solve a problem
raised by Newton in [11] which is related to when type 1 behavior occurs in 3 dimen-
sions. Finally in Section 11, we say a few words about —4 + W + V.

2.v=3

We consider —4 on LR?) and a potential ¥ € C,(R?) (the smoothness will play

" noreal role; the boundedness only a minimal role and the compact support as opposed

to exponential falloff only a minimal role but we wish to ignore inessential technicali-
ties). We also suppose ¥ < 0. We study

(=4 + AV)u=eu Q@.1)
with e <0, A > 0, we note that if w = | V {}/3, then (2.1) holds if and only if
Kw = X tw, ' 22
where
K, =|VI—4— g | vpn, @3
Explicitly, if e = —o?, K, has integral kernel
Kix, y) = e=l*V(dm | x — y )| V)2 | V(y)A. (24)

The reduction of the bound-state problem to a factorized homogenous Lippmann-~
Schwinger cquation is a standard device going back at least to Birman [3) and
Schwinger [16] (see [18] for further discussion).

The point is that since ¥ e Cy®, the integral kernel of (2.4) is square integrable for
any o€ C and thus it defines a Hilbert-Schmidt operator, L, for all «. Moreover L,
is obviously analytic in « so it is an entire analytic family. Since it has discrete spectrum
away from zero and is self-adjoint for « real, we have, by general theory [8, 5, 15, 13}

PROPOSITION 2.1.  If py is a non-zero eigenvalue of L,* (x, real) of }nultiplicity k,
then for o near oy, L, has exactly k eigenvalues near py , py(a),..., () each analytic
inanear o = o. :



256 KLAUS AND SIMON

Now let ()) be an eigenvalue of —4 + AV with e(A) — 0 as A | A, . Then, clearly,
A3’ is an eigenvalue of K, = L, and the multiplicity, m, of A;* as an eigenvalue exactly
equals the number of eigenvalues (counting multiplicity) which are absorbed at
A = A,. Let 4y = A3'. By the proposition u(«), and hence, A(a) = u(«)~? is analytic
near o = 0. All the complications must come from inverting to solve for « as a func-
tion of A and then using e = —a2. We therefore write

w(a) = po + aa + bo® + - 2.5)
and study the coefficients a and b in detail. The following can be viewed as the main
technical result in three dimensions:

THEOREM 2.2. Let ¢ obey Lyp = pydp. Then
@ a=—(¢ | VI'"Pdx,
(ii)) Ifa=0,thenb <O,
(i) If p is degenerate, then the coefficients a; of pda) = py + a;a + bya® are
either zero for all i or zero for all i but one.

(iv) If A, is the absorption point for the ground state (smallest eigenvalue), then
o' is a simple eigenvalue of L, and the corresponding a is non-zero.

Proof. We expand L, about « = 0:
L, = Ly + ad + o*B + O(s). 2.6)
Then, by (2.4):
A= —@m (VIR VPR,
(Bf)(x) = (4m) | V(X)I”’f [x =y I V(DP2f(p)dy.

2.7

Conclusion (i) is just first-order perturbation theory and conclusion (i) follows from
degenerate perturbation theory if one notes that 4 is rank 1.

Now suppose that @ = 0. Since 4 is rank 1, A¢ = 0 so that the «4 term contributes
only in fifth order of perturbation theory [8, pp. 77-78]. Thus, when a = 0 we have
that

b = (¢, BY)

= @ [f0) 1 x = y1 () dx dy

with f(x) = | V(x)|"/% ¢(x). Since a =0, [f(x)dx =0. Therefore b <0 since
| x — y | is conditionally strictly negative definite (to see this one notes that if $(0) = 0,
then

81 x — ylg(x) dxdy = —8n [ | 4G k- a%

is negative). This proves conclusion (ii).
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To prove (iv) notice that the ground state u, corresponds to the largest eigenvalue
of L,. Since L, has a strictly positive kernel on L? (support (¥)), this eigenvalue is
simple and the corresponding ¢ is strictly positive on supp V. Thus ($, | ¥ [172) 0
soa#0. [

Remarks. 1. There is anothere is another illuminating way of proving (ii). If
a=b =0, then p(a) = py + ca™ 4 -+ for m > 3 so solving for e as a function of A,
&(A) = d(A — Xg)¥™ + --- violating Theorem 1.1.

2. That a # 0 for the ground state was trivial since ¥ < 0. In Section 9, we will
prove the analogous fact for any Ve C,>.

By inverting the relations e = —o?, 4 = A~1, we can immediately read off the major
properties of e(A).

THEOREM 2.3. Let A be a value of coupling constant at which a unique non-degenerate
eigenvalue e()) approaches 0. Then either:

(A) 0 is not an eigenvalue of —A + AV in which case e(X) = —c(A — A +
O((A — A)® with ¢ 5= 0 and e(}) is analytic at A = A, or
~ (B) 0 is an eigenvalue of —A4 + AV in which case e(d) = —c(A — \g) +
O((A — o)) with ¢ # 0 and e(X) has a convergent expansion in (A — A)'7. Moreover,
e(A) is not analyticat A = A, .

If k eigenvalues (coutting multiplicity) approach zero as A } A, , then at most one is
in case A and, in particular, 0 is an eigenvalue of —4 + AV of multiplicity k or k — 1.
In addition, the ground state is always in case (A).

Proof. We must invert e(A) = —a(A)? and u(x(A)) = A1, Since Ay # 0, we find
A=Ay + do + B + -

withd 5 Oonlyifa # Oand §  0if 4 = 0. If @ # 0, by the implicit function theorem,
o(A) is analytic in A at Ay and a(}) = —ad-1(A — Ay) + O(A — A;) so we are in Case (A).
By Theorem 1.2 (see also below), 0 is not an eigenvalue of —4 + A V.
If @ = 0, then there are two solutions a.(A) of the implicit equation (two branches
of square root)
az(A) = 5—1/2(,\ — )24 e

All of (B) is now obvious except for the assertion that e(A) cannot be analytic. A priori
it might happen that

a(A) = (A — Ag)!/2 - (analytic function of A — Ay). (2.8)

To see this cannot happen, we follow Rauch [12] and argue as follows. If (2.8) holds,
then for A <Xy, and | A — Xy | small, « is pure imaginary so for A < A,, L, has
eigenvalue 1 for o pure imaginary. This implies that E = —a® > 0 is an eigenvalue
of —4 + AV [18], but such operators do not have positive eigenvalues [13].

The remaining assertions follow from Theorem 2.2. [

T
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There is an alternative way of secing that 0 is an eigenvalue i'f and only if
J1 V*72¢ d®c = 0. Namely, given ¢ solving L,_ob = poé let
u=(=4)7|Viré
so that
u(x) = @my gt [ 1x =y 1 V() u(y) d @9)

and (—4 + pg'V)u = 0 in distributional sense. Since ¥ has compact support, u has

an expansion:
u(x) = e, x4 cpxt 4 - (2.10)

for large x. Clearly, u € L? if and only if ¢; = 0. But, by (2.9), ¢, is given by:

I

o = @ ut [ VO uy) dy

I

—@ay [ | V)RR () by

proving once again the result that || ¥ |\2¢ dx = 0 is necessary and sufficient for
zero to be an eigenvalue of —4 + ug'V. This analysis also proves the first half of:

THEOREM 2.4. If V is spherically symmetric, then s-waves are in Case (A) and
1 > 1-waves are always in case (B).

Proof. If the solution u of (2.9) is s-wave (spherically symmetric), then outside the

support of V,
u(x) = d, + dyx

as a spherically symmetric harmonic function. Since u — 0 at infinity d, = 0. Then
dy(= ¢,) can only be zero if u = 0 outside suppose of ¥ but that implies u = 0 since
we are dealing with a second-order ordinary differential equation. Since u = 0,
¢, # 0 so we are in Case (A).

We can see that / > 1 waves are in Case (B) in several distinct ways:

(i) automatically, solutions of the equation (—4 + ug*V)u = 0 with u—0 at
infinity and u(r) = f(r) Yy, have f(r) ~ cr~'-! at infinity so ¢, = 0;

(i) 7 > 1 waves are (2/ + 1)-degenerate so they cannot be in Case (B) by the
-degeneracy criterion. ||

We also remark that Case (A) is generic since if one has a situation with [ | V' |1/2¢ =
0, under a small perturbation the integral will become non-zero.

One can paraphrase Theorem 2.3 in “physical” terms and realize thereby the
connection with Newton’s results in the central case [10] by saying that —a? is an
antibound state if & < 0 is such that L, has eigenvalue 1. If « complex is such that L,
has eigenvalue 1, we call E = —a? a resonance energy (of necessity, Re a <0 [18]).

N
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Then if a single eigenvalue, e(A), approaches zero as A | A, either, e(}) is O((A — A)Y)
and for A < A, , the bound state turns into an antibound state or e(A) = O(A — X;) in
which case an antibound state must approach 0 as A | Ay. At A = A,, the bound and
antibound states collide and as A is made smaller than A, turn into a resonance pair. If
k eigenvalues approach 0 as A | A, , then at least k¥ — 1 antibound states much come
in at the same time producing at least k — 1 resonance pairs.

Consider now the ground-state energy e,(A) of —4 + AV defined a priori for
A > ), , the critical coupling constant for e, . Naively, one might suppose that e, is
singular at A = A, but since the ground state is always in Case (A), ¢, is analytic at
A =), . In the next three results, we show that e, is analytic on all of (0, co) and
investigate the singularities at A = 0, c0. To some extent, our study is motivated by a
remark of Stillinger [24] who notes the analyticity on (0, o) for the square well.

THEOREM 2.5. e, is analytic on (0, o0). It is negative and strictly monotone increasing
(resp. decreasing) as X increases in the interval (0, ;) (resp. (A, , ©)).

Proof. For o real, let u,(x) denote that largest eigenvalue of L, . Then py (o) is
strictly monotone decreasing since if L, = p,(a) ¢, , then (n,(x) = | V(x)|/2¢,(x))

du(@)de = —(Am)™ [ 9.) m(y) e=1=¥1 dx By

and ¢, > 0 on supp(¥). Thus
A,(a = p{x)?

is strictly monotone increasing so it has a strictly monotone inverse function a,(X)
which is analytic. Since

) = —a,()
for A > A,, we are done. |}
Remark. This result is special to 3 dimensions. Also, our proof only works if ¥
has strictly compact support or at least falloff faster than any exponential.

THEOREM 2.6. As A 0, we have that
NP — —d(V)E,
where d(V) = diameter of the support of V.
Proof. By the inversion procedure, this is equivalent to
(—a) In (o) > d(V)

as —a — co. But the operator norm of L, is clearly dominated by e—*#"|| L, || for
(—a) > 0 yielding an upper bound on p,(«) and a lower bound is obtained easily
from the maximum principle for g, . [I
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THEOREM 2.7. As A — o,
e,(N)/A — inf(V).

Proof. This is a result of Simon [17). [

Remark. 1f V has a unique absolute minimum at ¥, and the matrix 9*V/dx; dy,
at x, is strictly positive definite, it is easy to develop large A asymptotics for e,(}) in
terms of harmonic oscillators placed at x, . Similar (but more involved) problems have
already been treated by Aventini, Combes, Duclos, Grossman and Seiler in their
treatment of the Born-Oppenheimer approximation [1].

Finally, returning to the spherically symmetric case, we can say something about
the first singular term in e(A):

THEOREM 2.8. Let V be spherically symmetric and let &(A) be an eigenvalue of
angular momentum | > 1. Then, if (A) — 0 as A } Ay , we have that oA) = [-e(A)]'? =
@A — Ag) + ag(A — A + - + by(A — AR + -+, ie., the first singular term
occurs at order | + }. In particular, for X < A, , the resonance has

Im e(Q)/Re e(A) = O[(A — Ap)*7).

Proof. This is equivalent to saying that in the expansion of u(a) = py + Bo? 4
the first odd order term is a?'+1. In the expansion of L,, the term multiplying a®*+!
is precisely the operator with integral kernel

Apeyy = —(@m) | VOO (x — y)* | VO)IP

This operator is finite rank (compare [6]) and identically zero on states of angular
momentum / > k. Thus the first possible odd order term is a*+2, Its coefficient is
exactly (¢, Ay1,19). If (@, Agi,1¢4) = O, then the expansion of (2.9) shows that u(x) =
O(x—*-% and this is impossible since u(x) = O(x~'~1) (compare with the proof of the
first half of Theorem 2.4). |

3.v>=5, Opp
In odd dimension v > 5, the story is very simple.

THEOREM 3.1. Letv =5,7,9,.., let V <0, Ve C;(R") and let e()) be a negative
eigenvalue of —A4 + AV with e(A\) 1 0 as A | A, . Then O is an eigenvalue of —4 + AV,
e(A) = a(d — Ag) + O((X — A)*™) and e(}) is non-analytic in X — Ay at X = X, but is
analytic in (A — A2

The analysis in any dimension parallels that in dimension 3, except that K, now has
integral kernel

K.(x,y) = | VW2 Gy(x — y; e) | V(YA @a.n
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where Gy(x — y; e) is the integral kernel of (—4 — €)1 If e = —a? with « > 0, then
Go(x; €) = amx "2m)" K, (ax), 3.2)

where m = v — 1 and K, is the conventional Bessel function of imaginary argument.
Ifv=2k+1som=k — }, then

K,.(z) = (m[22)'2 e~* kf tk — 1+ DMKk — 1 — D1Q22)H 3.3)
=0

We thus have:

LEMMA 3.2. Ifv > 5, odd, then Gi(x; —o?) is an entire function of o for every x
obeying
| Golx; o)) < Cerlol 1] | x |00 | o[-,

Moreover, at o =0,
Go(x; —a®) = Cy | x "% 4 Cyo? | x |-~ + O(o5). (3.9

Proof. By (3.2) and (3.3), Gy(x; —a?) = F(x, a) is an entire function of « of the
form o>~2F(ax, 1), so the bound is obvious from (3.3) and to prove (3.4) we need to
show that

XKn(x) = Cy | x |7 + G, | x [0 + O( x |-9).

But, by (3.3)
XK = (2 i esay s [FEZ DN (14 x + oy

- Cx—m—l/!—k+l(] + O(x2))

since the 1 4 x and ¢ cancel to O(x?). Since k =m + §, m — } — k + 1 =
—2k+1=—v+2 |

Remark. There is another way of seeing that if v = 2k + 1
Go(x; 1) = Cy | x [0 ¢ | x |70 4 - + Ce [ x |71 4 O x |7Y)
(i.e., in Gy(x; —o), the first O(a) term occurs as o’-3) which is illuminating. Since
(e**)(x — y) = (4mt)~1* exp(—(x — y)*/4t)
and

(=441 = fm e~tettd dy
o

S—"
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we have that

Gy(x, 1) = J;m (4art)— 2 e-te—l=tt/at gy
= x+? fm (dmy)~'2 e-visl® e-1/4v dy
. (]

by changing variables from ¢ to y = ¢ | x |-*. Expanding the exponential and noting
that the only problem is a singularity at y = co, we see only | x [** occurs for
k<v)2—-1.

Proof of Theorem 3.1. Let L, have the integral kernel:
| VO™ | x — p T2 Koo | x — 3 ) | V)P

with m = }v — 1. Then, by the lemma, L, is a compact operator (it is not Hilbert—
Schmidt but by standard methods [23), it is in a suitable trace ideal) with

Ly = Log+ Ao® + Bo® + -
about « = 0. Thus analyzing as in Section 2,
w(e) = po + bo? + O(a®)

and the theorem in proven as in Section 2. I

Remark. That A #0 in the above proof follows from general principles

(Theorem 1.1) but it also can be proven from the fact that | x — y |=-4 is a strictly
positive definite function.

Remarks. 1. Since angular momentum / in » dimensions is equivalent to angular
momentum / 4 (v — 3)/2 in three dimensions, we can read off the first fractional
power from Theorem 2.8.

2. Theorems 2.5, 2.6 are replaced by the following: at A, the ground-state collides
with an antibound state &,A). If one continues £(}) from A, to A increasing, there is
another singular value X, and if one takes the right branch from these, it is analytic
in (0, &,) and has a logarithmic singularity at 0. This follows from the fact that the
largest eigenvalue p,(a) of L, must be as shown schematically in Fig. 1.

Ficure 1

.
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4. v=1
In one dimension, the result is also very simple:

THEOREM 4.1. Let V <0, Ve Cy(— 0, ) and let e(A) be a negative eigenvalue of
—d?|dx® + AV with e(A) 1 0 as X | Ay with Ay = O. Then, O is not an eigenvalue of
—d¥dx® + AV, e(d) = g(A — Ag)2 4 (X — X)), g # O, and e(}) is analytic about X, .

Remark. The same result is true for the critical value A, = 0 [19]. We separate out

the case A, = 0 because the proof is different (it appears elsewhere [19]) and because
the above theorem holds even if ¥ is not nonpositive (see Section 8) while in the case

at Ay = 0, e() = aX* + - is possible [19].

To prove Theorem 4.1, we define the operator L, on L3 — oo, o) to have integral
kernel
Ly(x, y) = [ V(' e=l#¥I(20) 1 | V()2
so that for « > 0, L, = | V {¥%(—d + o«®) | V [1/2. The only complication now is that
L, has a pole at « = 0 which is actually responsible for A, = 0 being a critical value.

LemMA 4.2.  There exists 8 sufficiently small and R sufficiently large so that for
| @ | < 8, L, has no eigenvalue in the region{u | | p | = R} and precisely one eigenvalue
po(a) with | p ()] > R. Moreover, () is simple and p (o) — © as « — 0.

Proof. LetM, = al,.Then M, isanalyticata = 0and M, = (| V', )| V |12
is rank 1. Thus by standard eigenvalue perturbation theory [8, 13}, for suitable §,
and | « | < 8;, M, has exactly one eigenvalue in {y | |y | = §(] V2, | ¥ |1/3)} and
it is simple. Put differently, L, has exactly one eigenvalue p,(a) in {p||p| >
o] VM2, | V 1/} and it is simple. We are thus reduced to finding R with no
eigenvalue in {u | R < | p | < 3o} V'3, | V |¥/%)}. Following [19], write

Ly = a Moy + Qu -

Then for | a | < 8;,1| Q. |l < iR for some R. a~1M,_, is normal and has eigenvalues 0
and o~Y(| V |12, | V |/%). Thus («~'M,., — z)~! exists and has norm

max(| z |7, oM VA [V V) — 2|7
for z £ 0, a”Y(| ¥ 12, | ¥V |'2). In particular, if R < |z | < {a (| V', | V |1/?) then
Mo Myag — 2(71Q, | < max(RTIEAR), BRI V1A, | V 1)),
By shrinking 8, to 8 if necessary, we can be sure that
Moo — 2)7'Qull < %

for | «| <8, R < |z| < $a7)(| V', | V|'7). This implies that

(Le — 2) = (@ Meng — D1 + (7 Moo — 2)7Q.]

is invertible. [
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Proof of Theorem 4.1. For | a| < 8, define
P(o) = (2mi) f (1 — L) du.
lul=R

Then, L,P(a) = N(a) is analytic in the punctured neighborhood {0 < « < 8} and
bounded as a — 0 so N(«) is analytic at « = 0. Moreover, the eigenvalues of N(a)
are exactly those of L, other than u,(«). In particular, u, = Ag' is an eigenvalue of
N(c). In the usual way, there is a unique eigenvalue u(x) of N(a) near p, .

(—4 + AV)u = 0 has no square integrable solution since u ~ a + bx at infinity.
Thus, by Theorem 1.2, e(A) = d(A — A) + higher order with d # 0 is not allowed.
By the analysis in Section 2, it cannot happen that

p@) = po + ba? +
and thus
o) = pro + @ + bt + -

with a # 0 from which the theorem follows as in Section 2. |}

5. v > 6, EVEN

Here the result is

THEOREM 5.1. Let V <0, Ve C*(R’), v =6, 8, 10,.... Let &()) be a negative
eigenvalue of —A + AV with e(A) 1 0 as A | X, . Then, 0 is an eiganvalue of —4 + AV,
e(d) = g(A — A) + O(A — A (g # 0), e(}) is not analytic at A = A, and e(}) for A
small has a convergent expansion:

eQ) =Y ¥ caml@ — A2 — 2P InA — A
n=2 m=0
Remark. Non-analyticity only asserts that some term with either m # 0 or n odd
occurs. We do not see how to show there is not some kind of miraculous cancellation

of all terms with m + 0.
The analysis is similar to that in Section 3, but now m = 3n — 1 is an integer and

thus the Bessel function

I m == D!y,

K,,,(Z) = i & I Zm=2l
oty 3 ([log3 = 390+ D = 39m 14 1))

i,
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with

$() = — lim [g% - lnn]

=l4at et li—1-C

with C Euler’s constant.
AProof of Theorem 5.1. By the above analysis, L, has the form
L,=A4,+ (xlna)B,
with 4, , B, entire analytic in « and the leading terms in L, are
L, = Ly+ oC + -+
with
Ly(x, y) = e | VX' | x — y |- | V()P
Clx,y) = | VI | x — y -0 | H(y)rn

w.rith €, ¢ # 0. Standard perturbation theory methods easily show that if p, is an
cigenvalue of L., then for a small and positive, L, has an eigenvalue u(«) given by
the convergent series

wa) = i Cpma™(o In )™,
n32
m30

Moreover, since C is strictly positive definite on L¥supp V), the leading behavior is
M) = po+ Ao+, A #£0.

The required behavior of e(d) follows from a suitable implicit function theorem
(Theorem A.4) which we discuss in the Appendix. ||

6.v=4
THEOREM 6.1. Let V <0, Ve Cy(RY). Let e(A) be a negative eigenvalue of
—4 + AV with e(A) 1 0 as X | Ay. Then either

(@) Ois an eigenvalue of —4 + A,V in which case e()) obeys all the properties
given in Theorem 5.1, or

(b) 0 is not an eigenvalue of —4 + A,V in which case
ed) = g2 — A)/[In(A — AP + lower order

ST S————"
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(g # 0) and e is not analytic at A = ), but is given by a convergent expansion
E’ Cam[—(A = )/InA — )1 [—1/InA — AI™{—In[Ind — ) VInA — Ag)}*.
m.k>0
Moreover, if several eigenvalues approach zero at once, then at most one is in case (b).

Remark. The proof shows that for central potentials, s-waves are in case (b),
I > 1 in case (a).

Proof. The expansion of L, comes from K; which is given in Section 5 but now
the leading terms are

L,=Ly+o*naD +a*Dy+ -,
where
Dy =c(l VI3V e
Dy =cx(| VA ) VIR + ¢ [ VP Inlx = y [ VO™

If | V |'7, ¢) # O for the unperturbed eigenfunction L,_y$ = o, then
wo) =catlna+ - (c#0)

and we are in case (b) given Theorem A.5. Clearly, in the degenerate case, at most one
eigenvalue is in this case. If (| ¥ |'/2, ¢) = 0, then the leading behavior is

pla) = do® + -

That d # 0 follows either from general principles (Theorem 1.1) or from the condi-
tional strict positive definiteness of —In | x — y|. (To see this conditional postive
definiteness, use limg,, (x~2 — 1)/8.) |

T.v=2

THEOREM 7.1. Let V <0, Ve Co°(R%) and let e(X) be a negative eigenvalue of
—A + AV with e(A) 10 as A} Ay with Ay # 0. Then one of three mutually exclusive
situations holds:

(a) O is an eigenvalue of —4 + AV, in which case e()) obeys the conclusions
of Theorem 5.1;

(b) 0 is not an eigenvalue of —4 + A,V and e(}) obeys the conclusions of case (b)
of Theorem 6.1;

B
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(c) 0 is not an eigenvalue of —4 + AV and
&) ~ ¢; exp(—1/cs(A — ) a.n

with ¢, , ¢, # 0. [(7.1) holds in the sense of the ratio going to 1.]

Moreover, if several eiganvalues approach zero at once, at most one is in case (¢) and
at most two are in case (b).

Remarks. 1. Our proof actually establishes an asymptotic series e(d) ~

 exp(— 1]\ — AXer -+ dod — Xg) + .

2. If ¥ is central, s-waves are in case (c), p-waves in case (b) and / > 2 in case (a).

3. For Ay = 0, see [19].

v = 2 not only has the most complicated set of possibilities but has the most compli-
cated analysis. The problem is that as in case v = 1, L, has a singularity at » =0
but it is (In o) rather than L. Thus, the trick we used in Section 4 to treat v = 1
will not work because even after cancelling the leading singularity the precise behavior
is not simple; indeed we will find (In )~ terms. If we had used the analysis below in
case v = 1, we would have found corrections of the form [(«~?)~!]* which we could
lump together as “analytic corrections” in the operator P(x). We begin our analysis
by noting that

z o  zim
Ko@) = —log (5) 1) + X, iy #m + 1)
with .
I(z) = i [t I+ 1)1 27222

and
Ly(x, y) = | V@)IMQ2m)Ky(ax | x — y ) | V(P2 (1.2

In particular, we can write

L, = o(0)P + 4,, (1.3)
where P is the rank 1 projection
P = (_ J' ydzx)_l (Ve ) ype (7.4)
and
o(@) = Q) ( f Vd‘x) In« (1.9

and where A4, has a limit, 4,, as a } 0.

s
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We thus begin with a general analysis of the eigenvalue of (oP -+ A) as o — o0,
where P is rank 1 and A4 is compact. We will let @ = (1 — P).

LemMA 7.2. Let P be a rank | projection and A a bounded operator. Then Jfor
o> 2|l A, A+ oP has exactly one eiganvalue outside the disc of radius | A|), it is
simple and O(o) as @ — c©. Moreover:

(1) For z fixed withz > || A ||

(z—0oP — A" — 0z — QAQ)Q

in norm as o — 0.
(2) If A is self-adjoint and compact, then the limit points of the eigenvalues of
aP + A are {0} U {the eigenvalue of QAQ on Ran Q).

Proof. As in Section 5, for o large, spec(4 + oP) consists of one large eigenvalue
of multiplicity 1 and stuff within a circle of radius R for some fixed R. We will show
that for o > 2| A ||, spec(4 + oP) is disjoint from R, ={z | | Al <z <o — A}
from which the first part of the theorem (up to “moreover’’) follows. For z e R,,

Iz — oP)y || < max(z™, |z — o |1 <||A|?
and thus the perturbation series
(z—oP — A) = (z — oP)* + (z — oP)A(z — aP) + - (1.6)

converges.
To prove statement (1), note that (z — ¢P)~! — Qz! in norm as o — . Thus,
by the convergence of (7.6) uniformly for o large and z fixed with [z | > || 4 |:

norm-im(z — oP — A)™! = z71Q + z2QAQ + - + 7 "Q(40)"
= 0(z — Q40)7Q.

Statement (2) now follows from the spectral mapping theorem and the continuity
of spectrum under norm limits. [

To go further in the analysis of (z — oP — A)~1 it is useful to think of P as the
perturbation (even if o is large!). Suppose that P = (¢, -)¢. Then for z very large
(compared to o)

z—oP—A)'=(@z— A"+ i o(z — A)oP(z — A) P}* P(z — A)!

7.7
=z — A" + 0,(2) " oz — A)t P(z — A), a7

ey
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where

w,(z) =1 — o($, (z — A)¢) (1.8)

having proven (7.8) for z large, it follows for all z ¢ o(4) U {z | w,(z) = 0} assuming
a(A) does not disconnect C. The analysis leading to (7.7), (7.8) is fairly standard,
[8, pg. 244 ff] and (7.8) is called the Weinstein-Aronszajn determinant.

For large o and z fixed | z| > || 4], we have that

o @t = [(h (z — A ) — o1
= (@) (2 — A Gyt

Thus

@ —oP — A = (z — A" + (¢, (2 — A7)z — APz — A
+ oY, (z — A\ Nz — APz — A + O™,
(7.9)

Notice that the first two terms in (7.9) sum up to
0@z — Q40)70
so we recover our earlier result on norm convergence.

LemMA 7.3. Let py # O be an eigenvalue of QAQ. Then
() If po ¢ o(A), then p, is a simple eigenvalue of QAQ.
(i) If V ={n|QAQn = pgn}, then IW C V with co dim(W) = 0 or 1 so that
Jor all o
(z—oP—A=(z— Ay (7.10)
Jorne W. For ne W, An = ugy.
Proof. (ii) implies (i) since W has codimension at most 1 and thus dim(V) > 2
implies pq € o(A). .
To prove (ii) consider the map from ¥ to C given by
I(n) = (¢, (z — A7)

for some fixed z with | z| > || 4 ||. Let W = Ker I so dim W = dim Vordim ¥ — I.
By (7.9), we have (7.10) and taking o — oo,

C—p) ' =GE— A

so that An = p,n. This later fact shows that W is z-independent.
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Proof of Theorem 7.1. We write

(-0 P-A)" = (2-0, P~ Ay + (z— 6, P~ Ay A, ~ ANz ~ 0, P — A)™! + -
(7.11)

and (since 4, — A = O(o? In a)) conclude that the eigenvalues of L, which remain
finite and non-zero as « | 0 converge to the non-zero eigenvalue of Q4,Q. Let y, be an
eigenvalue of Q4,0 and let ¢ be the corresponding eigenvector. If

P(z — Ay #0 (7.12)
then, by the above analysis

) = po + ¢(In &) + -+ + y(ln @)t + O((In @)Y

and inverting we are in case (¢). By Theorem 1.2, 0 is not an eigenvalue. Moreover,
Lemma 7.3 shows that if u, is degenerate at most one dimension is in the situation
where (7.12) holds. Now suppose that

P(z — Ag) 'y = 0. (7.13)
By (7.10), we can replace (z — o,P — Ag)~1y by (z — Ax)~1y wherever it occurs in

the systematic perturbation series based on (7.11). In particular the leading term which
comes from the o®In term is Ky(x | x — y |) has the form ca? In « with

¢ = const f W) x — y [*9(x) dx dy

with 5 = | V' [¥4(z — Ag)-'y. Since (7.13) holds, f5 = 0 so
¢ = 2(const) f (—x - ) n(x) n(y) dx dy

= 2(const) (—— [f x7(x) dx]l)

Thus ¢ # 0 at most on a space of dimension 2. On that space we are in case (b). If
¢ = 0 also, then the O(o?) term is non-zero either by general principles or by the fact
that In(x — y) is conditional strictly negative definite.

8. EXTENSIONS, A. V OF BOTH SIGNS
We want to discuss here how to deal with the situation where ¥ < 0 is dropped.

Of course ¥ must have both signs or else —4 + AV has no threshold for A > 0. We
will indicate how to deal with the case v = 3. Let | ¥(x)|'/* be the obvious function

‘)
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and V(x) = V(x) | V(x)I"1/2 = | V(x)]** sgn(¥(x)). Onme lets L, hav integral
kernel

Lyx,y) = — | V)P e~1=~%(dmr | x — y )72 V2A(y).

Then if u(c) is an eigenvalue of L, for « near zero with p(0) > 0, then thresholds are
obtained by inversion in the usual way.

For non-degenerate eigenvalues, there is no problem since the self-adjointness of
L, plays no role in this case (all perturbation coefficients are real). But if p(0) is
degenerate we must worry since in the non-self-adjoint case, eigenvalues may be non-
analytic in «. Rather, if u(0) is k-fold degenerate, then a priori,

be) = 3, cala™. @1

n=0

Here is a somewhat involved argument showing that ¢, = 0 if n is not a multiple of
k so that the analysis of Section 2 still holds (except for the arguments on the ground
state; we do not see why p(a) must be monotone in the a < 0 region):

LeMMA 8.1. Let « > 0. Then all eigenvalues of L, are real. If ¢ is any eigenvector
of L, with non-zero eigenvalue, then

(¢, (sgn V)¢) + 0. 3.2
If &, Y are eigenvectors with distinct eigenvalues, then
(¢, (sgn V)) = 0. (3.3

Proof. Let S = multiplication by (sgn ¥). Then SL, = L*S. Thus, if L. =pd,
we have that

w(S$, $) = (4, L$) = (LS4, $) = (Sud, &)
— #(S$, )
50 (8.2) implies also that u = i, i.e.,  is real. But
4, S#) = u$, SL.) # 0

since SL, is positive definite and strictly positive definite on supp V.
Similarly, if L,¢ = p¢, Ly = vif, the above argument shows that

(a — ), S¢) =0

_implying 8.3) if p = v = 5. 1

R —
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LemMA 8.2. Ler A(c) (x near zero) be an analytic family and let 1o be an isolated
eigenvalue of finite multiplicity of A(0). Suppose that the eigenvalues (o) which approach
, are genuinely multivalued analytic functions. Then, there exist unit vectors b+(a)
and eigenvalues {p, (o)}t , {p_ A}~ for « > 0 50 thar

() pda) # u_fa), for « >0alli,j,...,
(i)  pu(o) are sums of eigenvectors of A(x) with eigenvalues pz (o),
(i) ¢ =l =1,

(V) ()~ ¢o, $_(«) — o in norm where the same §, occurs.

ExampLE. To see this really happens, let

4@ =} 5)

and "':((l’)'

Proof. By standard methods [8, 13] one can reduce the problem to A(a) a family
on a finite-dimensional space with o(A4(0)) = {u,}. Butler’s theorem [8] then asserts
that if P{(a) are the projections onto the eigenvectors for u(a) (with AP, = PA),
for a > 0, then some || P(a)]| — oo as « — 0. This can only happen if the Ran Pya)
become linearly dependent as « — 0.

50 pifa) = +al/* and
o (et
@) = (1 + o (177

THEOREM 8.3. The series (8.1) is analytic at o = 0.
Proof. If not, pick ¢(c) according to Lemma 8.2. By Lemma 8.1, with S = (sgn V)
($.(a), S$_(a)) = 0.
Taking « | 0, (¢, , S¢) = O which violates Lemma 7.1. |

Similarly, there can only be one eigenvalue with an O(a) term. This does not
immediately follow from dL /dx |,, = rank 1, (e.g.,

0 of

1 0
has two O(c) cigenvalues) but if first-order terms come from some higher order,
Butler’s theorem still holds and one can use the above arguments.

9. EXTENSION, B. ¥V MEeDIUM RANGE

We deal with successively less short range ¥’s in a series of remarks (for simplicity
we consider the case v = 3).

‘)

¢

e S

o,
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1. If ¥ does not have compact support but
[ et v dnx < o ©.)

for some a > 0, then all arguments involving local behavior at a =0 go throqgh
without change since L, is still analytic. The only global argument concerns following
the ground state to A = 0 and that argument does not go through.

2. If (9.1) fails, but

J' x| V() dPx < o ©.2)

for all n, then L, has an asymptotic expansion to all orders and, at least for non-
degenerate cigenvalues, we get asymptotic expansions for u(a) and then for &(})
(expansions in either (A — Ag) or (A — A)173),

3. If (9.2) fails, but
fa+ixpverds < o

then one can still expand L, = Ly, + a4 + o?*B + O(a*+?) so one finds that if 0 is not
an eigenvalue of —4 + AV, then e(d) = c(A — A))® + O(A — Ap)? for ¢ # 0.
10. ExTENSION, C. A PROBLEM OF NEWTON

Our main result in this section is the following:

THeoreM 10.1. Let v >3 and let (1 + | x ) Ve L'+ L'2<(R"). Define
Ly = — | VYA(—=A)V12, Let p, be the largest eigenvalue of L, and let Ly = poip.
Define

$ = (—dyivny,

Then for some ¢ > 0:
#(x) > c(l + | x )02, (10.1)

Remarks. 1. Thus ¢ obeys (—4 + pg'V)$ =0 and ¢ is associated with the
ground-state absorbtion.
2. ¢ > 0 is discussed in detail in [22]). It is shown there that ¢ € L=

Before proving Theorem 10.1 we want to describe its relevance to the questions
under discussion in this paper and then to a problem raised by Newton [11].
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COROLLARY 10.2. If v =3 and eA) is the ground state of —A4 + AV and if*
(1 + | x|) Ve L L32-<(R®), then at threshold,

DA — Ap) =0 10.2)
asi)A,.

Proof. By Theorem 1.2, e(A)/(A — Ag) »-0 implies that O is an eigenvalue of
—A4 + AV. It follows that there is a square integrable positive eigenfunction % [13].
But positive, L®, solutions of (—4 + 2,¥)n = 0 are unique up to constants [22] and
¢ is not square integrable if v = 3. This contradiction proves (10.2). |

COROLLARY 10.3. If for some 8 >0, (1 + | x [)**0-®V € L***< then (with ¢ the
Junction in Theorem 10.1)

j V(x) $x) d*x + 0. (10.3)

Remarks. 1. Since the proof of the corollary uses lemmas needed in the proof of
Theorem 10.1, we defer its proof.

2. Since (1 + | x |)-+t-Me L? with p~! + (v/2)~! = 1, the hypothesis implies
that ¥ e L so that the integral in (10.3) converges. Roughly speaking we require that
V ~ (x)~-* at infinity. In particular, if | ¥(x)| < C(1 + (x))™-* (§' > 0), the hypo-
thesis holds.

3. Corollary 10.3 resolves a problem raised by Newton at the end of Section 5 of
[11).

We now begin the proof of Theorem 10.1.

LeMMA 10.4. Let p, q be dual indices (p~ + q~* = 1). Let W be a function with
W>=0and(—4 — AW) >0 for A < p + 8 (some & > 0). Let n € L*/**< withn > 0.
Then

(=) ()| < {[[—4 — pW) )}V?{[(—4 + gW) )0} (104)

Proof. Let t > 0. Then, by the Feynman-Kac formula [21]:
etin) = Elax + B = E (exp ([[ WO + 6D ) 7125 + b0

x exp (— [ " Wex 4 b(s) ds) 7z + b(eY)

< E(e’fW.q)l/D E(e—cfwﬂ)l/ﬂ

p— [(e—ﬁ—d—’W).q)(x)]l /D[(e—t(—Ma W),,’)(x)]lld

1In [26], this result is extended to ¥ e L2,

'}

)
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by Hélder’s inequality. Using (4) = fo et4dt and Holder’s inequality again,
(10.4) results. i

LEMMA 10.5. Let G, = (—4). Then
(A + [ x PGl + | x )?

is bounded from L**+¢ N\ L*1*~< to L*. The same thing remains true if v — 2 is replaced
by (v — 2) + 8 and G, by convolution with | x — y |~ 50 long as & > 0is sufficient-
ly small (how small depends on ¢).

Proof. We consider the case 8 = 0. Since G, is, up to a constant, convolution
with | x — y |2 we need only show that

A+ 1xD"x—y )1 + iy D)2 = Lx y)
is the integral kernel of a bounded operator from L*/*< N L2 to L>. Since
A+1xh2 <A+ Iyl +lx =y <202+ 1y )2+ 1x—y

we need only show that

Lx, p) = lx—y| "
and
Lix,y) =1 +1y )
are bounded integral kernels. The first follows from Young’s inequality and the second

from Holder’s inequality. [

Lemma 10.6. Let W lie in L**¢ N L’ with sufficiently small norms. Then

(1 + | x (=4 — W)X + | x )"~ is bounded from LA+ O L*~<on L*. .

Proof. By the last lemma, (1 + | x )* GoW(1 + | x)"*P is bounded from .
L= to L= with norm less than one if the L? norms of W are sufficiently small. Thus,

[(1 + 1% DO — GeW) M1 + | ¥ D0~ + | x DODG(L + | % )]

is bounded from L*/#+<n L*A~<to L>.

Proof of Theorem 10.1. With ¥V =V, — V_ with V, = max(4-V, 0). Then [22], )

¢ obeys
$=(—4+V)'V.é (10.5)

i
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with g€ L= and ¢ > 0. Let 5 = V_¢. By Lemma 10.4 for suitable 2, ¢, A
(— A" < (=4 + V) P rl(—4 — AV, . (106)

(By [22], pick A so small that —4 — AV, is subcritical; let A — q/p and then W =
p'V, ) Since 5 > 0,

_ (=49m(x) = e + | x[)0-n
is trivial, so by (10.5) and (10.6), we can show (10.1) by proving
[(—4 = AV i) < c(l + | x )2, (10.7)

Since (1 + | x [)+% & L*/*+< by hypothesis, (10.7) follows from Lemma 10.6. 1

Proof of Corollary 10.3. Since G, is convolution with ¢ |x—y|--®

8 = 12170 ([ V() $(1 d) + R, ()
where
RE) = [[1x =y 12 — | x [-o-2] V(5) §(3) dy. (10.9)
Clearly we need only show that
[ R < d]x —y|-t-d-r (10.10)

for some y > 0 for (10.8), (10.10) and (10.1) clearly imply (10.3). For any y <1
[x—ue —x|=B) < D,, | yPllx —y |73+ | x|-+-0>]  (10.11)
by hmthesis, for ¥ small, | y |*V & L! so the second term obtained from inserting
(10.11) in (10.9), obeys (10.10). By Lemma 10.5, the same is true of the first term.
11. EXTENsION, D. V + AW

WF wish to indicate here that treating —4 + ¥ + AW is not much harder than
treating ¥ of general sign (Section 8). For one can replace L, by

M(V) = e=Golx — y; —a?) e (V(y)

and the problem is to look at eigenvalues E(}, «) of

M.(V) + AM (W)

¢

%)

i
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and solve E(A, ) = 1. Itis clear that the results of the case —4 + AV extend without
any significant change.

APPENDIX: AN INVERSE FUNCTION THEOREM
In this appendix, we want to prove results of which the folloling is the simplest case:

THeorem A.l.  Let f, g be functions analytic in a neighbourhood of « = 0. Suppose
that f, g are real for « real and that

J(0) = g(0) = g'(0) = 0; f'(0) > 0.

Then for X sufficiently small and positive there is a unique positive «(}) satisfying

A= f(a) + g(o) In o (A.D)
Moreover, for A sufficiently small, « has an expansion
ad) = Y cn,m)X(—Aln " (A2)
n>Lm30

converging uniformly and absolutely for A small; c(1, 0) = (f'(0))~.

Since this generalizes a well-known result when g = 0 we expect this theorem is not
new but we cannot find a proof of it in the literature. By making suitable substitutions,
we will reduce the proof to an ordinary implicit function theorem in several variables.

Proof of Theorem A.1. Without loss of generality we can suppose that f'(0) = 1,

SO we write

fl@) = a+ 22 a,o®,

gla) = Y, by

n=2

Since we know that the leading order for o is A, we write

a=XMl+2) (A3)
and easily find that in the region where | « | is small, (A.1) is equivalent to
2= =AY @l -+ 2PX( A+ 2" + 7 Y bpya(l 4 22471 + 2)
n=0 n=0
— A Y bays(l + 272 1In(1 + 2) An, (A.4)

n=0
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where
7= —AlnA (A.5)

Equation (A.4) can be written in the form
F(z, A, 7) = 0,

\.vhcre () z= Q, A= 0,.1- = 0 is a solution; (ii) F is analytic for | z|, | A], | v | small
since l.n(l + 7:) is analytic at z == 0; (iii) 2F/z (0, 0, 0) = 1 s 0. Thus, by the ordinary
implicit function theorem, (A.4) has a unique solution for | A |, | 7 | small given by a
convergent expansion
’ z= Z dpAnT™,
n.m30

Given (A.3) and (A.5), this yields (A.2). |

With this warmup, we can be briefer about the more complicated cases we need in

the paper.

"f';:amkl-:u A.2. Letf, g be functions analytic near o = 0 and real-valued for « real
so that

fO =f(0) =20 =g'(0) =g"(0) =0; f"(0) > 0.

Then, for A sufficiently small and positive, there is a uni iti isfyi
s A unique positive «() satisfying (A.1).
For A sufficiently small, «()) has a convergent expansion ine )

ad) = Y cln, m) X3~ |np )™ (A.6)
n31,m30

with ¢(1, 0) = [1/f*(O)].

Proof. Write, without loss, f(a) = of + Yar s aua® =Y s byan
the substtitution Tncs 0%, £(2) = Tnos boa™ and try

o« = A1 +2). (A7)
Then

22422 = =AY dass(l + )" 0"
n=0

+r f_:o ouss(l + 2"30" — 0 ¥ bo(l + 2" In(1 + 2) 0",
n n-0

(D)
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where 7 - —Al”2In A, ¢ = Al/2, Again, we have an equation F(z, o, 7) = 0 which we

can solve implicitly:
z= Y dyno"t™-
n.m30
TueoreM A.3. Let f, g be functions analytic near « = 0 and real-valued for o real

so that
f0) =f'(0) =g(0) =g'(0®) =0; g'(0) <O
Then, for A sufficiently small and positive, there is a unique positive oA) satisfying (A.1).

For X sufficiently small, o)) has a convergent expansion

Q)= Y clnmk)ortme*

n31,m,k30

with

o=M—=lnN2, 7= —1/ln) =[G

and C(l, 0, 0) = [_%gn(o)]_l/z.

Proof. Suppose, without loss, that f(a) = Tn_ @xa®, g(e) = —20* + g baa™.
Let
a = ol + 2).

Then, by tedious but straightforward substitution,

2z 2= +2Pw+2r(1 +2PIn(l +2)— Y Gpipon(1 + 2"

n=0

+ [30 — ow — arIn(l X 2)] i bpa0™(l -+ 23, (A.8)

n=0
which, in the usual way, proves the theorem |

THEOREM A.4. Let o and X be related by

A= z Cama™(a In )™,
n32
m>0

where 3 Cpmx"y™ defines an analytic function of two variables with ¢y, = 1. Then,
there is a unique solution «(X) = X2 4 O(\'73) for X small with a convergent expansion

ad) =Y dppot™; 0= X2 7= NI,

i A ol
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Proof. Let a = X1 + z) and find

2427 = — m);m Cniam0™(1 + 2™ L g In(l + 2)]m.

The usual method yields the desired result. [ |
Similarly, one can extend the analysis of Theorem A.3 to obtain:
THEOREM A.5. Let a and X be realted by

A==2dIlna+ ¥ cppa*(aln oy,
"3

where 3. ¢,mx"y™ defines an analytic Junction of two variables. Then, there is a unique

solution o(A) = [A/In(A-)]1(1 + O(1)) for X small with a convergent expansion

)= Y Comot™wt,
n31,m. k50
where
o = (A/—In A7, 7= —1/In A; @ = [Ing(A-Y)]r.
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