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A COUNTEREXAMPLE TO THE PARAMAGNETIC CONJECTURE
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We providea counterexampleto theuniversalparamagnetismconjectureof Hogreve,SchraderandSeiler.The counter-
exampleis basedon theBohm—Aharonoveffect.

Several years ago, one of us [11proved an inequal- (eq. (18) of ref. [41)that
ity expressingthe universaldiamagnetictendencyof

Tr(exp(—j3H2(a, V))) ~‘ Tr(exp(—~3H2(a = 0, V))) (6)
spinlessbosons.Fora singleparticlein external(local)
electricpotentialV andmagneticpotentiala, the in- and,in particular,that
equality canbe expressedas follows: Let E2(a,V)~<E2(a=O,V). (7)
H1(a,V)~(—iV—a)

2+V (1)
In ref. [4] a number of arguments are given in favor

andlet of this conjectureand sincethe apperanceof ref. [4]
anumberof interestingdevelopmentshavetendedto

E
1(a,V)Einfspec[H1(a,V)] (2)

supportthe conjecture.First, an inequality on func-
Then [1]: tionaldeterminantswhich follows from (6) (andwhich

was themain concernof ref. [4]) hasbeenproven
E1(a, V) ~ E1(a = 0, J’), (3) evenfor suitableYang—Mills fields [5]. Moreover,
foranya, V. Subsequently,motivatedby remarksof for the specialcasea = ~(B0X r) (i.e. B = a constant,
Nelson,Simon [2] extended(3) to a finite tempera- B0),where(7) hadbeenindependentlyconjectured
ture result: (in an equivalentform) by Avron et al. [6], Lieb ~1

provedthat (7) held (it is still unknownwhether(6)
Tr(exp(—~H1(a,V))) ~ Tr(exp(—~3H1(a=0, 1’))) (4) holds in this case).Subsequently,Avron and Seiler [7]
(see ref. [3] for further developments).Of course(4) extendedLieb’s result to certainpolynomialB’s.
implies(3) by taking j3 -÷oo• Ourgoalhere is to providea counterexampleto (7)

Roughly one yearago,Hogreveet al. [4] put for- and thusto (6). We will dealwith two dimensionsand
ward a very attractiveconjectureaboutthe situation allowVto be infinite incertainregionsbutgiven that(7)
whenspinis takeninto account.Leta bethe conven- is falsein that caseit is easyto conclude(7) will befalse
tionalPaulimatrices for suitablethree-dimensionalcaseswith V everywhere

finite. Indeed,in the three-dimensionalcase,consider
H2(a, 1’) (—i%~— ~)2 + V (5) apotential~ z) = Va(x,y)x1(z), where Va(X,Y)

= (—iV — a)
2 + V + o B, (5’) = min(à,V(x,y)) andxis thefunction whichis 1

(respectively 0) for IzI <1 (respectively Izi ~ 1). Then
whereA= E, Atu

1 asusual.Thenref. [41conjectures asa,1 —* 00, thegroundstateenergyof the three-dimen-
sionalsystemapproachesthatof the two-dimensional
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with finite potentials,it will holdfor two-dimensional whenB is turned on:I a B(w(t))dt, which tendsto
systemswith potentialsallowedto be infinite, increasethe traceandi f a(w(t))dw (Ito stochastic

We will takea magneticfield B(x,y) ~2 which is integral)which tendsto decreaseit. Sinceonly closed
axially symmetricunderrotationsin the planecentered pathsenterthe traceone is temptedto write J’ a(w)
at (x.y) = (0,0). In this casea convenientgaugefor X dw = flux within w ~ and it is clearthat one would
a is haveto canceleffectsof the field within w by the

~ field on w which leadsnaturallyto Bohm—Aharonov
a(p)=(2irp )~•(p)Xp , (8) . .considerations.It is also clearfrom this point of view

whereCF(p) is the total flux throughthe circle of radius that for the Vwe discussand ~3finite that (6) fails 46,

p ~. The gauge(8) hasdiva = 0. Thus t4: Finally we remark that Lieb’s proof” in the case
B = B0 dependson theinfinite degeneracyof the

= (—iV — a)
2 + V + a B groundstateofH

1(a, V= 0). For the B we pick there
= p

2 + a2 + 2a p + V+ a B is no normalizablegroundstatefor X small(seeref. [91).

— 2 + 2 12 2\—1 ~ ~L + V+ B 19s
— p a ~ irp ~ ‘~P’ z ~ Oneof us (B.S.)would like to thank theTechnion

Now takeB = XE? whereX is a couplingconstantwhich PhysicsDepartmentfor its hospitality and also the
we will varyand B is the field which is 1 in a disc of Eggedbuscompany.
radiusI and 0 outsidethe disc. Now let V = p2 + jiW
where W is I (respectively0) inside(respectivelyout- ~ Sincew is ageneralbrownianpathwhich is not rectifiable

side) the disc and takep —~oo If (7) holds for all finite (see,e.g., Simon[9]), onecannotreally talk abouttheflux
throughw for generalw but it is a usefulintuition.p it will hold in the limit. In this limit: . . . .

SinceV= in the regionB � 0, theflux is Just a winding

H (X) = p2 + X2~’2— X(2irp2)~4~-~(~)L + p2 (10) numberwhich canbedefinedfor any continuousw which2 D Z ‘ avoidstheregionwhere V =. IfA~ ~ 0 is the contribu-

wherep~indicatesthevanishingboundarycondition tion to the tracewhena = 0 atpathswith winding number

on the circle of radius1. TheB termhasdroppedout n, thentheriBht side of eq.(6) = A~andtheleft side of

sinceB * 0 only in the regionwhere V = 00 WhenX eq.(8) = ~ eu1~A

0andeq. (6) is obviouslyfalse.

= 0, H2(X)hasa groundstatewithL~= 0. Since112(X)
is rotationally invariant,and the groundstatehasa References
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