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We provide a counterexample to the universal paramagnetism conjecture of Hogreve, Schrader and Seiler. The counter-

example is based on the Bohm—Aharonov effect.

Several years ago, one of us [1] proved an inequal-
ity expressing the universal diamagnetic tendency of
spinless bosons. For a single particle in external (local)
electric potential ¥ and magnetic potential a, the in-
equality can be expressed as follows: Let

Hi@, V)=(-iV—-a)? +V (D
and let

E|(a, V)= inf spec[H(a, V)] . )
Then {1]:

E\@, V)=2E@=0,1), 3)

for any a, V. Subsequently, motivated by remarks of
Nelson, Simon [2] extended (3) to a finite tempera-
ture result:

Tr(exp(—GH (a, V))) < Tr(exp(—fH(a=0,V))) (%)

(see ref. [3] for further developments). Of course (4)
implies (3) by taking § —> oo.

Foughly one year ago, Hogreve et al. [4] put for-
ward a very attractive conjecture about the situation
when spin is taken into account. Let @ be the conven-
tional Pauli matrices

Hya, V)=(-iV -2 +V (5)

=(-iV—a)2+V+e-B, 5"
where 4" = 3; 4;0; as usual. Then ref. [4] conjectures
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(eq. (18) of ref. [4]) that
Tr(exp(—fH,(a, V))) = Tr(exp(-fH,(a = 0,V))) (6)

and, in particular, that

Ey(a, V) <Eya=0,V). @)

In ref. [4] a number of arguments are given in favor
of this conjecture and since the apperance of ref. [4]
a number of interesting developments have tended to
support the conjecture. First, an inequality on func-
tional determinants which follows from (6) (and which
was the main concern of ref. [4]) has been proven
even for suitable Yang—Mills fields [S]. Moreover,

for the special case a = %(BO X r) (i.e. B = a constant,
By), where (7) had been independently conjectured
(in an equivalent form) by Avron et al. [6], Lieb *!
proved that (7) held (it is still unknown whether (6)
holds in this case). Subsequently, Avron and Seiler [7]
extended Lieb’s result to certain polynomial B’s.

Our goal here is to provide a counterexample to (7)
and thus to (6). We will deal with two dimensions and
allow ¥V to be infinite in certain regions but given that (7)
is false in that case it is easy to conclude (7) will be false
for suitable three-dimensional cases with V everywhere
finite. Indeed, in the three-dimensional case, consider
a potential Wa,l(x,y, 2)=V,(x,y) x/(z), where V, (x,»)
= min(a, V(x,y)) and x is the function which is 1
(respectively 0) for |z| <! (respectively |z| = ). Then
as a, ] > oo, the ground state energy of the three-dimen-
sional system approaches that of the two-dimensional
system so if (7) holds for all three-dimensional systems

*1 Lieb’s proof appears as an appendix of ref. [6].
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with finite potentials, it will hold for two-dimensional
systems with potentials allowed to be infinite.

We will take a magnetic field B(x, ») ¥2 which is
axially symmetric under rotations in the plane centered
at (x,y) = (0, 0). In this case a convenient gauge for
ais

a(p) = 2np2) 1@ (p) Xp , (8)

where ®(p) is the total flux through the circle of radius
p ¥3. The gauge (8) has divae = 0. Thus *4:

Hy(@, V)=(-iV—-a)? +V+e-B
=pl+a2+2a-p+V+e-B
=p+a? — Qup)~ 1 ®(p)L, +V +0,B . (9)

Now take B = \B where A is a coupling constant which
we will vary and B is the field which is 1 in a disc of
radius 1 and O outside the disc. Now let V' = p2 + uW
where W is 1 (respectively 0) inside (respectively out-
side) the disc and take u = o=, If (7) holds for all finite
w it will hold in the limit. In this limit:

Hy(\) = ph + N2a2 - N2np2)~1 B(p) L, +p2 , (10)

where p,z) indicates the vanishing boundary condition
on the circle of radius 1. The B term has dropped out
since B # 0 only in the region where ¥ =o. When A
=0, Hy(A) has a ground state with L, = 0. Since H,(A)
is rotationally invariant, and the ground state has a
finite distance from all other states, the ground state
of H,(\) will have L, = 0 for small A. But then, since
a2 is strictly positive,

E5(N) > E5(\ = 0)

for A small, violating (7).

Clearly our counterexample is based on the old
idea of Bohin—Aharonov [8]. We came upon it since in
trying to verify (6) by writing the trace as a Wiener
integral there are two terms which enter in the action

*2 The field in two dimensions is a scalar but it is convenient
to think of it as pointing in a fictitious third dimension and
using three-vector notation.

*3 @ is a vector in the fictitious third dimension.

*4 We abuse notation and use ®(p) in eq. (9) as the magnitude
of ®.
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when B is turned on: [ @ - B(w(?)) dt, which tends to
increase the trace and i [ a(w(f)) dw (Ito stochastic
integral) which tends to decrease it. Since only closed
paths enter the trace one is tempted to write | a(w)
X dew = flux within w *5 and it is clear that one would
have to cancel effects of the field within w by the
field on w which leads naturally to Bohm—Aharonov
considerations. It is also clear from this point of view
that for the ¥ we discuss and § finite that (6) fails *5.
Finally we remark that Lieb’s proof *! in the case
B = By depends on the infinite degeneracy of the
ground state of Hy(a, V' =0). For the B we pick there
is no normalizable ground state for A small (see ref. [9]).

One of us (B.S.) would like to thank the Technion
Physics Department for its hospitality and also the
Egged bus company.

*5 Since wisa general brownian path which is not rectifiable
(see, e.g., Simon [9]), one cannot really talk about the flux
through w for general w but it is a useful intuition.

*6 Since ¥ = « in the region B # 0, the flux is just a winding
number which can be defined for any continuous «w which
avoids the region where V' = «. If 4, > 0 is the contribu-
tion to the trace whena = 0 at paths with winding number
n, then the right side of eq. (6) = 4, and the left side of
eq. (8) = T %P4, and eq. (6) is obviously false.
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