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Abstract. We show that in an arbitrarily small neighbourhood of any zero of a real-valued 
bounded continuous atomic wavefunction, the wavefunction has both signs. 

Very little is rigorously known about the structure of the set of zeros of a bound state 
wavefunction for a non-separable quantum-mechanical problem. Atomic wavefunc- 
tions are known to be real analytic away from coincidence points (points with either 
ri = 0 or ri - rj = O), but this says surprisingly little about the zero structure. In this 
paper, we announce and discuss the proof of a result which will be presented more fully 
elsewhere (Hoffmann-Ostenhof M, Hoffmann-Ostenhof T and Simon B 1980, unpub- 
lished). 

Theorem. Let U be a real-valued bounded continuous function of n three-vectors 
obeying 

Suppose that for some x o  E R3n, U ( xo )  = 0. Then U has both signs in an arbitrarily small 
neighbourhood of xo. 

Remarks. 
(i) It is merely for convenience that we consider only atomic wavefunctions. The 

same result holds for molecular wavefunctions in general or in the clamped nuclear 
approximation. 

(ii) Since the zero set must separate two open sets, this theorem says that, in some 
sense, the zero set must be (3n - 1) dimensional. 

(iii) It is a result of Kat0 (1957) (see also Reed and Simon 1978) that square 
integrable eigenfunctions are automatically bounded and Holder continuous, so the 
theorem applies to them. It also applies to suitable ‘continuum’ eigenfunctions. 
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(iv) The Coulomb nature of the potentials is irrelevant for the truth of the theorem. 
So long as the two-body potentials Vjj obey 

for some E > 0, one can conclude that either U changes sign arbitrarily near xo or U is 
identically zero near xo. The latter possibility can be ruled out by unique continuation 
theorems in some cases (Reed and Simon 1978, Simon 1979) and in particular in the 
case of Coulomb potentials (Reed and Simon 1978). 

(v) Some restrictions on the potential are clearly necessary for a result of the type 
we describe; for suppose, in the three-dimensional case, V is spherically symmetric and 
V(r) - ar-* for r small. Then spherically symmetric eigenfunctions will vanish as r b ;  
{ h  = ;[-1+ (1 + 4 ~ ) ' ' ~ ] }  at r = 0 and, in particular, r = 0 will be an isolated zero. 

(vi) The ground state U&) without statistics (in particular, the true helium ground 
state) is known to be almost everywhere positive (see Reed and Simon 1978). This 
theorem then implies that uo(x)> 0 for 1x1 <a. This last result is not new: it was 
obtained in Simon (1979) by mildly extending some ideas of Carmona (1978, 1979). 
One of our proofs described below is motivated by Carmona's ideas. 

We have two different proofs of the above theorem. The first uses Harnack-type 
inequalities, i.e. if U is a solution of (1) which is non-negative in some bounded domain 
R, then for any strictly contained subdomain R' of R 

inf u ( x ) ~  C sup U ( X )  
x ER' X E R '  

(3) 

where C > 0 depends only on a, a', A and 2. There is an extensive literature on such 
inequalities reviewed in the book of Gilbarg and Trudinger (1977). Essentially the 
following is proven there. Suppose U is a function non-negative, continuous and 
bounded in some R c R" (m 2 3) satisfying (-A + W)U = 0, then (3) holds, provided W 
obeys (2) (with 3 replaced by m). This amounts to requiring W E  Lm/2+E(R) and hence 
does not allow potentials of the type in (1). However, in an earlier paper in a somewhat 
hidden remark Trudinger (1973 § 5 ,  remark 1) states that such a LP-condition can be 
replaced by some form boundedness condition. Indeed his proof of (3) extends easily to 
that case with minor modifications. By standard arguments (Reed and Simon 1978) this 
form boundedness condition can be shown to hold for sums of two-body potentials 
satisfying (2). 

'The second proof which, as we mentioned, is motivated, in part, by the work of 
Carmona (1978) uses a Feynman-Kac formula: 

u(xo)=e"E{exp[ V(xo+b(s))ds 1 u [ x o + ~ ( ~ ) ] } .  (4) 

In (4), b is Brownian motion, and E is an expectation with respect to it; see Simon 
(1979) for a discussion of Brownian motion and applications to quantum mechanics. 
Carmona used (4) to prove that if U is non-negative and not identically zero, then 
u(xo) > 0 as follows: a non-trivial subset of the Brownian paths (xo+ b ( ~ ) ) ~ ~ ~  will end at 
points y = xo + b ( t )  where U ( y )  > 0, so these paths give a strictly positive contribution to 
the right-hand side of (4); the other paths give a non-negative contribution so u(xo) > 0. 
We modify his argument to prove our theorem, as follows: if u(xo) = 0 but U does not 
have both signs near xo, we can suppose U is non-negative in a ball B = {x : Ix - xoI < r }  
about xo. By unique continuation, U is strictly positive somewhere in the ball. For very 
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small times, t, the overwhelming bulk of the paths in (4) will end up inside B, so one can 
show that the contribution of these paths dominates in absolute value the contributions 
of paths that end outside B. But the contribution of the paths ending in B is strictly 
positive, so the sum of the two kinds of contributions is positive. 

One of us (BS) would like to thank Professor W Thirring for the hospitality of the 
Institute for Theoretical Physics of the University of Vienna where this work was done. 

References 

Carmona R 1978 Commun. Math. Phys. 62 97-106 
- 1979 J. Func. Anal. to appear 
Gilbarg D and Trudinger N S 1977 EIliptic Partial Differential Equations of Second Order (Berlin: 

Kat0 T 1957 Comm. Pure App l .  Math. 10 151-77 
Reed M and Simon B 1975 Methods of Modern Mathematical Physics, IZ. Fourier Analysis, Self-Adjointness 

- 1978 Methods of Modern Mathematical Physics, ZV. Analysis of Operators (New York: Academic) 
Simon B 1979 Functional Integration and Quantum Physics (New York: Academic) 
Trudinger N S 1973 Ann. Scuola Norm. Sup. Pisa (3 )  27 265-308 

Springer-Verlag) 

(New York: Academic) 


