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We present a self-contained treatment of the technical parts of distribution theory needed in quantum
field theory. The treatment is particularly suited for physicists since an absolute minimum of abstract
functional analysis is used: In fact, only the Baire category theorem is needed. The simple nature of some
proofs depends on extensive use of the expansion of a distribution as a sum of harmonic oscillator wave-
functions. While this Hermite expansion is not new, the fact that it provides elementary proofs of several

theorems does appear to be new.

1. INTRODUCTION AND NOTATION

Schwartz’s theory of tempered distributions is
basic to the Garding-Wightman axiomatation of
relativistic quantum field theory.!=® Field theory
requires technical results from distribution theory and
not merely the “classical” differential calculus and
Fourier analysis of distributions—in particular, the
kernel (or nuclear) theorem is needed to define the
Wightman functions as distributions in many variables
(Ref. 2, p. 106). The purpose of this article is to present
a proof of the kernel theorem particularly suited for
the physicist—not only is a minimum amount of real
analysis used, but the basic tool is the harmonic
oscillator wavefunctions, a familiar friend to any
physicist.

The approach we use also provides a simple proof
of the regularity theorem and several other results
mentioned in Streater and Wightman.? By adding
short sections on the Baire category theorem and on
convergence in D', we are able to provide a complete
treatment of the distribution theory used in Ref. 2.
We have thus used the discovery of simple proofs of
the kernel and regularity theorems to present a general
pedagogic presentation to the reader who wishes to
study axiomatic field theory without an extensive
detour into the functional analysis texts.

Because we will be dealing with several sets of
infinitely many norms and with objects in many-
dimensional real spaces, an extensive set of notational
conventions seems imperative. The letters s and / will
refer to the dimension of the underlying real space.
S(RY and 8% will be used interchangeably for the
functions of rapid decrease in R The letters m, n,
o, and B will be used to refer to multi-indices, i.e.,

I-tuples of nonnegative integers m = (my, -+, my).
We adopt the standard notation
m!=my!my! - -m!,
iml=my + my + -+ + my,
(m)" = m -,

m+l=m+1--,m+1),
laf
o2
axiu [P ax;lz
x* = le cee x?l.

In one place, we will slightly abuse this notation as
follows: We will have /-tuples m and » and s-tuples o
and f and will write

(m + D' + D = ((m, o) + D'"P. (1.1)

The letters r, s, i, and j will be used for nonnegative
integers. We will use the letters a, b, and ¢ to refer to
multisequences, i.e., @ = a, where n runs over N',
that is, all multi-indices of / entries. We will, of course,
use other symbols and, while we will use them
systematically, we will not introduce them at this point.

We will suppose that the reader is familiar with
the basic notions of distribution theory, as pre-
sented, for example, in Ref. 2 (for additional back-
ground, see Refs. 4 and 5 on an elementary level and
6-10 on a more advanced level).

In Sec. 2, we present without proofs the basic
identification of 8§ and &' with sequence spaces, an
identification which is basic to the simple proofs we
present in Secs. 3 and 4. We return in Sec. 5 to the
proof of the identifications of Sec. 2. After a section
on miscellaneous results which follow from the
sequence approach, we derive the remaining distri-
bution theory needed for (axiomatic) quantum field
theory as consequences of one general result—the
Baire category theorem.

2. THE n-REPRESENTATION

Functions in 8§(R) are in L* and thus have expan-
sions > a,¢, , where the ¢, are the harmonic oscillator
wavefunctions

@.(x) = w_}z_i'”(n!)_%eézz(i) e
dx
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DISTRIBUTIONS AND THEIR HERMITE EXPANSIONS

The simple proofs in Secs. 3 and 4 depend on the
characterization of the Hermite coefficients of
functions in §:

Theorem 1: Suppose that fe 8 and

a, = f () (x) dx.

Then, for any m

Sla (n + D" = Jlal?, < oo,

Conversely, if |all,, < o« for all m, then 3 a,8,
converges (in the topology of §) to a function in 8.

This theorem, which we prove in Sec. 5, establishes
an isomorphism between 8 and a sequence space. We
will call the representation of ¢ € 8, as a sequence a,,
the n-space representation.

Not only do the a, that arise from functions in 8
have a simple description, but they also provide a
simple form for the notion of convergence in 8. § has
convergence defined by an infinite set of norms
I I, specifically the norms

1fllrscox = 2 1%*Df ||,

jal <r
{Bl<s
where

gl = sup jg(x)|.

If x is any countably normed space, one says x, — x
if Jx, — x| —0 for each fixed k. Equivalently,
convergence can be described by the metric

p(f, &) = 227" min (L, | f — glly).

k

If x is given two sets of norms || [|; and | {;, we
say the sets are equivalent if and only if, for any i,
there isa C and j, -+, j, so that

1A < Cllfil, + - - + 1A

and, for any j, there is a D and iy, -, i, so that
Ufll; < DALfNe, + -+ + 170:). It is easy to see
equivalent sets of norms provide identical notions of
convergence, open set, etc., and that “equivalent” is
an equivalence relation.

For example, the norms | [, ;,x on 8 are
“equivalent” to the norms

1/ lep0 = I1x*Df N .
More to the point:

Theorem 2: For f € § define
1l = + D™ Ja, PP,
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where {a,} are the Hermite coefficients for f. The
norms | |l,, and | |, , ..z are equivalent,

This characterization of convergence in 8 (also
proven in Sec. 5) allows us to find an n-space repre-
sentation of distributions T € §'. Let us first point out
a useful property of the || |,,.

Definition: A countable family of norms | [, is
called directed if for any finite set ky, - - -, k, there
isakanda Csothat||fl;, + -+ [/l < Clifl.

The families {| |l ;.x} and {|| |,.} are directed
but the family {{| |5 .} is not.

Directed families are very useful because they
provide a simple description of open sets and con-
tinuous functionals. If one looks at the metric p,
it is not hard to see that, for any family of countable
norms, every neighborhood of 0 contains a canonical
neighborhood of the form

| Ixly < Ay, Ixl, < A
If, in addition, the family of norms is directed, every

canonical neighborhood contains a simpler neighbor-
hood

x| lxle < 4.

Finally, using the fact that the inverse image of
{z| |z| < 1} under a continuous linear functional is
open, one finds:

Lemma 1: A linear map 7:X— C with X a
countably normed space with a directed family of
norms {|| |;} is continuous if and only if 3 C, k such
that

|Tx[ < C lIxlly-

This fact and the directed nature of the | -|,,
allows us to prove:

Theorem 3: Suppose that T e 8'(IR). Let b, = T(¢,).
Then }b,| < C(1 + n)™ for some C and m, and
T(f) = Y a,b, if a, is the n-space representative of f.
Conversely, if [b,] < C(1 + n)™, then f— > a,b,
defines a tempered distribution.

Proof: Since T€ & and | |, is directed, |Tf] <
C|If .. for some m. But |¢,|,. = (1 + n)#” so that
|Tf] < C(1 4+ n)}™ < C(1 + n)™. To complete the
proof of the first half of the theorem, we use Theorem
1, which tells us Y a,$, converges in 8 to f. For the
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converse, we merely compute the following:

|13 a,b,* < [ 1a,l* (n + 1]
X (21, (n 4+ 17"
LClflzme 2 (n + 17
L CT 1 f3mses

so that f— > a,b, is a continuous linear functional
on 8. QED

We remark that, while we have stated the results for
S(R) and 8’(R), identical results hold for 8(R?) and
§'(RY. We need only interpret » and m as multi-
indices, and

¢n(x) = ¢n1(x1) Tt ¢n,(xz)-

To summarize, we have seen that, in the n-repre-
sentation, § represents just the sequences of fast
falloff and 8’ represents just the sequences of poly-
nomial growth.

3. THE REGULARITY THEOREM

The regularity theorem for tempered distributions
says that any tempered distribution is the derivative
of a continuous function of polynomial growth. The
usual proof (Ref. 6, pp. 239-43) uses the Hahn-Banach
and Reisz-Markov theorems plus a detailed analysis
of tempered measures. It might seem a little strange
that a theorem that never mentions measures needs
measure theory in its proof. In fact, it does not:
Using the n-space realization, we present a scandal-
ously elementary proof of this theorem. This proof is
a distant relative of the proof given by Zerner.!!

The basic idea behind the proof is that we expect
H—(d?/dx?) + x? + 1] to act as multiplication by
n 4 1 in the n space. In fact:

Lemma 2: Let T € 8'(R) have Hermite coefficients
b, = T(¢,). Then 2-™[—(d%dx?) + x® + 1]"T has
Hermite coefficients (n + 1)™b,, .

Proof:
- d2 . m
2 (—— 3;5 + x>+ 1) T(4,)

Aot ]
= (n + DH"T(¢,).

The second input to the proof is that Y a,é, is
“nice”’ if a, falls off fast enough. This follows from:

Lemma 3: (|¢,ll, < C(n + 1) for some C and M
(independent of n).

SIMON

Proof: By Theorem 2 and the directed nature of the
I flns 1f e < CHlfll 5 for some C and M. QED

Remarks: (1) The arithmetic of Sec. 5 actually
shows that we can take M = }. (2) Detailed studies
of the generating function for the ¢, show that
Ifullo ~ Cln + 1) as n — o012

We are thus ready to prove the regularity theorem.

-Theorem 4: Suppose that T€ 8’. Then 3m and a
continuous bounded function f such that

d2 2 m
T=|——+x"+1}f
( dx? )f

Proof: Let b, be the n-space representative of T.
Then |b,| < C(n + 1)* for some k. Let m =k +
M + 2, where M is given in Lemma 3. Let a, =
(n + 1)™™b,. Then

z a’n “‘ﬁn"m < 0
by Lemma 3, and so > a,¢, converges in L® norm
(and thus in §8’) to a bounded continuous function,
say 2"f. By Lemma 2,

2 m
T (—L+x2+1)f. QED
dx*

It is now straightforward to obtain the alternate
form T = D¥F, where F is of polynomial growth.
By using multi-indices, we can prove the regularity
theorem for S(RY).

4. THE KERNEL THEOREM

Most proofs of the kernel theorem for § rely
heavily on the theory of “nuclear’ spaces (see Ref. 10,
p- 530 or Ref. 13, pp. 73-84). We present here a proof
of the kernel theorem on 8 which relies only on the
n-space representation. As we will discuss in Sec. 8,
this is a relative of existing proofs for D.

In its “normal” form, the kernel theorem is a
statement about separately continuous bjlinear func-
tionals. We divide it into two parts: that any separately
continuous functional is jointly continuous and that
jointly continuous functionals have the requisite form.
In this section, we consider only the latter part. This
part is the crucial half of the kernel theorem—in
particular, the kernel theorem fails to hold for, say,
L2(R') because the analog of this half breaks down.
We will prove the other part of the kernel theorem in
Sec. 7.

Let us first establish the form we will need for joint
continuity.
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Definition: A bilinear map B(x,y) from pairs
xeX, yeY into C is jointly continuous if it is
continuous as a map of X x Y into C, i.e., if and
only if forany e, x,, and y, there are neighborhoods
N of x, and M of y, such that x € N, y € M implies

IB(X,)’) - B(X(),yo)l < €,

Lemma 4: Let X and Y be two countably normed
spaces with directed families of norms {|| ||} and
{Il 1,}. Let B be a bilinear form on X x Y. Then the
following are equivalent:

(a) B is jointly continuous.

(b) B is jointly continuous at (0, 0).

(c) If x, -0, y,—0, then B(x,, y,) = 0.

(d) For some r, 4, and C

1B(x, I < C lixfl, 1yls-

Proof: (a) = (b) => (d) = (a) and (c) = (b) can be
proven by “standard”” methods such as those used for
linear functionals in Banach space. We only remark
that (c) = (b) depends essentially on the fact that
we are in metric spaces where the open sets are
describable in terms of sequential convergence (for
example, the analogous result is false for D). (b) = (d)
depends on the fact that the norms are directed.

QED

Theorem 5: Let B be jointly continuous bilinear
functional on S(RY) x §(R?). Then there is a unique
distribution T in 8'(R'$) so that

B(f,g)=T(f®g),
(f@g)x, y) = f)gy).
Proof: Let C, m, and f be chosen such that
B < Clifli.lgls-

where

(4.1)
Suppose that

t(n;a) = B(¢n! ¢a)9 ne NZ, o€ N

Since B is jointly continuous and f= 3 4,4, and
g =2 b,¢,, we have that B(f,g) = t,.a,b,. On
the other hand, by (4.1),
tnad < Nbullm Idally = (n + D™ + 1)’
= [(n, @) + 1]™7

Thus the sequence 7, ,, defines an element > #(,, ,P(n.0)
of 8'(R#t1),
T(h) = z tnac(n,a) s

h = z c(n,a)qs(n.a) .

Since f ® g has the Hermite coefficients a,b,, we have
that

where

T(f® g) = 3 1, a.b, = B(f, g).

n.a
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This proves existence. Since T is completely deter-
mined by the (¢, ) (its Hermite coefficients) and
we must have

T(¢(n,a)) = T(?Sn ® ¢'a) = B(¢n ’ ¢a) = lngs

T is unique. QED
Theorem 6: Let M be a jointly continuous multi-
linear functional on 8(Ru) x - - x 8§(R¥). Then
there is a unique distribution 7 in 8'(R™+ "+t such
that
M(fi, o ) =T(H® - ®f).

Proof: The proof is analogous to Theorem 5.

5. PROOFS OF THEOREMS 1 AND 2

We prove Theorems 1 and 2 through a sequence of
lemmas.

Lemma 5: Suppose that fe 8(R) and a,, = (f, ¢,).
Then
2la(n+ 1" < o
for all m.

Proof: Since fe D[(p*+ x2 + 1)"] for all m,
Sla,l? (n + )™ = 27"(f, (p® + x* + 1)"f) < oo for
all m.

To complete the proofs of Theorems 1 and 2, we
must first establish the equivalence of the || ||, ».5
and || |,,. We do this by establishing the equivalence
of each of these families of norms with several families
of intermediate norms. First we show the || |

are equivalent to the norms e
. “.f"a,ﬂ.2 = "anﬁfn29
with
IfIE = j () dx.
Lemma 6:
1Mz € 70 f o + 1% 1),
so that
1flage < 70 agpico + 1 Nart g0
Proof:
1 =[x+ 2700+ 151
2 2 © _dx
<L+ 33 ] n@f_w T
< m(lfllo + Ixfla). QED

To bound the || ||,’s by the || ||; norms, the above
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trick does not work. However, the Fourier transform
“reverses’ the ordering of L” spaces, explicitly:

Lemma 7: Let

Fo) = ey f ¢ (x) dx.
Then, for f€ §,

Ll = 170 IS0 < QY 171,

Proof: The L? inequality is, of course, well known
to any physicist (see, e.g., Ref. 14, pp. 355-62). The
L® inequality is trivial. QED

Lemma 8:
171 < =27 s + 17 112)
so that (by Lemma 7)

11w < 27501712 + 1D1)

and
W apeo < 270 e + Wlepire + 2 1S facrp.o)-
Proof: As in the proof of Lemma 6,

=] ata + ¥ 1700+ 57
<[ [t + pz)_l]*( [arie + |pf|2)%

< (171 + 1871 QED

N.B.: (1) Lemma 8 is known as a Sobolev inequality
in the mathematics literature. (2) Thus,

”¢n”oo S u¢n|l2 + up¢nu2
=1+ 27t + (n + DY
<3+ 1,

as stated in Sec. 2.

We thus see that the | |l,.5., and | ll..4. families
are equivalent. Finally:

Lemma 9: The || |l,;..c and | [, norms are
equivalent.

Proof: All we need prove is that the || ||, and the
|l ll,,,2 norms are equivalent because we already
have proven the | [,52 and | ;.5 equivalent.
Let %' and 7 be the usual creation and annihilation
operators. Since 7, ' are linear combinations of x, p,
and vice versa, and since any polynomial in x’s and
p’s is equal to a polynomial with only x*D? terms, the
I |l,.p,2 nOrms are equivalent to the norms ||(%)* |2,
where (#)* is a generic symbol for a monomial of
degree k in 7 and 7'. Since || f|,, = [(pnH)™f Iz, the
I |I.. are a subset of the [|(*)* - || norms. But it is

BARRY SIMON

easy to see that [|(n*)*f |, < Qk)* | f],, with m = k

(crude estimate) so that the || ||,, norms are equiva-

lent to the [(5*)™ - ||,. This completes the proof.
QED

To complete this section, we need only show that
lal,, < co implies that } a,é, converges in 8. This
is a consequence of the equivalence of the norms and
the fact that § is complete. (For a proof of this Jast
fact, see Ref. 10, pp. 92-94.)

6. OTHER THEOREMS IN THE
n-REPRESENTATION

In this section we point out several theorems whose
proofs are also simple in the n-representation.

Theorem 7: 8 is separable; i.e., it has a countable
dense set. ‘

Proof: Since >, _ya,$, converges to f in 8 if
a, = {(¢,,f), the finite linear combinations of the
¢, with rational coefficients are dense in 8§ and are
countable. QED

Theorem 8: 8 is dense in 8’ in the weak topology
on §'.

Proof: If b, = T(¢,), D pen bpdp, — T in the weak
topology on §'. But >, _b,é, € 8. QED

The next result is a little surprising:

Theorem 9'°: For any /, 8V and 8 are isomorphic
as topological vector spaces. Thus, for any s and /,
S(RY and S(R#) are isomorphic.

Proof: We prove the result for / = 2. The proof is
similar for / > 2. Consider the map u of N* onto N
by u(0,0) =0, u(1,0) =1, u(0,1) =2; u2,0) =
3,---;1e.,

u(r,s) =3r+s)r+s+1)+s.

We map 8% onto 8% by (F(@),, = duy.s-
Because u(r, s) obeys the relations

rLulr,s), s<u(r,s),
u(r, ) + 1 < (r + D(s + 1%,

we immediately have

S+ D" a,lt < El(r + 1"(s + D" [F(a), I

n=1 T.8=

and

3+ D™(s + D™ |F(a),,* £ Zl(n + 1™ a,)®

r.s=1
Thus the norms @ — ||F(@)],,,m, and the | |, are
equivalent. QED
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This identity of 8 and 8% is not so useful as one
might think at first. It says that we only have to prove
theorems for 8V if the theorem only refers to the
“internal” structure of 8. However, theorems like the
regularity and kernel theorem refer to ‘“‘external”
structure, i.e., the realization of some distributions as
functions and the map of 8§/ x 8§ jnto §thtia),

7. THE BAIRE CATEGORY THEOREM
AND APPLICATIONS

There are four results mentioned in Ref. 2 which
we have not yet proven:

(1) The completeness of §'.

(2) The nature of bounded sets in 8 (equivalence of
weak and norm boundedness).

(3) The fact that separate continuity implies joint
continuity for bilinear forms.

(4) The uniform convergence on bounded sets of
ordinary distributions.

One is able to prove (1)-(3) from one abstract
principle (Theorem 10); we will also be able to prove
a weak form of (4) sufficient for the application in
Ref. 2. The material in this section is rather standard.
We only present it here because it is usually difficult
to cull only the results needed for Ref. 2 from the
texts.

Theorem 10 (Baire Category Theorem): Let X be a
complete metric space and suppose that

X=UA1.

=1
Then some i, A; has a nonempty interior.

Proof: The argument is quite simple. See Ref. 16.
As a simple consequence:

Theorem 11 (Principle of Uniform Boundedness): Let
X be a countably normed space with || ||, a directed
sequence of norms. Let 5 be a set in X, the dual of X.
If {F(f) | F € ¥} is bounded for each f € X, then there
is a C and an r so that, for all fand all Fe ¥,

IFOOL L CUS

Proof: Suppose that Sy = {f€ X||F(f)] < N for
all F € 5}. Then each Sy is closed and, by the hypothe-
sis of the theorem, X = |J Sy. Thus, for some N, Sy
has a nonempty interior. Therefore there exist an N,
r, fo, and € such that ||g — foll, < € implies g € Sy.
Suppose that @ = sup |F(fy)|. Then |Af, <€ and
F e J imply that

[F)| < |F(fo + B + [F(f)l <N + a.
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Therefore,

[F(h)| < [(N + a)/e] ||hl, forall hand Fe&F.
QED

Corollary 1: 8" is weakly sequentially complete.

Proof: Let T, be a weak Cauchy sequence of tem-
pered distributions; i.e., for each fe §, let T,(f) be a
Cauchy sequence of numbers. Since this is Cauchy,
lim T,,(f) = T(f) as n — oo exists. T defined this way
is linear. We must only show it is continuous. But
since lim T,(f) as n— oo exists, {T,(f)},=1,5,.. 18
bounded. Thus, by Theorem 11, for some C and m,
I T () < Cllfllm. Therefore, |T(f) < C|if},,and
so T is continuous.

Corollary 2: Let B be a separately continuous
bilinear form on 8(R%) x §(R™). Then it is jointly
continuous.

Proof: Let f, — 0,g, — O,where f, € 8%, g € 8§12,
We need only show that B(f,, g,) — 0. Let F,(g) =
B(f,,g). By continuity for fixed f, F, e 8%, By
continuity for fixed g, F,(g) — 0 for each g, and thus
{F,(g)} is bounded for each g. Thus, for some C and
m, |F,(g)| < Cllgl,, for all n. Since g, — 0 in 8§,
gl — 0. QED

Corollary 3: Let M be a separately continuous 7-
linear form on 8$(RY) x -+ x 8(R¥). Then it is
jointly continuous.

Proof: We use induction on r. r =2 has been
proved in Corollary 2. Assuming the results for
r=R, we let M(fO,---, fB) be given, and let
[ be sequences in 8% with f{ —0. For each
g e 8trs) M(—, —, -+, g)is jointly continuous as
an R-linear form by the induction hypothesis, and
thus

M, B, 9 0.
Proceeding as in the proof of Corollary 2, we see that

MU, fF) >0

so that M is jointly continuous. QED
We can also discuss bounded sets by using Theorems
10 and 11.

Theorem 12: For a set A < 8, the following are
equivalent:

(a) For any neighborhood N of 0, there is a real
number A with 24 < N.

(b) For each m, {||f,. | f€ A} is bounded.

(c) For each Fe §', {F(f)|fe A} is bounded.
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Proof: (a)<>(b) is quite simple, as is (b)=> (c).
To prove (c) = (b), we proceed as follows: For each
g € L¥(R9) and fixed (%)™,

[ Jaman = [atomrilre 4

is bounded. By Theorem 11 with X = I?, the
{i(n*)"f1l2 | f € A} are bounded. Thus (b) follows.
QED

Definition: A set A < 8 obeying the conditions in
Theorem 12 is called bounded.

Theorem 13: for a set B < &', the foliowing are
equivalent:

(a) For any fe 8, {F(f) | F € B} is bounded.

(b) There is a C and an m such that, for all F € B,
FESFPIL CUf -

(¢) For any bounded set A < 8, {F(f)| Fe B,
f€ A} is bounded.

Proof: (c) = (a) is easy. (a) = (b) is Theorem 12.
(b)= (c) is proven as follows: Given (b) and a
bounded set A, sup {|fll,f€ 4} =k < co. Thus,
for any fe A, Fe B, |F(f)| < Ck. QED

Definition: A set B < §' obeying the conditions in
Theorem 13 is called bounded.

Theorem [4: A sequence f, — fin the || [-topology
on 8 if and only if, for any bounded set B < §’,
F(f,) — F(f) uniformly for Fe B.

Proof: One direction of the proof (only if) is a
simple consequence of Theorem 13(b). The other
direction is an interesting exercise; since this theorem
is purely motivational, we do not provide a complete
proof.

Theorem 14 suggests the following definition:

Definition: A sequence of distribution F, is said to
converge strongly to F'if and only if, for any bounded
subset 4 = 8, F,(f) — F(f) uniformly for fe A4.

The analog for § of statement (4) at the beginning
of the section is the following theorem, which we will
not prove.

Theorem 15: A sequence of distributions F, con-
verges strongly to Fif and only if it converges weakly.

Remark: In Theorem 14, we could replace “se-
quence’” by the more general notion of net necessary
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for the complete description of a topology by con-
vergence. However, the word sequence is essential in
Theorem 15 and cannot be replaced by net.

Theorem 15 is implied by two other statements.

Theorem 16: Suppose that F, — F weakly with
F,, Fe§'. Let A < § be a compact subset. Then
F,(f) — F(f) uniformly for f € A.

Theorem 17:1If A = 8isbounded, then 4 is compact.

We will not prove Theorem 17, but Theorem 16 will
follow from results in Sec. 8.

8. A THEOREM FOR ORDINARY
DISTRIBUTIONS
In Ref. 2, Wightman and Streater state and use the
analog of Theorem 15 for D. Actually, one only needs
a weak analog of Theorem 16 in his application, and
we will prove this weak form in this section and show
that it suffices in the application.

Lemma 10: Let X be a countably normed space and
suppose that F,, Fe X', the dual of X. Suppose that
F,(x) — F(x) for each x in X. Let A be a compact
subset of X. Then F,(x)— F(x) uniformly for
x € A; that is, given €, we can find N such thatn > N
and x € 4 implies |F,(x) — F(x)| < e.

Proof: Let || |, be a directed sequence of norms
for X. By Theorem 11, there is a C and an r such that
IFa()l L Clixfl, and |F(x)| < C|x|,. For each
x€A4,let B,={y|lx — yll, < ¢[3C}. The {B,|x¢€
A} cover 4 and so, by compactness, we find x;,- - -,
X,, such that i, B,, @ A. Since F,(x;) - F(x;), we
can find N such that n > Nimplies |F,(x;) — F(x))| <
€/3 for i=1,---,m. Let xe A. Find i such that
x€B,,ie., |x — x|, < ¢/3G. Then, for any n,

|F(x) — Fo(x)l < €/3 and |F(x) — F(x;)| < ¢/3.

Thus, if # > N,

|F(x) — F(x)| < |F(x) — F(x)| + |F(x)) — Fo(xy)|
+ F,(x) — Fu(0)] < e

This proves the result since ¢ is arbitrary.

Remarks: (1) The proof of Lemma 10 is really a
classical equicontinuity argument. (2) Thus Theorem
16 is proven.

Theorem 18: Let A = D(O) be a family of functions
such that
(i) 4 is compact in D(O).
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(ii) For some fixed compact C < O, fe 4 implies
supp f < C.Let F, , F € D(9)" and let F,(g) — F,(g)
for all g € D. Then F,(f) — F(f) uniformly for f e 4.

Remarks: (1) 1t is not difficult to prove that (i)
implies (ii), but in the application (ii) can be directly
verified. (2) One can actually show that any closed
bounded set in D obeys (i) and (ii), and so the analog
of Theorem 17 follows.

Proof of 18: Let D,(O) be the subspace of D(0) of
functions with support in C. The topology of D(0)
restricted to D,(9) is described by the norms | /|, =
| D*f |  » so that D,(O) is a countably normed space.
Since the F, and F are continuous on D(0), they are
continuous on D,(0), and thus we are in the condi-
tions of Lemma 10. QED

The application in Ref. 2 of the uniform conver-
gence idea is to the case (Ref. 2, p. 83) 4 = {f .}
where f€ D(0) and x lies in some small compact, so
small that we can assume (ii) without thought. To
verify (i) is easy: The map x — f is continuous, and
so the image of a compact set of x is compact in
D(9).

9. RELATION TO OTHER APPROACHES

The crucial element in the proofs of Secs. 5 and 6
is the realization of § as a sequence space and the
realization of topology in terms of the norms | |, .
The systematic use of Hermite expansions goes back
at least as far as Weiner.!” Our realization of § is
certainly not new; there is a short discussion of it in
Schwartz’s book (Ref. 6, pp. 271-83). A set of norms
closely related to the | |, is implicit in Schwartz and
a similar set of norms is discussed by Kristensen
et al.’® The proof of the kernel theorem in their norms

lall?.e = X (Inl + 1) |e,|*

is not as direct as in the || |, since the multiplicative
property (1.1) avoids messy arithmetic. The only
“new”’ result which we can possibly claim is the fact
that the n-space realization of 8 provides a simple
proof of the nuclear theorem—but this proof is
clearly related to the various proofs of the nuclear
theorem for ® which depend on Fourier series
(Ref. 13, pp. 11-18; Refs. 19 and 20); in fact, our
proof must be the “analogous proof for 8 alluded
to by Gel’fand and Vilenkin (Ref. 13, p. 19). However,
for the student of Ref. 2 faced with the statement
“there does not seem to be an analogous elementary
proof available for 8 (p. 43), it seems useful to have
the details spelled out.
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It is interesting to notice the close connection with
Bargmann’s beautiful and complete treatment of
tempered distributions.? He realizes § as a family of
entire functions and finds that 8’ can also be so
realized. Up to the factors of \/n! the Taylor coeffi-
cients for his entire functions are just the Hermite
coefficients of the elements of 8 and §’. His Hilbert
spaces F, are just the multisequences with |||, < oo
(although his inner product is not quite that given by
| [l and he has r run over the all reals). Bargmann’s
results that § is “essentially” (i2, F, and §' is
essentially U2, 7, (Ref. 21, p. 4) is evident from our
Theorems 1 and 3. Bargmann’s proofs of the regularity
and kernel theorems (Ref. 20, pp. 70 and 68) are more
or less our proofs in a complex function theoretic
guise. In one sense, then, our simple proof is based on
the observation that for these two theorems Bargmann’s
proofs do not require the elaborate constructions he
uses. However, the treatment of the wide array of
problems he considers uses analytic function theory
(particularly variants of the maximum modulus
principle) in an essential way. [Perhaps the relation
of our approach to Bargmann’s can be illustrated by
remarking that it is identical to the relation of
Schwinger’s creation operator treatment of angular
momentum,?? to Bargmann’s approach? for SU(2).]

To the reader who wishes to use this note as a
jumping off point for a more detailed study of
tempered distributions, we can recommend Barg-
mann’s approach most emphatically. Alternately,
sequence spaces have been studied extensively by
Kothe.25.26

We should also mention to the student of axiomatic
field theory that, while he can avoid delving into the
theory of nuclear spaces in studying Ref. 2, Jaffe’s
important work on “strictly localizable fields” %
introduces a large class of test function spaces for
which the kernel theorem is needed and for which the
Hermite expansion method does not work.
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One studies conditions under which a gauge transformation can be implemented by a unitary operator
in some representations of the canonical (anti-) commutation relations; an application is then given to

local gauge transformations in field theory.

INTRODUCTION

This paper originates from an attempt to under-
stand the source of the difficulties which one faces in
constructing generators of ‘“‘canonical” local trans-
formations of relativistic fields. We shall be mainly
concerned with gauge transformation of the second
type, but most of what will be said goes over almost
verbatim to, e.g., “internal symmetry” groups.

The fact that such generators cannot be con-
structed in otherwise simple cases has been known
for some time,! although domain problems plague
the nonexistence proofs (these generators, when they
exist, are expected to be unbounded operators). We
shall discuss the existence of a continuous group of
unitary operators that induce the group of trans-
formations considered, a problem equivalent to the
previous one, via Stone’s theorem. We shall consider
only some representations of the canonical fields,
selected for having a structure particularly well suited
for our purposes, and probably of not much physical
interest,? and we shall show that in most of them
(in a sense to be made precise later) such a weakly

continuous group of unitary operators cannot be
found.

Also, while the nonexistence of the generators of
gauge groups (equal-time currents) as bona fide
operators may cast some doubts on their formal
manipulations, meaningful results can be obtained
by giving them a meaning as bilinear forms.! Our
results have no bearing on such an approach.

The content of the paper is as follows: In Sec. 1 we
pose the problem and fix our notation, and actually
generalize the previous setup in a rather natural way.
Section 2 will be devoted to the solution of the
generalized problem. In Sec. 3 the case of relativistic
free fields will be considered, in the light of the
preceding results, and the corresponding statement
about local ““charges” will be explicated.

1. THE PROBLEM

A. Canonical Anticommutation Relations

We shall start posing our problem in the case of
canonical anticommutation relations (CAR’s).
Let {a;,af}, i=1,-+-,n, be a countable set of
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