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the present technique is also characterized by
excellent sensitivity. Signal-to-background ra-
tios of 3:1 or better are seen in CaF, and could
probably be greatly improved.

This work was performed under the auspices of
the Division of Basic Energy Sciences of the U. S.
Department of Energy.
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A method is presented for obtaining explicit bounds for the total cross section (in-
cluding scattering into several final charged fragments) for the scattering of two bound
clusters of nuclei and electrons so long as either both clusters are neutral or one is
neutral and without an electric dipole moment. -

In this Letter, we want to describe a simple
and direct physical approach to the question of
obtaining bounds on total cross sections in non-
relativistic quantum mechanics; fuller results
and technical details will appear elsewhere.’
Among our main results are the following:

(1) If two neutral bound clusters of charged par-
ticles® are scattered, total cross sections are
finite.

(2) If a neutral bound cluster of charged parti-
cles with zero electric dipole moment?® is scat-

tered from an arbitrary cluster of charged parti-
cles, total cross sections are finite.

(3) In two-body potential scattering, we obtain
fairly strong bounds on cross sections for arbi-
trary potentials with support in a ball of radius
R depending only on R.

(4) In two-body potential scattering, we give
upper bounds on the large-coupling-constant be-
havior of total cross sections which have the cor-
rect* asymptotic behavior.

(5) We come to the rather surprising conclu-
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sion that, as far as bounds on total cross sec-
tions are concerned, polarization effects are not
relevant. We expand on this point below.

We note that our bounds involve fofal cross sec-
tions, i.e., including final states with Coulomb
interactions. Our bounds are only on cross sec-
tions averaged over a small range of initial ve-
locities but with no averaging over initial direc-
tions. Moreover, in cases (1) and (2), the bounds
have the correct energy behavior; i.e., averaged
over the velocity interval from v, to v,+6v we
have a C(6v)v,”2 bound.

Moreover, while we have not computed explicit
constants,® our bounds involve only explicitly
computable numbers and integrals of potentials.
The usual time-independent approach, when ap-
plicable,® will not yield explicit bounds, since
the Lippmann-Schwinger equation is solved by
appealing to a Fredholm alternative and no infor-
mation’ is obtained about the size of solutions.

Our approach is in the first place time depen-
dent, and in this regard it is motivated and heav-
ily influenced by the pioneering work of Amrein
and Pearson,® who obtained among other results
information about (3) and (4) above,® but upon
which we improve. With Sinha,'® they obtained
results on multiparticle two-cluster scattering
in situations allowing long-range forces among
the particles within a cluster but only short-range
forces between particles in different clusters. |

(s=-1gll =@ )*Q* -2 )gll

Thus charged particles with Coulomb interaction
are allowed in one cluster only.!

In addition to technical improvements in the
Amrein-Pearson results, we feel that our ap-
proach is transparent physically and simple math-
ematically; indeed, it is so simple that in the end
the basic problem appears almost trivial! In
part, this is because our method is quite geomet-
ric.'?

To describe the idea consider first potential
scattering with H,=-3V?, H=H,+V, where our
basic equation is the following:

s =1)gll® = " 00t () £k )| . (1)

In Eq. (1), o0,,(k) is the total cross section for
initial momentum (0,0,%), S is the S matrix, g
is a function of z alone whose Fourier transform
£ is nonzero only for positive &, and

I21%= [Irtx,y,2)|*dx dydz.

Technically, the left-hand side of (1) is not de-
fined since g is not square integrable, but we in-
tend it to mean®® lim,_, .|| (S =1)gh  ||* with hg(x,
y,z)=expl— (x*+9%)/R?]. A moment’s reflection
will convince one that Eq. (1) is suitable as a
definition of o,,,(k). If one prefers the time-in-
dependent definition, a simple calculation veri-
fies (1) so long as V is sufficiently short range
for the kernel of the on-shell 7 matrix to be con-
tinuous in &, k’, and energy.

We next write'*

<|l@* = )ll=Il [ " [exp(+itH)V exp(-itH )g | dt|| (2)
< [2NV exp(-itH )gl| dt (3)
= [Tat] [Tdzwe)| g,t)?]?, 4)

with W(z) =[[ dxdy|V (x,v,2)|2]*/? and g (z,¢) =[exp(~itH )g](z). We choose g so that g is smooth and is
nonzero only within an interval (k,,k,+6) (with 2,>0) of velocities. For z/¢ in the classically allowed

range (k,,k,+0) we use the estimate
lgte,t)l <ct™

of one-dimensional wave-packet spreading, and in the classically forbidden region we use Horman-

der’s estimate®

lgle, ) <D, (1+|z] +]t])" @/t<k, or 2/t>k,+0).

A typical bound that results is

T 0 (R) A< Clog, 8, €) [ (1 +]2] W e ) dz. ®

ot /3

The right-hand side of (5) is finite if'® |V (¥)| < (1+|T|)"%" € for |F| large.
Using multichannel scattering theory, the approach to two-cluster scattering is virtually identical

except that formula (3) is replaced by

[ Irexp(~itHo)gnll dt = [ 7|V rexp(=itHo)gll dt.
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In Eq. (6), I represents the sum of all potentials between the clusters, || ---

| involves integration over

all coordinates, g is a function only of the z component of the separation R of the centers of mass,
and 7 is the product of the wave functions, 7,( pl) and 7,(p,), of the bound clusters. On the right-hand

side, || -+

Veff(ﬁ)zl fll(ﬁ,pnpz)l2'711(01)'21772(92)’2‘191‘102]1/2-

Our results on scattering of clusters of charged
particles now follow, since in either case V¢ (ﬁ)
is bounded by |R|~® at large distances.

We emphasize that V¢ involves unperturbed
bound-cluster wave functions and does not include
any polarization which is due to virtual excitation
of clusters. This has one surprising consequence.
We consider one cluster consisting of an atom in
an s state and the other cluster a single charged
particle of charge Z, and we ask about the growth
of o, for large Z.!" Using the fact that V  falls
exponentially we can' bound this by C (InZ )®.. Na-
ively one might imagine that a polarization poten-
tial going like Z?R"* at large distances might be
relevant. For such a two-body potential, even if
we use it only for large distances R >Z%/3, we
can only prove a bound as Z%® as Z - « and we
believe that such a potential surely leads to a
cross section with power growth as Z - «. Since
our (InZ )® bound is rigorous, the polarization-po-
tential picture is misleading in this case.

To understand this observe that || (S — 1)g|| meas-
ures how exp(—itH) and exp(—itH,) differ on g,
which can be estimated by (2), (3), and (6). The
relevant interaction is the potential as seen by
the state under the free time evolution. In the
multiparticle case this is the trivial stationary
“motion” within the clusters and the free motion
of the centers of mass of the clusters relative to
each other. The intercluster forces which are
responsible for polarization are “turned off.”
These effects may show up in bounds on o,, only
if one considers better estimates of (2) than (3).

Alternatively one can estimate

s — 1)l =ll[@)* - (@*)*]ag
=|| [dt exp(itH,)V exp(-itH)Q%g| (1)
< [at|ve itiQig]. (8)

If t =0 is set long before the scattering takes
place, then Q% g~ g. Here the potential as seen
by the interacting state matters. In the multipar-
ticle case for certain times the polarization po-
tential may be a good effective potential. As the
state approaches the scatterer, however, for
strong coupling rearrangements will occur, and
it looks hopeless to control (8) and even more to
estimate the subtle cancellations which are lost

+||” indicates only an 1ntegrat10n over R and the effective potential is defined by

I

in going from (7) to (8). That cancellations are
very important can be seen from the fact that

S—1=(Q")*(=i) [ " dt exp(iHt)V exp(-iH,t)

is a bounded operator represented as an infinite
integral of generally unbounded operators.

Physically, the bound (3) can be interpreted as
considering all particles which interact, even
only virtually, as being scattered.'® Our geomet-
ric bounds below come from counting up all par-
ticles which enter a sphere about the region of
interaction.

In v-dimensional potential scattering we prove
that for an arbitrary positive potential, nonvan-
ishing only for |x| <R, the total cross section

]
S o () e

is bounded by
C(V,ko: 5)[RU-1 + (Ru-z)] ’

and for potentials of either sign
D, ko, 8)[RV ' +RV ™+ RV ).

The terms in parentheses represent terms which
are, at the moment, in our estimate but which
we believe are not necessary and which we hope
to eliminate. We note that for negative potentials,
one cannot do better than RY "2 for small R, since
in three dimensions, there are point potentials
leading to finite cross sections.

In three dimensions, we have proven' that for
potentials V obeying |V ()| < D(1+|7])"® (o >2),
the cross section for —A + gV in an interval (v,
v, +6v) is dominated for g large®® by C(g/v)? with
y=2/a -1, and, if |V ()| <De 4", by [In(g/v)].
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*We intend this to mean that there are only Coulomb
potentials but additional short-range potentials [0(r~27¢),
€> 0] are allowed without any significant change in
our results.

3Tf the cluster has inversion symmetry, this will be
the case unless there is a degeneracy of states of dif-
ferent parity.

By this we mean that if our bound is Cg”, v is cor-
rect asymptotically, but not C.

50ur constants will be especially bad if the energy is
low or the interval of averaging small.

®There is, at present, no definitive time-independent
approach for multiparticle Coulomb systems.

"Except in the region where the Born series con-
verges.

%. O. Amrein and D. B. Pearson, J. Phys. A 12,
1469-1492 (1979).

°In addition, A. Martin [CERN Report No. TH 2662
(to be published)] has obtained a bound going for g
large as g! for central potentials. For general » 2" ¢
potentials we and Amrein and Pearson, Ref. 8, get a
g% bound for large g. Also J. M. Combes and A. Tip
(private communication from Combes) have informed
us that they have a proof of (1) and (2) by different
means.

1%, 0. Amrein, D. B. Pearson, and K. B. Sinha,
Nuovo Cimento 52A, 115-131 (1979).

Uwhile we have not checked it in detail, we expect
that the methods of Refs. 8 and 10 could be extended
to handle atom-atom scattering also.

12Geometric ideas have been used for some time in
rigorous scattering and spectral analysis {see espe-
cially, R. Haag, Phys. Rev. 112, 669673 (1958);

G. M. Zhislin, Mosk. Mat. Obs. 9, 81-128 (1960) ;

P. D. Lax and R. S. Phillips, Scattering Theory (Aca-
demic, New York, 1967); A. G. Sigalov and 1. M.
Sigal, Teor. Mat. Fiz. 5, 78—93 (1970) | Theor. Math.
Phys. 5, 990—1005 (1970)1}, but they tended to be over-
shadowed by the power of time-independent methods.
Recently, geometric methods have been shown to be
extremely powerful in their own right, see, e.g.,

V. Enss, Commun. Math. Phys. 52, 233 (1977), and
61, 285 (1978); B. Simon, Commun. Math. Phys. 55,
259 (1977, and 58, 205 (1978).

131n all steps below the kg can be carried along and
R-independent bounds easily obtained. Moreover, the
estimates show that limg _, o | (S~ 1)g kg |l exists.

11 potential scattering, the first inequality is actu-
ally an equality as a result of asymptotic completeness.
In multiparticle systems, equality should hold, but
since we do not know rigorously that asymptotic com-
pleteness holds we use the inequality which is always
true. Equation (2) is just an interaction-picture for-
mula for S - 1.

5L, Hormander, Math. Zeit 146, 69—91 (1976); see
also M. Reed and B. Simon, in Methods of Modern
Mathematical Physics (Academic, New York, 1979),
Vol. III. The original idea goes back to W. Brenig and
R. Haag, Fortschr. Phys. 7, 183-242 (1959).

16There is an asymmetry (as there should be) between
requirements on falloff in the z and x-y directions.
Actually, all that is needed is

[Vx,9,2) | < CL+|x) V2@ + |y /e + [z]y e,

1We do not take into account the effect of changing
the mass of the charge-Z projectile in our discussion.

18The possible effects of interference between what
has been scattered out and what remains in is accom-
modated by using ([ Il Il d¢)2 rather than [ Il 2 d¢.

3Using methods from F. Calogero, Variable Phase
Approach to Potential Scattering (Academic, New York,
1967), we have proven that for central potentials obey-
ing (1+7) " *<svV(r)<A(1+7)"* there is a lower bound
behaving as g7.

Turbulent Modification of the m =1 Resistive Tearing Instability
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In the presence of a random spectrum of lower hybrid waves, the m =1 resistive
tearing instability becomes an oscillating instability with a significantly enhanced
growth rate. For typical tokamak parameters, the growth time can become compar-
able to plasma disruption times for rather moderate levels of fluctuations.

Tearing modes are the subject of intense theo-
retical investigations these days because of their
importance in tokamak plasmas.' They comprise
an important class of ideal magnetohydrodynamic
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(MHD) modes of the internal kink type for which
the perturbations become resonant at the mode
rational surface, where E-§0= 0. In this region,
it becomes necessary to take into account inertia
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