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Some new correlation inequalities are deseribed which bound large-distance behavior
of correlations in ferromagnets from above by correlations at intermediate distances.
Among applications are (1) an inequality, 1< 1, on the decay of correlations at the criti-
cal point; (2) an inequality xz coth(3m) relating the zero-field susceptibility and the mass
gap in a nearest-neighbor ferromagnet; (3) a finite algorithm for rigorously computing a
sequence of upper bounds guaranteed to converge to the true transition temperature in

Ising ferromagnets.

In this note, I wish to describe some new’ cor-
relation inequalities in ferromagnetic models
which have the effect of bounding very-large-dis-
tance correlations from above by correlations at
intermediate distances. Many of the more inter-
esting applications involve the use of these in-
equalities to get lower bounds on intermediate-
distance behavior which have the effect of show-
ing that the threshold singularities in various
spectral weights cannot be too soft. In models
with reflection positivity,? the new inequalities
are complementary to consequences of reflection
positivity which typically bound long-distance be-
havior from below.® Various technical details
and further consequences of these ideas will ap-
pear elsewhere* and additional developments mo-
tivated by this in forthcoming papers by Lieb®
and by Aizenman and Simon.°

To explain the basic idea, suppose that (s, sp)
is the two-point function in a one-component fer-
romagnet and suppose we have an inequality of
the form

(sqsy)s 25 ala=58)sss,). (1)

a=-8€B

In (1), B is some set of sites, {x} with |x| <R
and (1) is supposed to hold whenever |y —a| >R.
We clain that (s, sz has exponential falloff so
long as a= 0 so that

> ala)=T<1. (2)
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For, if |o —y| >nR, iterate (1) » times and find
that

(sqsy)< I‘"ma§<|<sasf;>| ;
a,

so that
(545, < max|(s,d] exp[R™ ' In(T)|a -y[].  (3)

One can improve* the value of the mass gap in
(3) but the main point” is that (1) and (2) yield a

mass gap.

Equations of the form (1) hold in the following
cases:

(A) For spin-3 Ising model with B the set of
spins coupled to @ =0 and a(a — 8) =tanh(BJ ),
(1) is exactly Griffiths’s third inequality.®

(B) By a graphical analysis,* we have succeed-
ed in proving

CPERE 6Z)B(s(,,sf)(sésy) (4)

for any family of pair interacting spin-3 Ising
ferromagnets. Here B is any set with the prop-
perty that for any path from o to y whose links
are between spins directly linked in H, the path
must pass through B. For example, in a nearest-
neighbor model, B can be any set whose removal
disconnects Z¢ in such a way that ¢ and y are in
distinct pieces.

(C) Lieb® has extended our proof of (4) to prove
the analog of (4) with (s, ss) replaced by (s, sy’
where (+++)’ is the expectation value in the sys-
tem where we keep only interactions between
spins “inside” B and between spins inside B and
in B.® When B is the set of “neighbors” of a,
Lieb’s improvement is precisely Griffiths’s third
inequality.

(D) By Griffiths’s trick,'® Eq. (4) and Lieb’s im-
provement hold for (suitably normalized*) spin-
S Ising spins.

(E) Let A,B be a breakup of all spins into two
disjoint pieces with a= A, y& B. Then using
Griffiths’s second inequality’? and the Lebowitz
inequality,'® one can prove that*

(sqsys 25
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+{s4 557855 ))- (5)

This inequality and its proof holds for many sin-
gle-spin distributions including lattice ¢* field
theories and also for plane rotors.
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(F) Using the local Ward identities of Dreissler
etal.,** Aizenman and Simon® have proven, for
D-component models of isotropically coupling
unit spins,

<§a '-S.‘y>sﬁz>6D-lJoc6<-§6'_§y>, (6)
and, for D=2, 3, and 4 and A, B as in case (E),

(84288 35 D 's(8,8:5)Bs-8,). (1)
8CA,8'CB
Here are some of the applications of these in-
equalities:
(1) Mass gap for “lavge” temperatures.—Gen-
eralizing the idea of Krinsky and Emery,' I get
a mass gap at sufficiently large temperatures.
For example, by Eq. (6), I get a mass gap® in
the D -component model if B} Jos<D. In particu-
lar, specializing to the nearest-neighbor two-
dimensional rotor, I get an upper bound on the
Kosterlitz- Thouless transition temperature T,

(T,)" = 0.5.

(2) n<1.—By definition, at the critical point,
there is no mass gap. Thus, by Egs. (2)-(4),
we must have that 3 (s,s,) = 1 for any set of a’s
surrounding O in the nearest-neighbor case. If'7
(soSq) ~Clx|~(@=2*M | this implies that n<1. This
improves the bound 1 <2 of Glimm and Jaffe.'®
With use of (E) this extends to large families of
models and it also extends to any finite-range
pair ferromagnetic interaction.

(3) Lower bound on f.—Let f (i) =35 ¢ = 1(SeSa)-
Then by (4),

fG+ §)<fa i),
from which one easily concludes that*

)= e mlil, (8)

In the nearest-neighbor case, using reflection
positivity, one finds that*

(000(z,0,..., 0 > 27 (2lx| + 1) 1. ©)
(4) Lower bound on y.—Summing (8) on 7 yields
x =coth(3m),

where y is the zero-field susceptibility. This
yields a new proof of the known result'® that y
— oo at the critical point and a new inequality on
critical exponents y = v.

(5) Bound on Z.—In the nearest-neighbor case,
(8) implies that there is a nonzero residue in the
single-particle pole, i.e., the quantity Z of
Glimm and Jaffe'® is bounded from below by
sinhm .
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The last two applications are consequences of
Lieb’s improved version (C) above.

(6) Finite algovithm for B,.'*—Consider the
nearest-neighbor d-dimensional cubic Ising mod-
el. Let A, be set consisting of the cube of side
2n+ 1 together with its nearest neighbors. Let
3A, be the set of these outer neighbors and let
FnB) =23 0con,(SoSo)n With (-« ), the finite-volume
states in A, with free boundary conditions. De-
termine B, by f,(8,) =1. Then* it is not hard to
see that 8, —~ ., the inverse critical tempera-
ture,™ as n—~ . Each g, is, in principle, finitely
computable. Unfortunately, the convergence
seems to be very slow.* For example ind =2,
where the exact answer is tanh3,=0.414..., I
have found that tanhB,=0.25, the mean-field val-
ue and tanhB, =0.31328. .. by exact calculation,?
Exact calculations of B, for n> 2 seem impracti-
cal, but rigorous bounds may be computable so
that the method may be practical, but in any
event, I emphasize that one can, in principle,
compute sequences of upper bounds that convervge
to the vight answer.

(7) Vanishing of the cvitical point.—Using
Lieb’s improved version, I have recovered the
McBryan-Rosen result® that as 8—~8,", m—~ 0" in
the nearest-neighbor Ising model.

This work originated in an attempt to under-
stand some new results of Dobrushin®* which
among other things deduce that sufficiently rapid
power falloff of dependence on boundary condi-
tions implies exponential falloff. Some observa-
tions of R. Israel were invaluable in putting me
on the right track towards Eq. (4). Since then,

I have benefitted from discussions with M. Aizen-
man, J. Bricmont, J. Lebowitz, E. Lieb, A. So-
kal, and T. Spencer. The author acknowledges
partial support of the National Science Foundation
under Grant No. MCS-78-01885.

IThese inequalities are extensions of Griffith’s third
inequality [R. Griffiths, Commun. Math. Phys. 6, 121
(1967 ] which is known to yield mass gaps at large
temperatures [see S. Krinsky and V. Emery, Phys.
Lett. 50A, 235 (1974)]. What is really new here is
the possibility of obtaining information at and near the
critical point.

’For extensive discussion of reflection positivity in-
cluding earlier references, see J. Frohlich et al.,
Commun. Math. Phys. 62, 1 (1978).

*For example, if g(j) is the two-point function
(0,05 with a—g=(j,0,...,0) in a nearest-neighbor
Ising model, reflection positivity implies that g(j)
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<e ™! with m= lim; , o (=j) "Inlg(4)].

‘B. Simon, to be published.

E. Lieb, to be published.

®M. Aizenman and B. Simon, to be published.

In a concrete situation, this was already realized
by Krinsky and Emery, Ref. 1.

8See Ref. 1.

%More precisely, consider all paths from « to y with
links of the allowed type. Consider the part of the path
from a until the first meeting with the set B, (---)’
has all interactions occurring in these parts of paths.

OR. Griffiths, J. Math. Phys. 10, 1559 (1969).

UThe normalization is that the difference of successive

values be 2. Thus, in (4) we are not able to take the
S—0 limit and attain spins uniformly distributed in
[-1,1]. But method (E) does work for such spins.
12R. Griffiths, J. Math. Phys. 8, 478, 484 (1967).
133, Lebowitz, Commun. Math. Phys. 35, 87 (1974).
YW, Dreisler, L. Landau, and J. Fernando-Perez,
J. Stat. Phys. 20, 123-162 (1979).
151t is already known lsee B. Simon (J. Stat. Phys.,

to be published)] that there is no spontaneous magneti-
zation in this case.

6Normalized so that at T = 1 each pair of nearest
neighbors has weight 1 in the Hamiltonian. Using
different methods, J. Frohlich and T. Spencer (pri-
vate communication) have obtained the same bound.

"we emphasize that bounds like (8) and (9) hold in-
dependent of any hypothesis on the form of the falloff.

183, Glimm and A. Jaffe, Commun. Math. Phys. 51,
1 (1976), and 52, 263 (1977).

¥Defined so that B, = sup {B| there is a mass gap at
B}.
OThis compares unfavorably with Fisher’s bound
[M. Fisher, Phys. Rev. 162, 480 (19671 of tanh 8,
=2 0.37 and even with the bound tanh 3. = 0.33 which is
obtained trivially with Fisher’s method.

%0, McBryan and J. Rosen, Commun. Math. Phys.
51, 97 (1967).

ZR. L. Dobrushin, unpublished. I am grateful to
R. Israel, M. Ainzenman, and J. Bricmont for com-
municating Dobrushin’s results to me.
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High-resolution angle-resolved photoemission spectroscopy is employed to study sur-
face states on the Cu(111) surface, with use of synchrotron radiation in the energy
range 18 <#%w <120 eV. The results reveal a novel periodic oscillatory behavior in sur-
face-state emission intensity which leads to identification of additional new surface
states. A spectral decomposition theory is proposed to explain the physical origin of
the oscillations. It describes the measured intensity profiles and predicts that the os-
cillations are universal for all surface states.

The purpose of this paper is to report the ex-
perimental observation and a theoretical expla-
nation of periodic oscillations as a function of
photon energy in the photoelectric cross sections
of surface states.

Recently angle-resolved photoemission spec-
troscopy has been actively employed for direct
determination of the energy-band dispersion
(E vs E) of many crystals. These measurements
have been done mainly at low photon energies?!
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