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Spectral analysis of N-body Schrodinger 
operators* 

By P. PERRY,I. M. SIGAL and B. SIMON 

Abstract 

For a large class of two body potentials, we solve two of the main problems 
in the spectral analysis of multiparticle quantum Hamiltonians: explicitly, we 
prove that the point spectrum lies in a closed countable set (and describe that set 
in terms of the eigenvalues of Hamiltonians of subsystems) and that there is no 
singular continuous spectrum. We accomplish this by extending Mourre's work 
on three body problems to N-body problems. 

1. Introduction 

In this paper, we study the spectral properties of the Hamiltonian operators 
of multiparticle nonrelativistic quantum mechanics (Schrodinger operators). To 
describe N particles moving in v space dimensions, we write a point in RiY" as 
(r,,  .. ., r, ) with r, E RY. If A ,  is the Laplacian with respect to r, and if the masses 
are m,, . . . ,m,,  then the kinetic energy is (in units with h = 1) 

For each pair y = {i, j )  C (1, ..., N ) ,  we let r, = r ,  - r, and suppose we are 
given a measurable function V, on R? We will use V, interchangeably for the 
function and for the corresponding multiplication operator V,(r,) on L~(R,'"). In 
addition, after we remove the center of mass motion or restrict to various 
clusterings (see below), we will continue to use the symbol V, for the obvious 
function or multiplication operator even though the underlying space changes. 
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The full Hamiltonian is 

Conventionally, one does not study H but rather an operator H which has 
the trivial center of mass motion removed. Explicitly, one writes 

where 'SC consists of functions of the r, and X , ,, consists of functions of 
R = ~ , n ~ , r ,/EnL1. Under this decomposition 

((1.6) is an example of our convention of using V, and V for the "same" operator 
on different spaces.) In (1.5) 

and H, has various forms depending on the precise coordinate system used; e.g. 
if we use the N - 1 coordinates x, = r, - r,, i = 1,.. . , h7- 1, then H, has the 
form 

Clearly 

H = H @ ~ + ~ @ T ,  

where H is the operator on X given by 

It is operators of the form H we will study here. Notice that as m, + oo, 
(1.7) has a nice limit; while we will not be explicit about this, our methods below 
extend to treat operators with one mass infinite without any significant change. 

(Parenthetically, we remark that there is an alternative way of describing 
reduction of the center of mass 135,41: let .rr be the plane of codimension v given 
by the condition 2,m,rr = 0. Then 'X is just L2(.rr, d('-l)'x), V is the obvious 
function and H, is the Laplace-Beltrami operator associated with the metric 
obtained by restricting the metric 2 ( 2 m , ) ( d ~ , ) ~  on L2(R"") to 71.) 
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There are three main problems associated with the general spectral analysis 
of H: 

(1)Prove that the point spectnim of H can only accumulate at thresholds. 
(2) Prove that the singular continuous spectrum of H is empty. 
(3) Prove asymptotic completeness. 
(Below, after introducing some notation, we will define thresholds and 

asymptotic completeness; we note here that proving (1) for H and for the H's 
associated to subsystems proves that the thresholds and the union of thresholds 
with point spectrum are closed countable sets.) 

In this paper, we will solve problems (1) and (2) for very general classes of 
potentials V,. We note that prior to our work, these problems were only solved 
when A' 2 4 for V's with very special analyticity properties or with restrictions 
on the sign or size of V 's. (We give a more complete history at the conclusion of 
this introduction.) For example, even if all the V, are in C,", there have been no 
results on these problems when A' 2 4; our conditions on V allow arbitrary C," 
functions as well as much broader classes. 

Our work was motivated by and depends heavily on ideas in a remarkable 
paper by Eric Mourre [24]. Mourre develops an abstract theory and then shows 
its applications include Schrodinger operators with N = 2 or 3. To describe 
Mourre's abstract theory, we define the scale of spaces X,,, X ,,X ,  X ,,X _,+ 

associated to a self-adjoint operator H on a Hilbert space, 'X. X+, is just D(H)  
with the graph norm 

X,, is D ( / H ~ ' / ~ )  with its graph norm and X I ,  X-, are the duals of 'X+,,X+, 
defined via the X-duality so that 

%+, c 3C+, c 'X c Xp1c 3C-, 

(thus @ E 'X is associated to a linear functional in X 1by l+(q) = ( G , q)  with the 
X-inner product; when H = - A  on L2(R"), these are the familiar Sobolev 
spaces). Mourre proves the following abstract theorem: 

THEOREM1.1 ([24]). Let H be a self-adjoint operator which is bounded ficnn 
below on a Hilbert-space 'X and let X, be its scale of spaces. Let A be a second 
self-adjoint operator so that: 

(a) D(A) n 'X+, is dense in X+,; 
(b) elaA leaves X +,invariant and for each + E X +,, SUP l a  I l  elaA+I l  A, 

< m. 
(c) The quadratic form i [ H, A], defined on D( A) n X +, , is bounded fim 

below and extends to a bounded operator, B, fiom X +, to X .  
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(d) The f m  defined on D( A) n X ,  ,by [ B ,  A] extends to a bounded 
operator fiom X ,, to X -,. 

(e) For some open interval A ,  there exists (Y > 0 and a compact operator K 
so that 

where E, is the spectral projection for the intercal A associated to H. Then 
(i) Any point spectrum of H in  A has finite multiplicity. 

(ii) There is no accumulation point of  point spectrum of H i n  A .  
(iii) There is no singular continuous spectrum of  H in  A. 

Among other things, we want to extend Mourre's result in what appears to 
be a partly technical way but what is in fact a particularly significant way for 
applications: 

THEOREM1.2. Let H ,  H, be two self-adjoint operators which are bounded 
from below on a Hilbert space 'X. Suppose that D( H )  = D(H,) so that the scale 
of  spaces X i  is the same for H and H,. Suppose that hypotheses (a), (b) of 
Theorem 1.1 hold and that 

(c') The quadratic f m  i[H, ,  A] defined in  D(A) n X+, is bounded 
below and extends to a bounded operator, B,, fiom X,, to 'X. 

(c") The quadratic f m  i [ H, A] defined on D( A) n 'X +, extends to a 
bounded operator, B, fiom X +,to X- ,. 

(a') There is a cammon core C for A and H, so that A maps C into 'X+,. 
(dl) The quadratic f m  defined on C by  [ B ,  A] extends to a bounded 

operatorfiom X,, to X-,. 
Moreover suppose that (e) holds for E,(H), B. Then the conclusions (i)-(iii) 

of Theorem 1.1 remain true. 

In our applications, H and H, are N-body Schriidinger operators and A is the 
generator of dilations, i.e. 

so that 

In sections 6 and 7, we will prove Theorem 1.2 in this special case. Where we use 
the special properties of this particular A and H, (which allows for some 
simplifications), we wiU explain how to use results in [24] to handle the general 
abstract case. 



We can see the distinction between Theorems 1.1 and 1.2 by considering 
the two body case. Then [iA,V] = (x.  v)V (distributional gradient) and a 
necessary condition (sufficient if v 13) for a multiplication operator to be 
bounded from X +,to 'X is that the corresponding function be uniformly locally 
square integrable. Thus, Theorem 1.1 requires that v V at least be locally L2. 
However, one can write 

Since a/ax is bounded from X -,to X-, and from X ,, to 'X + ,,the latter will 
be bounded from X+, to X-,  if xV is bounded from 'X,, to X (it is then 
automatically bounded from X,, to 'X ,). Thus: 

PROPOSITION on R" and let 'X, be the (Sobolev) 1.3. Let V be a function 
scale associated to -A .  Suppose that V = V'" bounded+ v',' with X.( v ~ ( l ) )  

( resp. c m p a c t  ) f i m  X ,, to X ,  XV(,) bounded ( resp. c m p a c t  ) f i m  X ,, to X 
and v(,)bounded (resp. c m p a c t )  f i m  X,, to X- ,.Then [ i A ,  V] is bounded 
(resp. c m p a c t )  f i m  X+, to X-, .  

We can now describe the hypotheses we will place on our potentials: 

Definition. We will say that a potential V obeys Hypothesis M if and only if 
V = v") + v',' + v ( ~ )where: 

(i) Each V"' is compact from X,, to X; 
(ii) XV'" is compact from X+, to X; 

(iii) x2V") is bounded from 'X +, to X; 
(iv) x v v(,)is compact from X,, to X; 
(v) x2v v(,' is bounded from X ,, to X; 

(vi) x v V(3' is compact from 'X+, to X; 
(vii) x2v v V3)is bounded from X +,to X .  

Remarks. 1. (i) and (iii) imply (ii). 

2. We emphasize that this is a compactness condition on L2(RY). If we think 

of V,"' as a function on L2(R"(1vp1))with N 2 3, we will no longer have 
compactness. 

3. In only one place do we require the double commutator [A, [A, V]]. If 
that could be removed, then one could set v ' ~ '= 0 and dispense with all 
conditions except (i), (ii), (iv). Of course these hypotheses are chosen precisely to 
have: 

PROPOSITION1.4. If V obeys hypothesis M, then as operators on L,(R"), 
i [V, A] is compact from X +, to X -,and i [[V, A], iA] is bounded f i m  X +, to 
cLT 
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The proof is easy. 

We can now state our main theorem: 

THEOREM1.5. Let H be an  N-body Hamiltonian with potentials, V,, obey-
ing hypothesis M .  Then: 

(i) The set of thresholds of H (defined below) is a closed countable set. 
(ii) Any non-threshold eigenljalue is of finite multiplicity, and these eigen- 

calues can only accumulate at thresholds. 
(iii) H has no singular continuous spectrum. 

Conclusion (i) of this theorem will hold inductively given conclusion (ii) for 
subsystems and the definition of threshold. Given Theorem 1.2, this focuses 
attention on basic estimate (1.9) which we will call a "Mourre-type" estimate. 
Theorem 1.5 will follow from Theorem 1.2 if we prove that for any real number 
A, which is not a threshold, (1.9)holds for A ,  some open interval containing A,. 
We will prove (1.9) in Section 4,  under the hypothesis that every subsystem has 
finitely many point eigenvalues, each of finite multiplicity. We prove (1.9)in the 
general case, which is considerably more complicated, in Section 5. Our proof 
will require two special technical devices we develop here: the notion of 
acompact operators in Section 2 and a systematic expansion in subsystems in 
Section 3. We base this expansion on geometric ideas from [39];for the case 
discussed in Section 4,  one can choose a combinatorial expansion described in an 
appendix. In addition to these devices, we exploit some of the ideas Mourre used 
in his study of three-body systems and we use the virial theorem which we prove 
in Section 6 (the virid theorem is also crucial in the proof of Theorem 1.2). 

Next, we would like to describe the combinatorid notation we will need 
associated with breakups of the h7particle into clusters. We will use the symbols 
a ,  b ,  c ,... for partitions of ( 1, . . . ,A') ,  i.e. a = {A,,..., A,) where the A's are 
disjoint nonempty subsets of ( l , . ..,N)whose union is all of ( 1 , .. . ,N) . When 
we write a ,  we intend to mean a general partition with k elements. Thus a ,  
stands for the unique partition of one cluster and a ,  the unique partition with N, 
one element, clusters. 

The partitions have a natural lattice structure; we write a C b if each cluster 
A, E a is a subset of some cluster B, E b.  Thus a ,  is a minimal element and a ,  a 
maximal element. The set of all partitions is a lattice with this order: the glb 
a n b is the family of nonenlpty intersections A, n B, with A, E a ,  B, E b.  The 
lub a U b can be described as follows: draw lines between each pair in { 1,. . .,N) 
in a common cluster of a and then between each pair in a common cluster of b. 
The connected components of ( 1 , .. .,N) after this is done are the clusters in 



a U b. (We note that in the combinatorial literature, what we call a C b is often 
written a > b thereby interchanging our U and n ; in [36], [30], one of us has 
used the symbol a D b  where we now use a C b). 

The symbol y will be used as already indicated for a pair { i ,1 ) .  We will also 
use it for the partition with N - 1 clusters with y as one cluster and N - 2 
singlets. A symbol like y -- { i ,i )  C a therefore means that i and i are in the 
same cluster of a 

Later we will have rather involved combinatorial sums. A symbol like 

means that a ,  is a fixed "variable" and one is to sum over all a ,  (there is only one 
a ,!), a ,, . . . ,a ,  - ,obeying a ,  > a > . . . > a ,  - , > a ,, i.e. variables within boxes 
are fixed; others are summed. 

We define, as usual, for each a:  

i.e. I ( a ) is the potential between clusters of a .  
There is a natural tensor product decomposition 

associated to each a (we should really write @,, but don't). ' X u , the a-internal 
space, is a square integrable function of the r, with y C a and X,,,the a-external 
space consists of functions of R,  - R,  where for each A,  E a ,  

is the center of mass of the cluster A.. The reason for taking X, in this way is 
that with this choice. 

for suitable operators H," on Xaand T,, on 'X,. Since 
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we see that 

(1.17) H ( a ) = H a C 3 1 + 1 C 3 T ,  

Occasionally, we will use the symbol 

T ( a )= 1 8  T,. 

The celebrated HVZ theorem ([44] ,  1401, [13], [7] ,  [32]) asserts that 

(1.18) fJes,(H)= U m a ) ) .  
a i a ,  

Eigenvalues of some Ha with a # a ,  are called thresholds. Notice that the 
thresholds for Ha are eigenvalues of some H b  with b C a SO that these thresholds 

t 

are also thresholds for H. As a result, conclusion (i) of Theorem 1.5 holds 
inductively if one proves (ii) for the Ha.  Therefore, by induction, in proving 
Theorem 1.5, we can suppose that (i) is true rather than prove it! 

If b 2a ,  then any y C a is a y C b, so that we can write 

(1.19) 3 C b = X " C 3 X , b  

where 3Ck consists of the functions of R ,  - Ri for those clusters A,, A, E a ,  
which are subsets of the same cluster in b. Consider the Hamiltonian H ( a ) , i.e. a 
Hamiltonian with interactions between distinct A, E a removed. Then, as above 

(1.20) H ( a )  = 1 + 1 8  Tb ~ ( a ) ~ C 3  

under the decomposition 3Cb 8 X,. One fact about (1.19) we will need is that 
the operator ~ ( a ) ~on X b ,  defined by (1.20),has the form 

~ ( a ) ~HH"C31 + 1 8  T; = 

under the decomposition (1.19). Since T i  has purely absolutely continuous 
spectrum if a # b ,  we conclude that spectral measures of H ( u ) ~are convolutions 
of spectral measures of Ha and absolutely continuous measures. Hence: 

PROPOSITION1.6. Let a C b.  The operator ~ ( a ) ~  on x b,  given b y  (1.20), is 
t 


purely absolutely continuous. 

There is one last piece of notation we wish to introduce now. For each 
a # a,, Pu is the projection on 3Ca onto the point spectrum of Ha.  We let 

-

(1.21) p" = 1 - pH" 

(1.22) P ( a )  = P" 8 I ;  P ( a )  fi P" C31 

Thus, since X a N= C, we have that P(a,) - 1 and 

(1.22a) P(aN) = 0. 
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For the special case a = a ,,we make a special convention 

(1.22b) P(a , )  = 0. 

With this notation, we can describe the asymptotic completeness problem 
referred to above; for each a # a,, one can prove the existence of the limits 

under rather general conditions on the potentials [20] and moreover [20], for 
a # b, Ran IRan . One defines 

and similarly with (in, +) replaced by (out, -). Xi, describes those (scattering) 
states which in the past break into bound fragments A ,,. . . ,A, moving asymptot- 
ically freely. Asymptotic completeness is the assertion 

with X,,(H) the absolutely continuous subspace for H. The stronger assertion 
with 'X,, in (1.23) replaced by the orthogonal complement of the span of the 
eigenvectors of H is often called "asymptotic completeness". This stronger 
assertion is equivalent to a positive solution of problems (2) and (3) listed at the 
start of this section. We emphasize that in this paper, we only solve problems (1) 
and (2) and have nothing to report on problem (3). In the two-body case (with 
V,'3' = 0) and slightly strengthened falloff hypotheses, our estimates solve (3) as 
is well-known (e.g. [32]) but additional estimates will probably be needed before 
one can solve (3) in the general N-body case. 

The structure of "particles" is not really essential to our work. For example, 
Morawetz [23] has considered the "Union Jack" problem in two dimensions: let 
V(x,y) be 0 (resp. 1) if 1x1 < 1 or lyl < 1 or Ix- y1 < 1 or Ix+  yl < 1 
(othenvise) and consider - A  + V. While this is not a three-body problem, it is 
very similar in structure. Indeed, if V, are functions on R p a  obeying hypothesis M 
and if T, are a finite family of linear maps from Rvto R'Q, one can analyze 

The methods of this paper (with thresholds suitably defined) also prove the 
analog of Theorem 1.5 for such operators. The three-body case corresponds to the 
situation where any two Ker T, intersect in {0), as happens in the Union Jack 
problem. In general, if there is a set of k - 1 Ker T,'s whose intersection is not 
(01, but any set of k Ker T,'s intersect in {O), the problem will have the structure 
of an N-body problem with N = k + 1. 
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Finally, we close this introduction with a brief discussion of some previous 
work on the problems solved here and the related problem of asymptotic 
completeness which remains open. 

The solution of the main problems for the case N = 2, often with very 
strong hypotheses on V, was elucidated in the late 1950's by T. Kato and his 
students and by a number of Russian mathematicians, most notably Povzner and 
Birman. There have been twenty years of development and refinement culminat- 
ing in the weighted L2-space analysis of Kuroda [19] and Agmon [l] ;  see [30], 
1321 and their notes for references. (Very recently, Enss [8] has invented an 
intriguing and elegant new approach to the problems.) In Section 8 of this paper, 
we will obtain weighted L2 estimates for AT-body systems with potentials obeying 
hypothesis M, which are essentially as good as those obtained by Agmon and 
Kuroda in the two-body case. 

The first general results for A' = 3 were obtained by Faddeev in his 
celebrated book [9] which gave solutions of problems (2) and (3) for potentials 
which roughly had r -2p' falloff at infinity (there is a gap in his solution of 
problem (2) filled in later by Sigal [33] and Yafeev [43]). Faddeev also assumed a 
technical condition that only held for "almost all VY7s": explicitly, that for each y, 
the dimension of the negative spectral subspace for H Y  + a V Y  was independent 
of a for ( a /small. (There has recently been work on removing this condition 
1221.) In our work (as in Mourre's [24] in the case 9= 3), no assumptions of this 
type are needed for any subsystem. 

In Faddeev's work, he used a great deal of information about the AT= 2 
problem to solve the 9= 3 problem. In general, one needs to know a lot about 
subsystem Hamiltonians Ha, a # a,, to analyze H using an extended Faddeev 
approach. Some results along these lines, i.e. analyzing H assuming various 
features of Ha, can be found in the work of Hepp [12] and Sigal 1331. 

We will not attempt to describe all the work on embedded eigenvalues 
(problem (1) for discrete eigenvalues is solved by the HVZ theorem) yielding 
partial solutions, but see [lo], [42]. 

For general N, the solutions of problems (1)-(3) fall into three classes: (i) 
Weak coupling, (ii) Repulsive potentials, (iii) Analytic potentials. 

For weak coupling all three problems have been solved: indeed, H and H, 
we&are unitarily equivalent under unitaries given by s - limt,= ,e i tHe - i t H , .  

coupling results of this type exist only if v 2 3. The potentials are required to 
have roughly r - - ' falloff, explicitly for some p,  9 with p < v/2 < 9, all V, E 
LP r )  Lq and all I I  V, I I ,  + I I  V. 1 1 ,  sufficiently small (how small depends on 
v, p,  9, N).  There are a number of results of this sort for N = 2 of which we 
mention Schwartz [32], Prosser 1271 and Kato 1171; Hunziker 1141 obtained the 



N = 3 case and IorieO'Carroll[15] the general N case. In this last paper, a major 
role is played by ideas of Kato [17]. 

Solutions of Problems (1) and (2) (and, with extra hypotheses, also of 
problem (3))were obtained by Lavine [20], [21] under hypotheses that each V, is 
repulsive, i.e. i[A,V,] 2 0. Again ideas of Kato [17], [18] played an important 
role. 

In both the weak coupling and repulsive potential cases, H has only one 
channel, i.e, no H U with a # a ,  has eigenvalues. The only previous results about 
(1)-(3) from first principles for many channel systems are for "dilation analytic" 
potentials introduced by Combes [5] and analyzed in the X-body case by 
Balslev-Combes [3] (see [37], [38] for further results) who solved problems (1) 
and (2). Solutions of problem (3) for this class of potentials with extra hypotheses 
("generic couplings", r p 2 p E  falloff) were found independently by Hagedorn [ll] 
for X =  3,4 and by Sigal [34] for all N.Rather than be precise about the 
definition of "dilation analytic" we note that it requires a kind of analyticity of 
the potential away from F =  0; e.g. if V is spherically symmetric and dilation 
analytic then V(F) = f(/  F l )  where f is analytic in a sector / arg z / < 6 (> 0) and 
limlZl-,, ,a I f(z)  / = 0. Coulomb and Yukawa potentials are dilation analytic; 
CF functions are not. 

Our summary would not be complete without mentioning Mourre's work 
[24] which we have already explained was our major motivation. Mourre only 
handled the case AT= 2,3. In the latter case he solved problems (1) and (2) 
allowing rather long range potentials although he did require smoothness (e.g. 

Vy(F)= [ln(2 + I r 1 2 3 2 is allowed!) and no hypotheses on generic coupling were 
needed. We should also mention that Mourre relies in part on his own earlier 
work and on a train of ideas involving positive commutators including the work 
of Putnam [28], Kato [18] and especially Lavine [20], [21] on this subject. 

It is a pleasure to thank E. Mourre for sending us his paper, for encouraging 
this work and for many discussions. 

2. a-compact operators 

In the kind of analysis we will make, and, in particular, in getting rid of the 
second term on the right of (1.9), a useful role is played by the fact that if K is 
compact, H is any operator and A, is not an eigenvalue of H, then 

This is easy because s - lim E( -,, A"  +,) ( H )  = 0. 
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Here, we will deal with a slightly more subtle but related idea. Let V, be a 
two-body potential and let H, be an N-body free energy operator (with center of 
mass motion removed). We claim that 

If N = 2, (2.2) follows from (2.1) if we note that V,( H, + 1) ' is compact 
when A' = 2. TO prove (2.2),one notes that H, = H: 8 I + I 8  T, in the usual 
way described in Section 1. Then by "diagonalizing" T,, one can view 

' Y E (  A,, F. A,, + F )( H,) as a "fibered operator", whose fibers are V,E(,(,- ,, ,,,,
 + F ) (  H:
+ t y ( p y ) )and then (2.2)follows from the fact that there is a uniformity in A, in 
(2.1);we describe the details below. 

In this section, we will abstract and formalize these ideas; throughout, the 
reader should think of (2.2) as a motivating example. We will use freely the 
notion of "constant fiber direct integral" and "decomposable operator", de-
scribed, e.g. in Section XIII.16 of [32]. 

Fix a partition a and let U, ( t )  denote the family of translations of the 
clusters in a (with the center of mass motion removed); i.e. if a has kclusters 
A,,  . . . , A,, then t runs through sets of k vectors t,  E R vwith 

and 

where 

translates particle i. We denote by pa the infinitesimal generator of U,. p, should 
be viewed as the set of differences of momenta of the clusters in a. 

The various momenta in p, commute and so a simultaneous diagonalization 
is possible by the spectral theorem. By the Plancherel theorem, the spectral 
measure is just Lebesque measure on R ( ~ - ' ) "and the corresponding fibers in a 
direct integral decomposition are constant. Indeed, under the decomposition 
X u  8 'Xu ,each U J t ) is of the form I 8 o,( t )  and the o,(t)  generates a maximal 
Abelian algebra on X u ,  so that the fibers of the above decomposition are 
naturally associated to X u .  We therefore write 



As is usual, we do not distinguish between the operators p, and the variables p, 
in the integral decomposition since the operator is multiplication by the variable. 
We note that the kinetic energy T, is a function, t, of the operators pa, i.e. 

Definition. A bounded operator, A, on X is called a-fibered (written 
A r %(a))if and only if A commutes with all the translations U,(t). 

On account of the decomposition (2.3), any a-fibered operator, A, is 
decomposable (Thm. XIII.84 of [32]) with fibers A(p,) bounded operators on 
'Xu .Note that 

Definition. Let A r %(a). We write A r Cont(a), (resp. A r Cont,(a)) 
(resp. A r C,"(a)) if the fibers, A(p,), are norm continuous (resp., if also 
lim ,,, +,l l  A( p,) l l  = 0) (resp. if p, -+ A( p, ) is a norm-Ca operator-valued func-
tion of compact support). 

PROPOSITION2.1. Let a C b and let A r %(a). Then A r T(b).  The same 
remains true if T( .) is replaced by Cont ,( .) or C,"( .). 

Proof: Every operator Uh(t) is a U,(t) so %(b) C %(a) is obvious. For the 
other results, we note that one can write p, = ph)  corresponding to the 
decomposition Xu = X,h 8 X,, (complementary to (1.19)). If A,( pa) denote 
the a-fibers of A and A(ph), the b-fibers of A, then Ah(ph)as an operator on 
X h  = Xu8 X,b jeXudpi is fibered with fibers 

From this and (2.5), the results on C,"(.) and Cant,(.) follow. 

Renuzrk. The proposition is false if %(.) is replaced by Cant(.), for (2.6) 
and (2.5) show that norm continuity of A,, in p, requires continuity of A ,  
uniformly in p:. 

COROLLARY2.2. If A E %(a)and B E %( b), then AB E %(a U b). The same 
renuzins true if T ( . )  is replaced by Cant,(.) or C,"(.). 

Our key definition is 

Definition. An operator A is called a-compact (written A E Com(a)) if and 
only if A r Cont,(a) and each fiber A(p,) is a compact operator on Xa) .  
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A related but distinct notion of aconnectivity has been introduced recently 
by Polyzou [26]; acompact operators are aconnected in his sense (see Lemma 
A-4). 

We note that if C is a compact operator on 'Xuand d = C @ I according to 
X = K"8 X,lrthen by our definition, d is not acompact (although d (  H ,  + 1) 
will be acompact). This seems a strange choice to make. Below we will explain 
our reason for it. Clearly, by (2.5): 

PROPOSITION2.3. Com(a) is norm closed 

PROPOSITION r Com(a) and B E Cont(a), the AB E Com(a).2.4. IfA 

Definition. An operator A is called a-finite (written A E Fin(a)) if and only 
if A E CF(a)  and for a fixed finite rank (orthogonal) projection P on X", 

(2.7) ( P @  1)A = A ( P @I )  = A  

(or, equivalently, 

for all p,). 
The following approximation result is very important in the development of 

the theory: 

PROPOSITION dense in Com(a). 2.5. Fin(a) is norm 

Proof: By a standard (functional analytic) approximation argument C,"(a) 
f l  Com(a) is dense in Com(a). Given A E CF(a) f l  Com(a) and E ,  find by 
continuity, points pL1), . . . ,p,(n) r ~ v ( k - 1 )  so that for any p, 

max IA(p,) --A(P,( 1 )  ) 1 1  4 3E 
i = l ,  . . . , n 

By compactness of each A(pSi)) we can find a finite rank orthogonal projection P 
on 'X" with 

for all i. Then ( P  @ I )A(P @ I )  r Fin(a) and 

I I A- ( P @I ) A ( P @  I ) I I5 E .  

Remark. We can now explain why we define acompact in such a way that 
{ d  = C @ I )  are not acompact. For acompact operators to be approximable by 
operators obeying (2.7) for a fixed finite rank projection, we cannot require only 
that A E Cont(a) with compact fibers. We need something like a requirement 
that A(p,) have a limit at infinity. But with only that requirement, Proposition 
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2.4 would not hold. We note that in the applications, operators d = C @ I often 
enter and we will have to arrange for some extra (H, + I ) - '  factors to make 
them ucompact. These are a nuisance to have to add but present no serious 
problem. 

The following result is a version of an idea that has run through much of the 
3'-body literature; the earliest version we know is in a paper of Combes [4]. 

THEOREM2.6. If A E Com(a) and B E Com(b), then AB E Com(a U h). 

Proof. By Proposition 2.5, it suffices to prove the result when A r Fin(a)  
and B E Fin(b). That AB E Cont,(a U b) is then just Corollary 2.2. We must 
therefore only show that the fibers are compact. Writing A = A(P @,,I) and 
B = ( Q  @[,I)B,with P (resp. Q )  a finite rank operator on X" (resp. X " )  and 
using Proposition 2.3, we see that it suffices to show that ( P  @,,I)(Q@ ! , I )  have 
compact a U b-fibers. 

Clearly, we can suppose that P and Q are both rank 1 and without loss of 
generality we can suppose that RanQ lies in some convenient total set. We now 
~ r o c e e dto pick that total set. We claim we can pick distinct y,, ...,y, C b so that 

(a) each yl a ,  (b) a IJ h = a U y, . . . Uy,, (c) For any y,, a U y, . . . Uy, ,U 
y, +,U . . . y, # a U b (i.e. for each cluster C, in a U b, we write C, = A,, 
U . . . UA,,,,( A ,distinct clusters of a )  and then pick m - 1pairs contained in h 
and in C, so that joining those pairs with pairs in some A 7connects all of C,). Let 
[ be a set of coordinates internal to b so that r,,, ...,r,,, { is a complete set of 
coordinates for X" with ( orthogonal to r,,, Suppose that RanQ consists of 
multiples of a product function 

f1(ry,)f2(ry2i...f,(r, ,)g(O -f(r,)g({). 

Then, we can write Q = c)tawhere (Qfh)(r,, i )  = /f(r,)f(ry') h ( i ,5)dr: and 
Q is similar. By an elementary change of variables, ( P  @,I)(Qf @hl )  is seen to 
have Hilbert-Schmidt a U b-fibers. 

Remark. Polyzou [26] proves an analog of this fact for his "a-connected" 
operators. 

Example. Let S =  3, with m ,  = m, m, = m,. Let a = ( (1 ,2} ,3} ,  b = 
{ 1, (2,3}} .  Use coordinates r2,r3. Then if Q is a projection onto a function f, we 
have that Q @blhas an "integral kernel": 

with 6 a Diracdelta function. If P is the projection onto a function j ,  then P 8,I 
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has integral kernel 
-

i(r2) ibd)  8(r3 -

and ( P  @,I)(Q @bI)has kernel: 

which, by a change of variables, is easily seen to be L2; but notice that this kernel 
is not separable, i.e. a finite sum 2h,(r2, r3)h,(r,', r,'). Thus, it is not true that a 
product of A E Fin(a) and B E Fin(b) lies in Fin(a U h) .  

The point of introducing the notion of acompact operators is to obtain 
various extensions of (2.2): 

THEOREM2.7. Let a # a,.  Suppose that A E Com(a). Then as A runs 
through all intervals 

(2.9) lim I I  A P ( a )  EA(H(a))ll = 0 
; A  -0 

where I A I = Lebesque measure of A.  

Remark. It is only because of our convention that P (a ,  ) = 1that we need 
to say a # a,. If we replaced P ( a l  ) by the projection onto the absolutely 
continuous subspace for H ( = H(al)),  (2.9) would remain true. 

Proof: By the simple approximation argument, Proposition 2.5, we may 
suppose that A r Fin(a). Since A = A(P @ I ) ,  it suffices that 

(2.10) lim II(P@ I)P(~)E,(H(~))II  = 0 
A - 0  

for any finite rank operator P on X u .  Clearly, it suffices that P be rank 1, say the 
projection onto a vector $ r 'X". But the operator in (2.10) is fibered under the 
decomposition X = je Xadp,  and its fibers are PP"E,(H" + t,(p,)). Using 
(2.5) and letting + =P"J/,we see that (2.10) is implied by: 

Let d p  be the spectral measure for + associated to H". Since I I  EA(H0)+1 1  
= j,dp(y), we see that (2.11) is equivalent to 

But, since A is an interval, (2.12) is equivalent to the uniform continuity of 



Since F is continuous (since + E ~ a n P "and P o  contains all eigenvectors) on the 
extended reds [ - m, m], this uniform continuity is obvious. 

THEOREM2.8. Let a C b and let A E Com(b). Then 
7 

lim I I  AE,(H(a))ll = 0. 
IAI -0 

Proof: Think of H(a)  as an N-body Hamiltonian H. By Proposition 1.6, the 
operator p b ( H )associated to Hiis 0 so P" H )  1.Thus (2.9) for H is (2.13). 

Remurks. 1. If b = a,,  then, as we have already noted, (2.9) only fails 
because of the definition we gave P(al) .  Thus (2.13) remains true even when 
b = a l .  

2. (2.2) is implied by (2.13) if we note that 

THEOREM2.9. Let A r Com(a) and k t  C," be a sequence of (bounded) 
self-adjoint operators on 'Xugoing strongly to zero. Let 

Then 

(2.14) lim I I  ACn(a)ll = 0. 
n- m 

Proof: By a limiting argument, we need only prove (2.14) for A = P @ I 
with P rank one. But then (2.14) is equivalent to 

lirn I I  PC," I I  ,"= 0, 
n- m 

which is a direct consequence of the strong convergence of (C,")* = C,". 

3. Expanding in subsystems: The geometric method 

For fixed partition a ,  the Hamiltonians H(b) with a > b have the potentials 
V, with y C a but y @ b dropped, and thus they can be viewed as describing the 
interactions of subclusterings of b. An important element in our analysis will be 
the possibility of expanding functions, f(H(a)), into combinations of the f(H( b)) 
with b c a .  Of course, one cannot expect to write f(H(a)) in terms of the 

7 
f(H(b)) with no error but one can hope for the error to be small; the natural 
notion might be compact errors. Since, for all b C a ,  f(H(b)) is a-fibered (see 
Prop. 2.1), it is too much to hope for a compact error in general; the natural 
thing to look for is an acompact error. Thus, our goal is an expansion of the 
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form: 

where K,(a) is acompact  (The symbol 2* ,  is defined in $1.) 
f 

The existence of an expansion like (3.1), even ~vith operator-valued c's is 
very significant; for example, it implies the hard part of the HVZ theorem, i.e. 

For (following 1391) note that if f has support disjoint from U,,,,,,a(H(a)), then 
(3.1) and compactness of Kf(a , )  show that f (H(a , ) )  is compact and thus (3.2) 
follows. 

The simplest version of (3.1) has the c(b,  a )  as real numbers. As we will 
show in the appendix, this requirement determines the expansion uniquely. In 
that appendix, we will also construct such an expansion. The proof of HVZ that 
results can be viewed as a variant of the Weinberg-van Winter equation proof of 
Hunziker and van Winter. The big disadvantage of this "combinatorial" a p  
proach is that all b with b C a  enter in the sum in (3.1). For our purpose, this is a 

t 

severe defect: we could use the method of the appendix to provide an alternative 
to the arguments in Section 4 but we have not succeeded in doing what we do in 
Section 5 without the geometric expansion of this section. 

Our goal in this section will be to construct an expansion of the form (3.1) 
with the property that the only b's which enter in the sum are ones that have 
only one additional cluster. The price one pays for this desirable feature is that 
the c's are now (multiplication) operators. We follow the construction of Simon 
[39] who developed (3.1) in the case a = a ,  (so Kf ( a )  is compact). The name 
"geometric method" comes from the fact that the basic input is the observation 
that H ( a )  and H(b)  look alike in the region where all r, with y C a ,  y @ b or 
y C b, y @ a are large and one exploits regions in r-space. 

LEMMA 3.1. For all pairs a,+, C a ,  where a k  (resp. a,+,)  has k (resp. 
k + 1) clusters, there exists a function i(a ,+ ,,a,) so that the following hold: 

(i) 0 5 j 5 1; j E Cx(RY('Lpl)); 
(ii) j(a,+,, a,) is a,-fibered; 

(iii) ( V  j)(a,+,, a,)(H, + 1)-'I2 is a,-compact; 
(iv) If y c a ,  but y @ a,+, then (H,, + l ) p l ~ ( a , + l ,a ) (  + 1 '  is 

a,-compact if VV,is compact fmn the two body 9C+, to the two body 9C. 



(v) We have that 

for each a,. 

Proof Pick a coordinate system for R" " '  consisting of some r,'s with 
y C a,  (call them r,) and some ( which are differences of centers of mass of 
clusters in a,. We will take the j's to be only functions of the r, so that (ii) holds. 
We will initially define the j's on the "sphere" where 2,r: = 1. We will extend 
to r 's with Zar: > 1by requiring j to be homogeneous of degree zero there and, 
in the interior of the sphere, we will extend in an arbitrary way so that (i) and (v) 
hold. By construction, D j will be homogeneous of degree -1 in the r, so 

1 D j 1 1 + r l / '  from which (iii) follows. Thus, it only remains to prove 
that the j's can be chosen on the sphere in such a way that (iv) holds. We will 
make a choice so that y C a ,  and y @ and j(a,+ ,,a, ) ( r )  # 0 (with 
Cr: = 1) implies that r, r d ,  > 0 where d ,  is a constant depending only on N. 

Given j's with this property, verify (iv) as follows: Since V, is h,compact, 
we can find for each E ,  an R so that 

where F ( A )  is the characteristic function of the set A. But by the above property 
of the j 's, F(I r, 1 < R )  j(a,+ ,,a,)  is supported in the set of r 's with (Car:)"' 5 

min(1, Rd,; '). From this we obtain the required compactness condition (iv). 
Finally, we note that the existence of j's on the unit sphere with the 

requisite properties follows from a geometric argument identical to that pre- 
sented in 1391 (see also [32], Section XIII.4). U 

Rmzurk. The above choice has the property that (Aj)(H, + I ) - '  is a,- 
compact so that 

(H,, + 1)-'[H,,, j] = - 2 ( v ) ( H ,  + l )pl"[(~, ,  j]+ I)-"% 

LEMMA3.2. Let f E C,y(R). Let the j obey the hypotheses of Lemma 3.1 
and let each V, be compact fim the two body 'X,, to the two body 9C.Then 
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Proof (following [39]). Suppose we prove this if f (x)  = (x - 2)- '  with Re z 
large in absolute value and negative. Then, by writing out derivatives as Cauchy 
integrals we obtain the a,-compactness for f(x) = ( x  - , z p k .  By use of the 
Stone-Weierstrass theorem any f E CF is a uniform limit on [ a ,a)of polynomi-
als in (x  - a + I)- ' .  Therefore, we are reduced to the case where f (x)  = 
( x  - ) ' .  But, then: 

i [ ( H ( a , )  - 2 ) '  - ( ( k + l )  - z ) ' ]  = S1 + S2 

where 

and 

s, = ( H ( a , )  - z ) ' [ ~ ( a , ) ,i] ( ( H ( a k )- - 1 '  - ( a + - z ) ~ ' ] .  

Since 

[ ~ ( a , ) ,i] = [Ho ,il 

and v i( H ,  + 1) ' is ak-compact (see (iii) of Lemma 3.l ) ,  S2 is a ,-compact. By 
(iv) of Lemma 3.1, S, is a,compact. 

THEOREM3.3. Let f E C,"(R) and let the j's obey Lemma 3.1. Then 

where: 

Proof: The validity of the expansion follows from (3.3); the akcompactness 
from Lemma 3.2. 

The final fact we will need about the expansion is that Kf is actually 
akcompactfrom X,, to X .  As a preliminary to this, we note that: 

LEMMA3.4. Let b C a,. Then for all f E C,": 

[ i(a,+, ,  a , ) ,  f ( H ( b ) ) ]  

is a ,-compact. 



Proof. As in the proof of Lemma 3.2, we need only consider the case 
f (x )  = (x - z )  -'. Thus, since ( H ( b )  - z )  -' is a,-fibered with continuous 
fibers, we only need that 

is a,-compact. This is noted already in the proof of Lemma 3.2. 

THEOREM3.5. The operator, Kf (ak) ,  of (3.5) obeys: Kf.(ak)[H,,+ 11 is 
a -co?r~pact. 

Proof. Write f = gh with h (x)  = ( x  - 2 ) '  and write 

with 

Now LT, [H, + 11 is a ,compact, by Lemma 3.2 and CT,[H, + 11 is a kcompact 
by Lemma 3.4. To see that li,[H, + 11 is a,-compact, we follow the proof of 
Lemma 3.2, using the remark following the proof of Lemma 3.1. 

4. Mourre-type estimates for N-body systems: finitely many channels 

In this section, we will prove the key estimate (1.9) under the extra 
hypotheses that each Pa is of finite rank (since Pal = 0 by conuention, this is a 
hypothesis on subsystems only). Given Theorem 1.2 (which we prove in 96, 7 )  
and Proposition 1.4, this proves Theorem 1.5 under this extra hypothesis. In the 
next section, we remove the finite rank hypothesis. 

Alas, it will be useful to have two more pieces of notation. For functions f, g 
we write 

f c g  

to indicate that 0 5 f 5 g 5 1 and g(x) E 1 on the set where f(x) # 0 so 

f g  = f. 
Below, we will have sequences of functions 

fl c h c " .CI :y  

with f, identically 1near some fixed point A, and we will have operators O1 and 
0, depending on f,, ...,f,.We write 

0, ? 0, 
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to mean that for any E ,  one can find f,, . . .,f, (with f, identically one near A,,) 
and a compact operator K so that 

5 is an equivalence relation. We use the symbol 

to mean that 

O,(H,, + 1)= O,(H, + I ) .  

The symbol 0, f0, means that given E ,  one can choose f 's, K conipact and Q 
with IlQi < E SO that 0, + K + Q 2 0,. 

The following will be needed in both this section and the next: 

PROPOSITION be fixed not threshold of let4.1. Let A, and a 11 and 
a' < 2dist(A,, thresholds). If 

then (1.9) hokls for any a < a'  

Remark. The proof does not use the restriction on a'. We state it above, 
since it is only under that restriction that we will prove (4.1) (and only under that 
restriction that we believe (4.1) will hold). A careful look at our proof shows only 
the distance to lower lying thresholds matters. 

Proof. By the meaning of r , we can find an open interval A about A, and 
f, identically one on A so that 

with I Q I 5 a'  - a.  Multiply on both sides by E,( H )  and use f,(H)E,( H )  = 
E,( H )  to see that 

But since I Q I 5 a '  - a ,  we have that 

EAQEAI(a '  - a)EA,  

so (1.9)holds. 



Now consider f, C . . . C f;.. Fix a j-cluster partition a ,  and expand: 

In (4.2), we use f;f;+, = f ;  since f ;  C f ;+,and in (4.3), we use the expansion 
(3.4). Iterating this and using the fact that '(a,) = 0, we find that 

PROPOSITION4.2. For any f, C f, . . . C f i :  

wherc A'( a ,a , )  = 1 and for i 2 2: 

unni K f ( a )  i s  given by (3.5) 

An important point about (4.4) is that there are a priori bounds on N and K 
which come from combinatorial factors alone since each term in the defining 
sums (3.5) and (4.5) is bounded with norm at most 1 for N and at most 2 for K .  
Explicitly: 

if a has clusters with n,, . . . ,ni particles, and 

Now given any f,, we can use the fact that Kf,(a, -,) is a ,  , -compact 
(Thm. 3.3) and Theorem 2.7 to choose f, -, with such a small support that 
f\ ,( H ( a ,  , ) )F(a ,  - , )Kf,(a,  _ ,) is as small as we like. Proceeding to choose 
f, ,,. . .,f, successively, we can arrange that all Kf, J a , )  terms with i r 2 are as 
small as we wish (using the a priori bounds on N) .  Because of the requirement 
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a # a ,  in Theorem 2.7 (coming from our convention that P ( a , )  = l),we cannot 
assume that this term is small but it will be compact since "a,compact" is the 
same as compact. Thus, noting that K,-(a,)(H, + 1) is atcompact (Thm. 3.5), 
we have: 

PROPOSITION4.3. For any fixed f, , 
\ 

(4.8) f , ( H ( a , ) )  $ 2 CA.'(a,!f;(H(a,))P(a,). 
r=l  a ,  

Since B = i [H, A ]  is bounded from CK,, to CK-,,(4.8) implies that 

(4.9) f i ( ~ ( a 1 ) ) ~= 2 2 A . ' ~ ~ , ~ ~ ~ ~ ~ ~ , ~ ~ ~ ~ ~ , ~ ~ ~ h , ~ f ; ~ ~ ~ h 1 ~ ) ~ ~ h , ) * ~  
t ,  a , . b, 

Next note that Q ( a , )  - ( H ( a , )  + i )  - ' ~ ( a , )  is a,-compact and thus by 
Theorem 2.6, Q(a , )Q(b,)*  is a ,  U b,-compact. Suppose that a ,  # a ,  U b,. Then, 
by Theorem 2.8, we know that E,( H(a ,  ))Q(a ,)Q( b,) will have small norm so 
long as A is small enough. Moreover, since Q(a  ,)Q( b,)  is fixed and independent 
of the choice of f, ,,. . .,f,, we can initially choose f, with such a small support 
that E, f, = f,. Thus we are guaranteed that 

has any a priori desired degree of smallness for those a ,  b with a ,  # a ,  U b,. 
Similarly, we can handle pairs with b, # a ,  U b,. Since a = a U b and h 
a U b, imply a = b, we have proved 

and given any a priori requirement on snmllness, the only requirement on f, is 
that its support is sufficiently small. 

Now let W, -- i[Vy,A ]  and write 
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and note that 

(H, ,  + ~ ) ' c , ( H , ,+ i ) - '  

is ycompact. Thus 

is a sum of terms which are either a U h-compact or a U h U y compact for 
some y C a .  Therefore since ( x + i )"(x) is bounded only depending on supp f ; , 
we have, by mimicking the proof of Proposition 4.4: 

Each Put is finite rank, so we can write 

N U , )  

(4 .11 )  pcz8= I 

j =  1 

where the p's are projections onto eigenspaces for distinct eigenvalues (we will 
change this convention slightly in the next section), X'f!. Let p l ( a l )= pj'l @ 1. 
Notice that by (4.11) and Proposition 4.4, we clearly have 

Next suppose that we have picked suppf ;  so small that 

(4 .12)  + x # P i  + xA71 

for all x E supp f \ ,  all a ,  and all j # k .  This is possible since inf,, ,,k 1 - h"i 1 
" d d = d > 0 and we can choose the support off, contained in ( A,, - 2 .A, + 5 1. 

(4.12) assures us that 

(4 .13 )  f;(q+ T ( a l))f;oi"i+ T ( a l1) = 0 

which is relevant since 

(4.14)  f ; ( H ( a i  ) )p i (a i  ) = pi(', ).L(q1+ ' ( a , 1). 
Now write 

B = B ( a , )  + 2 Wy 
Y P a ,  
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with B ( a , )  = i [H(a , ) ,  A]. Since 

Q ( a l ) ( H ( a l )+ i ) l w y ( ~ ( n , )+ 

is y U a , ( >  a,)-compact, we can (as in the proof of Prop. 4.5) replace B by 
f 

B ( a , )  in the sum in Proposition 4.5. For j # k ,  we write: 

In the first step we used (4.14), in the last step (4.13) and in the middle step we 
wrote (Bur 8 I = i [ H a f8 I, A]), 

which commutes with f;(ql+ T(a, ) ) .  Finally, we note that the Virial theorem 
for Hut (see Section 6) implies that 

pBtB"tpytz 0 

so, by (4.16) we have that 

(4.17) pi(', )'(a, )pi(':) = 'pi(', )'(a, )pi(ai1. 
Putting all this together (i.e. Prop. 4.5, the replacement of B by B(a , )  in that 

proposition and then (4.15) and (4.17)), we have 

As the final step, we note that since T(a , )  2 0 

where 

By shrinking suppf\ f, suppf; enough, we can be sure that c 2 ia '  for any fixed 
a' < 2dist(X,, thresholds) (since A? is a threshold). As a result we have proved: 



N-BODYS C H R ~ ~ D I N G E R  545OPERATORS 

THEOREM4.8. If each pal ( i  2 2) is of finite rank, then (1.9) holds in the 
following sense: there is for any non-threshold A,, and any a < 2dist(A,, 
thresholds), an open interval A about A, for which (1.9) holds. 

5. Mourre-type estimates for N-body systems: General case 

In this section, we will prove the key estimate (1.9)without the hypothesis 
that each P" is finite. Let us begin by explaining why the simple device exploited 
by Mourre [24] to handle an infinite number of bound states in his analysis of the 
three body case will not work. Let us change notation slightly from the last 
section and pick orthogonal rank 1 projections p: ( i  = 1 , .  . . ,n ( a ) ;  n ( a )  may be 
infinite) so that 

with eigenvalues of H".  It is no longer true that the are distinct if a is fixed. 
Our shift from the last section is made since we want each operator 

with n < cc to be of finite rank and some eigenvalue of H a  might have infinite 
multiplicity (this could only happen if it is at a threshold of H " ;  we don't know if 
such bizarre behavior can actually occur!). 

We define 

as usual. For any f, C f, C . . . C f ,  and any n , , .. . ,n , ,  there is an expansion 
analogous to (4.4)with P ( a , )replaced by Pn ( a , )  in both (4.4)and (4.5).One can 
show (see below) that (4.8) still holds wiih P ( a , )  replaced by Pn, (a l )if one 
chooses the f ' s  and n's successively, i.e. n , ,  f , ,  then n ,  , ,f ,  -,, etc. The 
problem comes with controlling Pn ( a  ,), Pn ( b , )  terms. To explain the problem 
suppose that a ,  c b, so that i < i. sbppose = j + 1 .  In Section 4, we controlled 

t 


by shrinking the support of f;. This could be accomplished since P ( b i )was fixed, 
so we arranged for (5.1)to be small at the stage where was chosen independent 
of any later choice. The problem now is that Pn ( h i )  depends on the choice of ni. 
ni must be chosen to be certain that various < ( b i ) ~ t ;terms are small and so n, 
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depends on f;. Thus, we must pick f ;  after ni to arrange for (5.1) to be small but 
we must pick ni after f ;  for the PI< terms to be small. 

The only way we have found out of this conundrum is to give up on 
expanding f ,  alone as we do in Section 4, but instead expanding f12 and f,Bf,. 

We begin by noting that the final steps in Section 4 go over without change, 
that is: 

PROPOSITION = meaning, now, for suitable choice o f f ;  and 5.1. If (w i th  

n ,) 
h' 

(5 .2)  f l (H(a1 ) I 2  y 2 2 N ( a l  ) f ; ( H ( a l  ))Pn,(al  ) f ; ( H ( a t  ) ) N ( a ,  )*  
1=1 a, 

and 
N 

for suitable operators A7 (perhaps different fimn 4.5) and for f ' s  obeying: 

for all x and all A ,  p which are distinct eigenvalues among the numbers 
{ A? 1 k = 1, . . . ,n ,), then (1.9) holds in  the precise sense stated in  T h e m  4.8. 

Remark. (5.3) allows us to eliminate the terms in (5.2'), p i ( a i ) T ( a i ) p k ( a i )  
with AT1 # A2 and then to follow the proof of Theorem 4.8. 

To save having to report too many formulae, we introduce the symbol B# to 
denote either B or 1. We begin with an expansion based on repeated use of 
Theorem 3.3. 

PROPOSITION . . . c f,-:5.2. For any n,, . . . ,n ,  and f1 c 

where: 

(5.5) 
M 

= X X N(a,)f,(H(a,))Pn,(al)B#Pn,(b,)fi(lJ(b~))~(bl)*~
1=1 a , ,  b ,  

h'- 1 

= 2 2 N ( a l ) f i ( ~ ( a l ) ) q  ( a l ) ' h + , ( a l ) ~ # ~ ( b l ) f i ( H ( b l ) ) N ( b l ) * ~
1=1 a , ,  b ,  
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.v 

a.3 2 + ~ B # P , , ~ ( ~ , ) ]2 T ( ~ I ) ~ , ( H ( ~ I ) ) [ P , , ~ ( ~ I ) B # P ~ ~ ( ~ ~ )  
1=1 a , ,  b ,  

with- K f ( a )  given by (3.5) and with X (a , )- given by (4.5) except that 
P(a , ) ,..., P(a , - , )  are replaced by E , (a , ) , . .  ., P,,, , (a , - , ) .  

Proof: Basically, we have, after some expansion, a term like (5.5) but 
without the Pn,(a,)and P,,,(h,);we insert P,,La,) + <,(aI )and a similar h ,  sum. 
The P - P terms are put into a,, the P - P and P - P terms into a, ,  and we 
expand the P - P term using (3.4).The terms with K's  are put into a ,  and the 
leftover term is of the form we started with. Having explained the strategy, let us 
give a formal proof. 

Define a:, i = 1,2,3, by the formula for a ,  except that C,\=, (or 2>:,') are 
replaced by Cf., ,(or 2):;). Let 

a: = ) B P P n l . ( b L ) f L ( ~ ( b L ) ) x ( b LB N a L  ) ~ L ( H ( ~ L ) ) P , , ( ~ L  1. 

a,b1, 


We claim that 

for each L. (5.4)is just (5.6)for L = S, since <\(a \ )  = 0 (of necessity we take 
n ,  = 1; recall that 'Xa\= C) which implies that a: = 0. (5.6)is proved induc- 
tively. Since the sum in cyLL'" is empty, aiL=" = 0. Since we will still take 
p ( a , )  = 0, a'L.=" = ".=" = 0., and trivially aiL=" = LHS of (5.6).Thus sup- 1 a3 
pose that (5.6)holds for a given L and let us prove it for L + 1. 

Writing 

and expanding fL+,(H(aL))via (3.4),we see that 

a: = (a;: l - aka)+ a; 

where 

a: = C 2 N ( ~ L + ~ ) ~ L + ~ ( ~ ( ~ L + ~ ) ) ~ # ~ ~ ( ~ L ) ~ L ( ~ ( ~ L ) ) ~ ( ~ L ) *  
aL.>bl. ~ I . + I ?bl. 

Now write 

P , ( b L ) f L ( H ( b L ) )= f L + i ( H ( b L ) ) P , , J b L ) f L ( H ( b L ) )  
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and expand f , , , , (H(h,))  via (3.4)to obtain 

a;  = (a;;  - a;,, ) + a; 

where 

By induction, we have that 

( 5 . 7 )  LHS of ( 5 . 6 )= a: + a;" + a;  + a ; .  

Now, in a; ,  replace B* by 

and note that the P - P term is af" - a; ,  that the P - P plus P -P term is 
a i +l - a: and that the P -P term is a t A 1so 

(5.7)and (5.8)yield (5.6)for L + 1. 

If we expanded the ?terms in a ,  in the way we did in Section 4, we would 
obtain the P, , , (a , )P, , jhk)terms with k # 1 that we indicated give one trouble. 
Thus, the key to our proof is a more careful expansion of a,.  We will write down 
the expansion and informally indicate its proof; a fonnal inductive argument of 
the type just given is left to the reader. 

PROPOSITION5.3. Given functions +(/' C C . . . C +(:' with f i  +(/' 

and integers m , ( l ) ,. . . ,m,(N - 1 )  with m , ( l )  2 n,  we haue: 

where 



u;here 

chere for k L 2, A is defined as is A except for the added condition in the sum 
blLk C For k 1, 

Finally 

with K given by (3.5). 

Proof First replace pn,(bl)by Fnl(,,(b,)noting that the difference is exactly 
the ,8,-term. Now write 

and expand @\?,(H(b,)) by (3.4). The K-term is the first term in ,8, and we have 
in addition 

2 (s:2l(H(bl))A(bl+l74). 
blL,  c 

Those terms associated to b,+,'s with b,+, c a ,  we place in ,8,; the others we 
multiply by ~ l l , i + l , ( ~ ( b , + , ) )+ Pml,l+l,(H(b,)).The P-terms are put into the 
sum p2and the P terms are expanded to give the k = 1contribution to ,8, and a 
remaining sum indexed by bl+,. These terms are treated as above. Since 
eventually some b l+k  C a ,  (for b C a l ) ,  the procedure terminates. 
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We have gained two things by the last two expansions: 
(a) We have decoupled the functions, +:'I, entering in the P - P expansion 

from the functions 6entering in the P - P expansion. Thus, for example, the 
need to pick fi, ,,then n,  and then fi, , again (!) will be met by picking fi, ,, 
then n l  and then +\I!,. 

(b) By expanding both parts of f,BSfl we can have conditions like h,,, @ a ,  
which will play a major role. 

We can now state the major new technical result of this paper: 

THEOREM5.4. For N-body systems obeying Hypothesis M, (1.9) holds in the 
sense that given any non-threshold point A,, and any a < 2dist(X,, thresholds), 
(1.9) holds for A a small neighborhood about A,. 

Proof: By Proposition 5.1, we need only verify (5.2), (5.2'). We begin with 
the expansion (5.4) and successively pick n ,  = 1,f,, n ,-,,. . . . Suppose that 
1 2 2 and we have picked all n's and f ' s  up to A,,. We describe how to pick n,  
and f, so that various terms are at some desired level of smallness. (For 1 = 1, 
P - 0, so only the a,  terms are present and these are compact.) By Theorems 2.9 
and 3.5, 

as n ,  - cc,so we call pick n,  so that the a2terms at level 1 with replaced by 

, ,  - have a desired smallness. As usual, using Theorem 2.7, we can, by 
choosing f , to have sufficiently small support, be sure the rest of the a,-terms at 
level 1are small. When we finally pick f , we will be sure to have at least this small 
support. Since n, is already chosen, we can be certain that f , is chosen so that 
(5.3) holds for i = 1. 

In a moment, we will show how to pick f , so the a, terms are small. Having 
done this, we control the off-diagonal terms in a, ( a ,  # b,) by noting that since 
a ,  and b, have the same number of clusters a ,  # a ,  U b, if a ,  # b,. Thus, as in 
the proof of Section 4, the offdiagonal terms in (5.5) can be made small by 
shrinking fi further. Moreover, we can write 

with 

By (5.3) and the Virial theorem, the y2-term is zero as in Section 4. By shrinking 



support of f ,  we can be sure that f , (H(a l ) )P , , l (a l )y lP , , (a , ) f , (H(a l ) )is small by 
exploiting y U a -compactness. 

Thus, to prove (5.2), (5.2') we need only show that the 1th-level terms in a, 

can be made small by shrinking the support of f,. To do this, we expand these 
terms using Proposition 5.3. 

By the arguments above, we can arrange, while making successive choices 
m , ( ~ ) ,+!{!, m , ( ~- l) ,  +({.L,,...,+it),to have the p,-terms be s m d .  If b,+, c a l ,  
then 

is a ,-compact. Since b,+, # a ,  (k 2 I!), we can, by choosing +yik,arrange for 
the smallness of the p,-terms (recall that n,  is picked before the +'s) by Theorem 
2.8. 

If b,,, $! a , ,  then 

is a ,  U bl+ ,>t a ,-compact,so the p2-termscan be arranged small at the time f i  is 
chosen. Thus, by choice of the +,'s and m,'s and a preliminary choice on the size 
of suppf,, we can arrange for all the P,, P,, P, terms to be small. The offdiagonal 
p1 terms, i.e. with a ,  # b,, are controlled as we controlled the offdiagonal a ,  
terms (recall that m,(l)  is picked before f ,) .  

Thus, we must show that by shrinking the support off,, we can arrange for 
the 

terms to be small. When B# = 1, this product is zero since m,(l)  2 n,. Since 
T(a,)  commutes with Pnl(al),this contribution in 

is similarly zero. The W, terns are treated by the same y U a,-compactness 
arguments used before. Finally, if we pick suppf, so that (5.3) holds for i = 1 and 
for A ,  p distinct elements of {A",1 k = 1,.. .,m,(l)),  then the Bal 8 I are zero; for 
distinct eigenvalues, we use f,(T(a,) + p)f,(T(a,) + A) = 0 and we use the 
Virial theorem for identical eigenvalues. 

6. The Virial theorem 

As we already noted (Prop. 1.4), if H is a Schrdinger operator with 
potentials, V, ,obeying hypothesis M and if A is given by (1.lo'), then B E i [H ,  A] 
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is bounded from X,, to X- ,. Our main goal in this section is the proof of: 

THEOREM6.1 (Virial theorem). Assume V is A-hounded and the distribu- 
tional derivative X . v V is bounded from X + , to X -,and let H@= E@; 
@ E X+,. Then (@,B@)= 0. 

Since formally, 

(+, B@)= i (@,[H  - E,  A]+) = i [ ( (H - E ) + ,  A@) - ( A @ , ( H- E ) + ) ] = 0 

(the only problem is + may not be in D(A)), this result is formally obvious and 
was used extensively in the physics literature for many years without any attempt 
at rigorous proof. The first rigorous proof was given by Weidmann [41] for 
potentials V where one could justify taking derivatives of e '*"VeiaA. Another 
approach of controlling boundary terms in an integration by parts was exploited 
by Kalf [16]. Here we will use the new approach of Mourre [24] of approximating 
@'s by vectors in D(A) n 'X+,. Our only claim to originality is in the fact that 
considerable simplication is possible if special properties of A, H, are exploited. 

We begin with a technical point: namely, most commutator calculations are 
done on 5 and B should be viewed as being defined by density from an a priori 
definition on S,but we want to know that for any @, rC/ E D( A) f l  X,,: 

We define for X real and non-zero: 

LEMMA6.2. For X # 2, RA maps X+, to %+,  and as maps X+, to 
+27 

Pro05 As maps from S to S: 

(6 -4 i[H,, A] = 2H,,, 

so 

H,(A + i h )  = [ A  + ( A  - 2)i]H,. 

Thus, if X # 0,2: 



Since 

we have that 

This implies the boundedness of R on %+, and, by the duality, on '3C -,. From 

(6.4), (6.5) and simple commutation relations with (M, + I)-', we see that 
ll(1 - R,)+ ( I  = 2  -) 0 for + E S C {rC/ I A$ E X ,,) from which (6.3)follows. 

Proof of Theorern 6.1. We define the mollified dilation generator 

We will show that 

(6.8) i [ H ,A,] -+ B as A -) ~ 1 3  

as maps from X +,to 'X -,. Indeed, compute 

Therefore 

This implies (6.8) in virtue of Lemma 6.2 and the condition on the potential (the 
latter implies that B is bounded from X + ,to 'X ,). Since (+, [ H ,  A,] +) = 0 for 
each eigenfunction + of H ,  (+, B+) = 0 follows. 

The above proof used the special commutation relation i [ H,, A] = 2HO.  
Theorem 1.2 requires a Virial theorem under the hypothesis of that theorem. 
Such a Virial theorem can be proved by mimicking Mourre's paper: the hypothe-
sis on [H, ,  A] yields a bound similar to (6.3), i.e, that R, is 'X+,-+ :K+, 
bounded uniformly as h -+ a.This is proved in Mourre's paper [24]. Since the 
'X,, associated to H is the same as that associated to H,, we have the same 
bound for H even though we have less regularity than Mourre. Now the proof is 
identical. 
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We have already used the Virial theorem for subsystems in the proof of 
(1.9). In addition, we have, following Mourre [24]: 

Proof of (i) and (ii) of Theorem 1.2, By (1.9) and the Virial theorem, if 
H+ = E+ with E E A ,  we have that 

Since K is compact, the set of +'s obeying (6.10) is a compact set. Such a set 
cannot include an infinite orthonormal set so (i) and (ii) follow. 

7. The absence of singular continuous spectrum 

In this section, we will prove conclusion (iii) of Theorem 1.2 (and thereby 
complete the proof of Thm. 1.5). We emphasize that not only is the strategy of 
this proof taken from Mourre's paper [24], so is much of the tactics. We provide 
the details in part for the reader's convenience and, in part, because of some 
small changes necessitated by our weaker hypotheses. 

Since we have already proved (ii), A has only a discrete set, D, of 
eigenvalues. We will prove for h E A \ D that 

(7.1) O < P <sup 1 I I ( [ A [  + 1 ) - ' ( ~- h - i p ) - ' ( [ A [+ l ) - l l l<  m 

with a bound uniform as h runs through compacts of A \ D. Given the conditions 
we have for (1.9) to hold, we will have proved: 

THEOREM7.1. For Schrodinger operators with hypothesis M ,  (7.1) holds for 
any h which is neither a threshold nor an eigenvalue and it holds uniformly on 
compact subsets of the allowed set of A. 

Suppose that (1.9) holds for some set A. Then for any A' C A: 

since (1.9) can be multiplied by EAJon each side. Now let A ,  E A not be an 
eigenvalue. Then as [A ' [  - 0 with A' centered about A,, we have E,, -,0 
strongly. As a result I I  EArKEAJI I  - 0, so by picking A' small, I I  E,,K,, I I  S a /2  so 
that aEAJ+ EArKEAr2 baEA,.Now change the meaning of a by a factor of 2 
and multiply by a function f ( H )  supported in A'. We conclude that: 

LEMMA7.2. For any h E A \ D, we can find f E C,", f identically 1 near h 
so that 



Henceforth, we fix f and suppose that 0 5 f r 1and f = 1on [ A  - S O , X + 
a,] = f .  Wewi l l l e t I=  

We define D = ( / A (+ I)-', M2 = f ( H ) B f ( H )  (this is non-negative by 

(7.3>>, 

( 7 . 4 )  G , ( z ) = ( H  - ieM2 - z ) - 1 

(we will prove this exists below when E > 0, Im z > 0) and 

( 7 . 5 )  F , ( z ) = D G , ( z ) D .  

Following Mourre [24],we will prove (7.1)by showing that for suitable E , ,  

sup I I F E ( z ) I I ~ ~ ,  
Re z t l , O<Im z<1 

O < F < F , ,  

and this will be accomplished by proving the differential inequality 

and then integrating. 
Even though there is still (to us at least) a somewhat magical aspect to 

Mourre's proof, we feel a word of explanation may make the consideration of 
G , ( z ) and dG,/de a little less mysterious. Let us recall one mechanism for 
exploiting positive commutators of bounded operators: Let us imagine, for a 
moment, that i [ H ,  A ]  > a with A bounded and a > 0 (this is not possible but 
this argument is only heuristic). Then 

= a ,  + a , ,  
where 

a ,  = ~ ( A @ , ( H- X 2 i e ) )  - i ( ( ~- X 2 i e ) - '@,A @ ) ,  

a ,  = 7 2 E ( @ , ( H- X T i e ) - ' ~ ( H- X 7 i ~ ) - ' @ ) .  

The a ,  term can be bounded by the square root of the quantity to be bounded 
while the a ,  term can be bounded by the quantity to be bounded times 
2 1 E I 1 1 A 1 1 . (This incidentally shows that i [ H ,  A ]  r a cannot hold for A bounded 
and a > 0 since H would then have empty spectrum.) The point is that A need 
not be bounded to control a , ,  only ( 1  A@( 1  < cx, is needed for that. The bad term 
is a ,  and this comes from the fact that it is ( H  - X 7i e ) - ' i [H,  A ] ( H  - X -t 

ie)- '  that occurs, not ( H  - X ii t ) - l i [ H ,  A ] ( H  - X i i e ) - ' .  But it is a term 
just like this that occurs in dG,/de!  With this motivation, we begin the formal 
proof. The next lemma uses mainly ideas of Mourre [24].  

mailto:i~)-'@)
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LEMMA7.3. (a) For e 2 0 and Im z > 0, ( H  - ieM2 - z )  is invertible and 
G, (z )  is C1  in E on (0,  XI) and continuous on [0,oo). 

(b) The following estimate holds for suitable e ,  > 0: 

(7.8) 1 1  f ( ~ ) G , ( z ) @5 C E ~ ' / ~ ~ ( @ ,  ' I 21 1  G F ( z ) @ ) l  

uniformly for all z with Re z E I and all E with 0 < E < E,. 
(c) For z ,  e with the properties listed in (b) 

(d) (7.9) remains true if the X + X operator norm is replaced by the norm 
as operators from X to 'X +,. 

Proof: (a) Let z = p + i s .  Then 

ll(H - ieM2 - z)@1I2= l l ( -~ ieM2 - p ) + 1 1 2 + 6211@112+ 26el1M@1l2 

This proves that H - ieM2- z is invertible from its automatically closed range 
to D ( H )  so long as 6 > - 2 4  M 1 1  ,. Since ( H  - ieM2 - z)* = H + ieM2- z* 
obeys an identical estimate, Ker(H - ieM2- z )  = (01, so the range is all of H. 
Since M2 is bounded, H - ieM2- z is an analytic family of type (A) and thus 
G F ( z )is, for z fixed, analytic in a neighborhood of ( - +allM 1 1  , ,oo) from which 
the required smoothness holds. For later purposes, we note that this analyticity 
implies that 

(b) It is in this step only that the basic estimate (7.3)enters. By (7.3) 

which is (7.8).The last step uses 

G,( z )* (2eM2)GE(z )  + 21m z ) G P ( z )  G , ( z ) ]5 GP(z)*(2eM2 = i [G, (z )*-

and I(+,(T*- T)+)I 5 21(+, T+)I. 
(c) We begin by writing 

(1  - f ( H ) ) G , ( z )= (1  - f ( ~ ) ) ~ o ( z ) [ l+ i e M 2 ~ , ( z ) ] .  

Since (1  - f (H))G,(z )  is bounded for Rex  E 1 (by 2/6, with 6, given in the 
definition of I), we conclude that 

(7.11) Il(1 - f (H))G,(z ) I l5 Co(l + e ~ ~ G , ( z ) ~ ~ )  



since M is bounded. In particular, the first estimate in (7.9) implies the second. 
To prove the first estimate, we write 

I I G ~ ( Z ) ~ I+ 1 s  I I ~ ( H ) G ~ ( Z ) I I+ i1(1- ~ ( H ) ) G ~ ( z ) I I+ 1 

(by (7.8)and (7.11)) 

so long as C0e 5 & and C, + i 5 C E - ' / ~ .Thus if E < E, -min(&Co,C2(C,
+ & ) - 2 ) ,  we have that 

I I  G,(z)ll r 1 6 C 2 e 1  
as required. 

(d) Returning to the proof of (7.11) and noting that ii(H + i ) ( l  -
f( H))GO(z)i i  is bounded, we see that 

ii(H + i )[l- ~ ( H ) ] G , ( zIll 5 CO(l+ ~IlG,(z)ll), 

which given (7.9) for X - 'X norms implies the second estimate in (7.9) for 
X - X,, norms. Since, f E CT, 

II(H + i)f(H)G,(z)ll 5 CllG,(z)lI, 

so the first estimate holds for X -,X,, norms. 

The next pair of lemmas are the main estimates in this section which go 
beyond Mourre's paper and are the key to our being able to use weakened 
regularity hypotheses on [A ,  HI. 

LEMMA7.4. Let f E C,". Then [ A ,f(H)] is bounded as a m a p  fim X-, to 

X+I. 
Proof. In the calculations below, we ignore domain questions resulting from 

the fact that A is unbounded. To handle this, one can replace A by AR* as in 
Section 6, use i[H, AR,] = R,BR, and obtain bounds on [AR,, f(H)] as maps 
from X-, to X,, uniform as h -+ m. 

Write, as forms on D(A) f' D(H): 

and conclude by the hypothesis on B ((c") in Thm. 1.2) that 

J J  [ A ,  e t f H ]11,. -,5 ct 

where I I  I 1  i , ,  is the norm as a map from X i  to X,. Since 
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we conclude that for any g E C,;", 

Next, note that 
\ 

[ A , ( H  + i ) - ' ]  = i ( H  + ~ ) ' B ( H+ i ) '  

so that 

Now, any f ( H )  with f E C,;" can be written as 

f ( H )  = ( H  + i ) - ' g ( ~ ) ( H+ i ) - '  

for g E C,OC and 

[ A ,f ( H ) ]  = [ A ,  ( H  + i ) - ' ] ~ ( H ) ( H+ i )-I  + ( H  + i ) - '  

x [ A ,~ ( H ) ] ( H+ i)-I + ( H  + i ) - l g ( H ) [ ~ , ( H+ i)-'1. 

By (7.12b), the first and third terms take '9-,to X+, .  By (7.12a), the middle 
term takes X to X +,and then by iteration, we obtain the X -,to 'X +,result. 

LEMMA7.5. [ A ,M 2 ]  is bounded (asan operator on X ) .  

Proof: 

[ A ,M 2 ]  = [ A , . ~ ( H ) ] B ~ ( H )+ f ( H ) [ A , B l f ( H )+ I ( H ) B [ A , ~ ( H ) ] .  

By hypothesis (d') of Theorem 1.2, the middle term is bounded. In the first term, 
f ( ~ )takes 'X to X+,, B takes X + ,  to X - ,  and by Lemma 7.4, [ A ,f ( H ) 1  takes 
X - ,  to X .  

Remark. [ A ,M 2 ]  can be shown to map X - ,  to X,,. 

Proof: Taking + = D# in (7.8), we find that (f f( H ) )  

1 1  ~ G ~ DI I  I C E - " ~  I 1  FEI 1  ' I 2 .  

Since 
ll(1-f)G,DII IcIl(1 -f)G,II 

is bounded by (7.9), the result is proved. 

LEMMA7.7. The diflerential inequality (7.7) holds. 

Proof. By (7.10) 



" ~ ) 

where ( f  E f ( H ) ) ,  

Q1 = -DG,(l - f )B(1 - f )G,D, 

Q~ = -DG,(I - ~ ) B ~ G , D- D G , ~ B ( I-~ ) G , D ,  

Q3 = DG,BG,D. 

Since B is bounded from X + 2  to X p 2 ,  and (1  - f ) G ,  is bounded from X to 
X,,, l l Q l l l  < oo and 

lIQ,lI 5 cll(H + i ) fG,DI  5 c'lIG,Dl 5 c"(1 + ~ ~ ~ ~ ~ 1 1 ~ ~ 1 1 ~

by Lemma 7.6. 
To control Q,, we write 

Q3 = Q4 + Q 5 ,  

Q, = DG,[H - i e ~ ~- z ,  A]G,D, 

Q5 = ~ E D G , [ M ~ ,A]G,D. 

Expanding the commutator in Q,, we get two similar terms, one of which has a 
norm 

by Lemma 7.6. Finally, by Lemma 7.5: 

Putting all these estimates together, we get (7.7). 

Conclusion of the proof of Themern 7.2. As indicated, all we need to prove 
is (7.6).By (7.9),we begin with the bound 

Putting this in the differential inequality, we find 

so that integrating towards E = 0 from E = E ,  ( I 1 F,o(z)II is bounded by (7.9)),we 
obtain 

I 1 Fe(t)ll5 Cln E .  

Putting this into (7.7)and again integrating, we find (7.6). 

E. Mourre [25]kindly showed us the following method of improving (7.1)to 
obtain: 
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THEOREM [25]). Under the hypotheses of Theorern 1.2, 7.8 (MOURRE 

(7.14) sup I l ( A  + 1)-"(H - X - i P ) ' ( l A l  + 1)-"I < x 
O<p<1 

for any fixed a > i. (7.14) holds uniformly as X runs through compacts of A \ D. 

Proof: We include here Mourre's proof with his kind permission. Let 
DF = (IAl + l)-"(eIAI + l)"-l and replace F, by 

= DFGFD?. 

We claim that 

To prove this, we first note that the proof of Lemma 7.6 used no properties of L) 
so that 

I I G , D , I  5 c(1 + E ~ ' ~ I I F , I I ~ / ~ ) , 

Since 

dDF = (1 - a)lll A ( 1+ 1 A 1)-"(1 + e 1 5 l'(l -A I ) - ~ + " / /  a ) ,! I  --zl l  
we conclude that 

is bounded by the right side of (7.15). 
We can estimate D,dG,/de D, as in Lemma 7.7. The only place that the 

form of D entered was in (7.13) which gets replaced by 

I I  D,AG,DI 5 1 1  D,A 1 1  IG,D,II 5 ce- " ~ " ' ( 1  + E - " ~ I ~ I ) .  

We have thus proved (7.15). 
Given (7.15), suppose that we know that 

I I  F,II ICePY 

with y 5 1. By (7.15), 

which upon integration yields 
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Since a > i, this is an improvement and so after a finite number of steps 
beginning with I I I I 5 C E ~ ~(by (7.9))we find I 1 PEI I is bounded, so (7.14) 
follows by taking E = 0. 

8. Weighted L2estimates 

Let L 2 ( ~ " )be the weighted L2-space: 

For two body Schrodinger operators within a general class of potentials, Agmon 
[ l ]and Kuroda [19]showed that for any a > $ 

(8.1) sup II(H - X - i p ) ' l l , ,  , < cc 
O<p<l 

where ll.ll a , p  is the norm as an operator from L; to L;. X must avoid the 
threshold zero and any eigenvalues, a > i is optimal in the sense that (8.1) fails 
for H = - A  if a Ii (but (8.1)can be "logarithmically" improved using Besov 
spaces [2]).In this section we want to show how to obtain (8.1) for general 
N-body Schrodinger operators. We will also prove sufficient Holder continuity to 
ensure that boundary values exist. In Mourre's original paper [24],he remarked 
without proof that for the three body operator where he obtained (7.1),( I A 1 + 
I ) - '  could be replaced by (1x1 + I ) - ' .  We found an interpolation argument 
allowing improvement to a > $ and then learned of Mourre's unpublished 
improvement leading to (7.14)which allows a > $. We will prove: 

THEOREM8.1. Let H be an N-body Schrodinger werator with potentials 
obeying hypothesis M. Let '.53 he the (closed) set of thresholds and eigenvalues 
and fix < a 5 1. Then: 

(a) sup II(H - X - ip)-'ll,, -,< cc 
O<p<1 

for all X 4 '33, uniformly in compact subsets of R \ 93. 
(b) For such A ,  A', 

I - X - i ) - ( H  - A' - ipf)-ill,, Ic , [ I  X - A' I + I p - p' I ] 0 

for any 8 ,  8 < $ ( a  - $); for all 0 5 p ,  p' 5 1, with Ce uniform as A ,  A' run 
through a fixed compact subset of R \ 9. 

(c) As maps from L: to L2,,  the norm limit 

exists if X e B and with this definition, ( H  - z )-' is Holder continuous (as 
m a p s o f ~ ~ t o L 2 - , ) o n{ z I I m z > O o r z ~ R \ % ) .  
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Renuzrk. The value of 8 in (b) is presumably not optimal, 

As a preliminary, we note that: 

LEMMA8.2. For 0 I a I1: 

( [ A 1+ I ) ~ ( H+ i ) - ' ( x 2  + 1)-"12 = J~ 

is hounded. 

Proof We need only prove the case a = 1 and then use complex interpola- 
tion. Thus, we need only bound 

where 

S ,  = [ p ( ~  .[ x ( x 2+ l ) - ' / " ] ,+ i ) - " ]  

which is bounded, since D( H )  = D( H,) and 

S ,  = p [ x , ( H  + i ) - ' ] ( x 2 + 1 )- 1 / 2  
, 

which is bounded since 

p [ x , ( H  + i ) ' ]  = -2ip(H + i ) - ' p ( H  + i ) - '  

is bounded for the same reason. 

Proof of Theorenz 8.1. (a) Writing 

( x 2 + 1) -a /2 (H+ i ) - ' ( H  - z ) - ' ( H  + i ) - l ( x 2  + 1 ) a / 2  

= J,*(lAl + 1 ) * ( H- z ) - ' ( [ A 1 + 1)-"Ja 

and using Theorem 7.8 and Lemma 8.2, we see that 

( H  + i ) - ' ( ~- z ) - ' ( H  + i ) - '  

is bounded from L: to L?, uniformly in z in the required sets. Since 

( H  - z ) '  z ( H  + i ) - '  + ( z + i ) ( H + i ) - "  

+ ( z + i ) " ~+ i ) - ' ( ~- z ) - ' ( H  + i ) - I  

we have the required result. 
(b) By interpolation and part (a), we need only consider the case a = 1. 

Using the operator F,(z) of Section 7 , and the device used in part (a), we need 
only prove 



for I z - z'l small. Since F,(z) is bounded, (7.7) implies that 

(8.3) I 1  F ,(z)  - FO(=.)IlI Cell2 

uniformly in z in the required regions. 
Now, for E < E ~ :  

= I I G , D I I ~cc c(1+ E - ' 1 1  F ~ I I )5 CE-I  

by Lemma 7.6. Thus 

(8.4 I 1  FF(z )- FF(zt)Il5 CE ' ( 2  - z'( .  

With E = ( z - z' 1 2 / ' ,  (8.3) and (8.4) yield (8.2). 
(c) follows from (b). 

Appendix: Expanding in subsystems: The combinatorial methods 

In this appendix, we want to describe an expansion of the form (3.1) with 
the c's combinatorial coefficients. Related ideas have appeared in a paper of 
Polyzou [26]. 

Definition. fT(H(a))  (truncated f )  is defined inductively in N - &(a)  
(#(a) = number of clusters in a ) by: 

Thus fT(H(a .)) = f (H(aiV))  (H(a ,  ) = Ho)  and (A.1) determines fT(H(a))  
given fT(H(b)) for all b c a .  Clearly, by induction: 

t 


Remark. The exact formula for d is irrelevant, but it can be obtained 
combinatorially. In fact, if 

k
a = { A , ) i = ,and if bi = { B E bl B c A i l ,  

then 
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if i t ( b , )  = 1 
d ( b , ,A , )  = 

( - ) * " ' l ' [ ~ ( b , )- 11 if i t (h l )  t 2. 

Also clearly: 

where 
c ( b , a )  = 2 d ( b ,  b'). 

The final aspect of the basic expansion requirements is contained in 

THEOREMA.3. fT(H(a )) is a-compact. 

Proof: By the same argument used in the proof of Lemma 3.2, it suffices to 
consider the case where f (x)  = (x - z )  ' with Re z large in absolute value and 
negative. By choosing Re z large in absolute value and negative, one can be sure 
that the standard diagrammatic expansion ([31])for ( H ( a )  - z ) '  converges for 
all a .  Define the cluster, a ( D ) ,  of a diagram, D, to be the partition obtained by 
looking at the connected components of D. If the "value" of a diagram D is the 
operator O(D),  then clearly: 

( H a ) )  - ) = 2 O ( D ) ,  
a ( D )ccz 

so, by induction and definition off,: 

That each O ( D )  is a (D)-compact is the standard diagrammatic argument ([31]). 

Remark. As in Section 3, one can show that f,(H(a))(H + 1) is acompact. 
This completes the proof of existence of an expansion of the form (3.1) with 

the c's numbers. We want to demonstrate its uniqueness. As a preliminary, we 
pick for any b C a ,  a one parameter family Ul( t )  of unitary translation operators

7
with the following properties: Ul translates differences of centers of mass of 
clusters of h (so it is bfibered) and only translates those intercluster c.m.'s for 
distinct clusters in b which are subclusters of the same cluster of a ,  so Ul acts as 



01:@ 1under the decomposition X u  8 X,. Finally, all such distinct clusters are 
translated so that 

s - lim V,(H,, + l ) - l U l ( t )  = 0 
I - x  

for all y with y c a ,  y @ b. 

LEMMAA.4. Let b C a and let c C a .  Then 
f 

s - lim ~ l ( t ) - l f , , ( ~ ( c ) ) ~ { ( t )  
I - x  

exists and equals fT( H(c))  if c C b and equals 0 if c @ b. 

Proof: If c C 6 ,  Ul ( t )  commutes with fT(H(c)) since Ul is b-fibered. If 
c C b, then by looking at diagrams and using (A.2), we obtain the required 
s - lim result if f (x )  = (x - z ) - '  with Re z large in absolute value and negative. 
Using the standard argument of [39] (see Lemma 3.2) any f can be accommo-
dated. 

THEOREMA.5. Let K be a linear corr~binationof fT(H(b))'s with b C a .  
f 

Suppose that K is a-compact; then K = 0. 

Proof Write K P , i  f r ( H ( b ) )  Since s - lim i ! ' ( t ) lKy! ( t )  = 0 for any 
c a on account of the a-compactness, we have by Lemma A.4, that 

for any c C a .  By induction, f;.'( H(c))  0. 
f 

This theorem implies that any expansion of the form (3.1) with K compact 
and real number c 's must have K f ( a )  = fT(H(a)) ;  (see also Polyzou [26],Thm. 1). 
Added Notes 

1.As far as the Virial theorem alone is concerned, an approach very close to 
Mourre's and our kinds of extensions was discovered independently by H. 
Leinfelder in "On the Virial Theorem in Quantum Mechanics," to appear in 
Int. Eqn, and Op.  Th. 

2. E. Mourre and P. Peny have noted that H - ieM2 is not as mysterious as 
we indicated in Section 7. If we ignore the regularizing factor, we have 
H + e[H, A] which is up to terms of order e2 formally e- '*Pi,  the complex 
dilated Hamiltonian. This links this method of Mourre to his earlier paper 
Commun. Math Phys. 68 (1979), 91-94. 
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3. The roof we gave of Theorem 6.1 in the preprint of this paper was more 
involved than the one given here. Independently of us, T. Kato found the simple 
proof we give here. 
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