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V. Lower Bounds and Path Integrals*

R. Carmona1 and B. Simon2
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Abstract. By using Agmon's geodesic ideas to single out particular regions in
path space, we obtain optimal lower bounds on the leading behavior for the fall
off of the ground state of multiparticle system.

1. Introduction

This paper is a contribution to the large literature on the decay at infinity of
eigenvectors of Schrodinger operators, —\Δ + V, associated to discrete spectrum
[1, 3-5, 9, 12, 15, 17, 22-24, 27, 28, 32, 34, 37, 39, 46-48, 51]. For tho'leading
behavior of the ground state, φ, our results are definitive in the sense that we will
show that:

= l (1.1)

for an explicit function ρ and for a large class of potentials, V, including general
iV-body systems. The upper bounds implicit in (1.1) are not new: for multiparticle
systems, they were found in successively more general cases by Mercuriev [37]
(three-body), Deift et al. [17], and Hoffman-Ostenhoff et al. [4] (atoms with
infinitely heavy nucleus) and Agmon [1] in the general case; for potentials going
to infinity at infinity they were found by Lithner [34] and rediscovered by Agmon
[1]. The Lithner-Agmon upper bounds are only proven to hold in some average
sense, but it is easy to get pointwise bounds with minor extra restrictions on V (see
Appendix 2). Our primary goal here will be to find lower bound complementary to
these various upper bounds which show that the upper bounds are "best possible".

A major source of motivation for the approach we use is the part of Agmon's
work [1] which identifies the function ρ in (1.1). Let us initially describe the
situation for the case F-> GO, F ^ 1 and continuous, a case treated by Lithner, with
a related intuition.
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Agmon finds a sufficient condition for:

\φ(x)\Scεe~{1-£)ρ{x) (1.2)

for all ε > 0 is that:

±\(Vρ)(x)\2SV(x). (1.3)

Related conditions were found using the Combes-Thomas method [15], in
[48, 17], and using one of Agmon's ideas and the Combes-Thomas method we
show that (1.3) implies (1.2) in Appendix 1. The main point for us is Agmon's
analysis of (1.3). Let γ(s) be a path from 0 to x. Then:

ρ(x)-ρ(O)=]~ρ(y(s))ds
o as

= ]ίVQjγ(s))-γ(s)ds
0

50

£ J γ2V(γ(s))\γ(s)\ds
0

if (1.3). Thus, if (1.3) holds, and ρ is normalized by ρ(0) = 0, then:

ρ(x)^infί| γ2V(γ(s))\γ(s)\ds; so^0, y(0) = 0, γ(so) = x\. (1.4)

All the trial paths we use are implicitly assumed to have an almost everywhere
derivative in L1-sense. The right hand side of (1.4) is recognized as the geodesic
distance d(x,0) from x to 0 in the Riemannian metric with infinitesimal length
γ2V(x)dx2 with dx2 the usual Euclidean metric. Moreover, φc,0) obeys (1.3) [at
least formally; φc,0) may not be C 1 see Appendix 1] since:

\d(x + δx,0)-d(x,0)| ^d(x + δx9 x)~ \/2V{x)δx + O(δx2).

Thus the choice ρ(x) = d(x, 0) in (1.3) is optimal and henceforth we make this
choice. We will call ρ(x) the Agmon metric [occasionally we use this term also for
the underlying Riemannian structure γ2V(x)dx2, using a standard abuse of
notation].

The occurrence of a geodesic distance in (1.4) is screaming out for some kind of
path integral interpretation, suggesting that the approach of [12] can be extended
to get best possible bounds. This is especially attractive for lower bounds since
typically, it is much easier to get lower bounds in path integrals because one needs
only to identify the relevant piece of path space and control its contribution to the
path integral moreover, Jensen's inequality often provides lower bounds on the
portion of path space.

There is one immediate problem with this idea: path length is independent of
parametrization so that minimizing paths in the variational principle (1.4) do not
come with a unique parametrization, but contributions to path integrals do
depend on parametrizations, so there is a problem in deciding what path
minimizing (1.4) to pick as a "center" of a significant neighborhood in path space.
The solution of this problem is quite interesting: the minimization problem for the
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lower bound in (1.1) is distinct from the problem (1.4) and this new function to be
minimized will depend on parametrization however the minimum value will be
the same value as the minimum of the function on the right side of (1.4)!

To see the minimizing problem which will arise, let us rewrite the Feynman-
Kac formula [49]:

φ(x) = E \ φ(x + b(ή) exp
o

(1.5)

formally as:

Γ ί ί 1

φ(x) = JV~1ίφ(y(ί))exp - i f |y(s)|2ds- j F(y(s))ds\eEt"dy"
[ o o J

with JV and "dy" formal objects and with a boundary condition y(0) = x. Imagining
that we want to consider paths with y(ί)~0 so that φ{y{t)) is not too small and
ignoring the eEt term, the natural function we want to minimize is [subject to
g(0) = x and g(t) = 0 ] :

^{g) = \\\g{s)\2ds+ j V(g(s))ds. (1.6)
o o

The pleasant fact is that the minimum of J / ( ) is the same as the minimum of the
right hand side of (1.4)! This is a small extension of the well known fact [21, 31]
that classical paths [(1.6) is a classical action for a force VV, not —VV~\ are
geodesies in ]/E— V{x)dx2 metric; not only are the paths as geodesies but the
action is related to geodesic distance.

The details of this argument for the case V—> oo are given in Sect. 2 we learned
from Tom Spencer that independently of our work, he has developed similar ideas
and results by a closely related method [52].

We note that this is not the first time that geodesies have appeared in the
context of path integrals. In fact the ideas behind our choice of the subsets of path
space and in the estimation of their probabilities comes partly from, by now,
classical theory of large deviations for stochastic processes in the form initiated by
Varadhan [55] (whose work has been generalized by Molcanov [38]) and
developed by Ventcel and Freidlin [58, 59, 56] (see also [57]). Varadhan estimated
the transition probability of diffusion processes: he seems to be the first to use a
"geodesic idea" in this context. Ventcel and Freidlin's innovation is to express the
probability that a path spend some time in a tube in terms of an action functional
of the "center of the tube" [their ideas lead to extremizing problems of the type
(2.30) below; see also Remark 4 after Proposition 2.5]. These asymptotics are
accurate for small time. So we have to manufacture, in the same spirit, our own
estimates relying on the very particularities of the situation we are dealing with
(see for example Lemmas 2.2 and 2.3 below).

For a neat and self-contained exposition of the probability theory of large
deviations the reader is referred to Azencott's lectures [8].

Moreover the occurrence of classical solutions or minimal action paths in the
present kind of situation is common in the recent particle physics literature (see e.g.
[33,11]) in connection with tunneling problems: the fall off of wave functions can
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certainly be thought of as a tunneling problem since it asks for the value of φ in a
classically forbidden region: the necessity for looking at — V rather than V is well-
known in such contexts.

For the N-body case, Agmon also found ρ as a geodesic distance again, his ρ
optimizes an inequality like (1.3), this time inequalities found initially by Deift
et al. [17] (who did not find their systematic solution, but who often guessed the right
answer), but also derived by Agmon. Agmon [1] also obtains pointwise bounds in
this case.

To describe the function ρ we need some multiparticle notations (that we will
use freely in the sequel).

D denotes a generic partition of {1,..., N} into clusters and ]Γ denotes the sum
iDj

over all pairs {ij} in the same cluster. We deal with N v-dimensional particles of
masses m1? ...,mN so we introduce the configuration space:

equipped with the norm:

l/2

J , (1.7)
where | | denotes the usual Euclidean norm in Rv. HQ will denote the free
Hamiltonian for these N particles with center of mass motion removed viewed as
an operator on L2(X) [note that L2(X) is understood with respect to the volume
element corresponding to the metric (1.7) and that Ho is nothing but minus a half
the corresponding Laplace-Beltrami operator].

For each pair of indices {ij} we imagine a pair potential V^x^Xj) with

(and more precise hypotheses later). For each partition D we define:

iDj

which describe a system of non-interacting clusters and the threshold ΣD by:

ΣD = inίσ(HD)9

where σ(K) denotes the spectrum of the operator K.
Of course the full Hamiltonian of the system is defined on L2{X) by:

For each x = (xv ...,xN)eX, we define D(x) to be the partition obtained by
lumping together those i and j with xt = Xp i.e. for all x with distinct xi9 D(x) is the
N cluster partition, but on various planes the codimension v where some
xi — Xj = 0, D(x) has a fewer number of clusters, etc.

Also note that:
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is the infimum of the essential spectrum of H (we refer to [17] or [45] for
kinematics in X). Agmon's formula for ρ is:

ρ(x) = inf | j ]/2(ΣD(γ(s))-E)\\y(s)\\ds; t^O, y :[0,t]->X, y(0) = x, y(ί) =

(1.8)

Recall that, in this paper, all the trial paths we use are implicitly assumed to
possess an almost everywhere derivative in ZΛsense. (Also we identify X and its
tangent space.) The parameter E on which ρ(x) depends could be any number less
than Σ. In fact, in the study of upper bounds ([1] and Sect. 5 below) E is any
subcontinuum energy and in the study of lower bounds (which is our main
concern) E is the ground state energy.

As in Sect. 2, there is a related formula which enters more naturally:

\\y(s)\\2ds+ ](ΣD(y{s))-E)ds; ί^O, y(0) = x, y(f) = θl. (1.9)
o J

Some of the geometry associated to these minimum problems is found in
Appendix 3, where in particular, an explicit formula is given for N = 3 and
conjectured for general N. We give the lower bounds for JV = 2,3 in Sect. 3 and for
general N in Sect. 4. In Sect. 5 we show how to use path integrals to get upper
bounds in the JV-body case.

We remark that correct lower bound for the (three body) ground state of
Helium have been obtained previously by Hoffmann-Ostenhof [28, 5].

We emphasized above that all we deal with here is the leading behavior and the
ground state. However, neither restriction is really rigid. Both the physics
literature [14, 7] and the mathematics literature [41, 44] have amply demonstrat-
ed the possibility of doing asymptotics to very high order in path space and it
should be possible to go to higher order here albeit with considerably greater
effort in certain situations, this has already been accomplished by Lieb and Simon
[32].

The restriction to the ground state enters in the proof because in (1.5) one
wants to know there are no cancellations possible between the region of path space
estimated and other regions of path space so long as φ is positive all contributions
are positive. Of course if one is willing to make a detailed analysis of all of path
space, this positivity is unnecessary. Even without such detailed analysis, one can
handle certain other eigenfunctions as follows: suppose that φ is an eigenfunction
which is positive in the region {\x\ ^ R } . Then, by using stopping time arguments,
one can obtain a formula like (1.5) [but now t is the minimum of some fixed
number t0 and the first time s that |x + b(s)| ̂ R] with a nonnegative integrand in
path space. Similarly, one can control asymptotics of φ in any region where it is
known that the geodesic from x to 0 stays in a region where φ has fixed sign (e.g.
this will be possible for the lowest eigenvalue of one dimensional fermions).

Of course for general eigenfunctions which typically have nodes running to
infinity, one cannot hope to obtain pointwise lower bounds; the results of [9]
suggest one should look for lower bounds on the average over geodesic sphere
about x — 0, i.e. over sets with ρ(x) = a.
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We should like to close this introduction with a discussion of the status of the
earlier papers of the series since recent developments have made much of these
papers obsolete.

Reference [46] dealt with two issues: results implying that DiH^cL™ (for
suitable N) and results on obtaining exponential fall off; substantial improve-
ments, both in the hypotheses needed on the potential and on the value of N can
be made with path integral methods: initial ideas are in Herbst and Sloan [22]
with full developments independently due to the present authors [13, 49]. As we
explain in Appendix 2, the best results on pointwise exponential fall off are easy to
obtain via Harnack inequality methods.

Reference [47] dealt with fall off faster than any exponentials for situations
where H has purely discrete spectrum. The only general improvement here is that
hypotheses on V be bounded below are easy to remove with Harnack inequality
methods (see Appendix 2).

Reference [48] dealt with several issues: the improved fall off for F-> oo is
substantially improved by the "optional" upper bound of Agmon [1] (see also
Appendix 1 and 2) and the related bound of Sect. 2 of this paper results on the
strict positivity of the ground state have been substantially improved by Carmona
[13] (see also [30, 49, 25, 26]).

Most of [17] is not obsolete but can now have Agmon's optimal solution [1]
of the inequalities of that paper we also note that Agmon has an alternative
method of proof leading to these equations.

2. The Case When V(x)->oo

Throughout this section V will be a continuous function obeying

lim | x |^o o7(x)=cx) (2.1)

and

VxeR\ V{x)^l (2.2)

(there is no real restriction since we can add a constant to V). φ will be a positive L2

function obeying:

Hφ = Eφ, (2.3)

with

H=-±Δ + V. (2.4)

At this point it is worthwhile noting that the assumption φeL2 is much too
restrictive for the proof of the main result of this section to work (nevertheless see
Appendix 2). Indeed Theorem 2.1 below relies eventually on the fact that the
function φ satisfies Feynman-Kac formula (1.5) and the latter can be derived
provided φ satisfies (2.3) in the sense of distributions and does not increase too fast
at infinity [for example if
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for all ε > 0]. Indeed, using a refined version of Ito's formula (see example [35]) it is
easy to prove (1.5) with t replaced by the minimum of t and of the first exit time of
a relatively compact open set, and this formula extends trivially to general time t
because of the growth restriction on φ and because of (2.2).

Moreover we define:

-y\^l} (2.5)

and

ρ±(x) = inf{j γ2W±{γ(s))\y(s)\ds;γ(0) = 0,y(l) = xj (2.6)

and
(1

ρ(x) = inf{f γ2V{y{s))\y{s)\ds;y(0) = 09γ(l) = x\. (2.7)

In Appendix 2, we show that for any ε > 0, there is a constant Cε with

VxeR\ |φ(x) |gC e exp[-(l--ε)ρ_(x)]. (2.8)

Our main result in this section is:

Theorem 2.1. For any ε>0, there is a positive constant Dε with:

VxeIRv, <p(x)^D β exp[-(l+ε)ρ + (x)]. (2.9)

Remarks. 1. In (2.5), |x — y\ ̂  1 can be replaced by |x — y\ ̂ δ, for any δ>0 with no
essential change.

2. Our proof actually yields something better than ερ + (x), but it is still so far
from the "next order" behavior, we have not bothered to give it explicitly.

3. Under fairly weak hypotheses, e.g. VV/V-+0 at infinity, one can show that
ρ + (x)/ρ(x) and ρ_(x)/ρ(x) both go to one at infinity. In that case one can replace ρ +

in (2.8), (2.9) by ρ and obtain:

The proof of Theorem 2.1 will use Feynman-Kac formula (1.5). For a fixed trial
function g with g(0) = x, g(t) = O, we will consider the contribution of paths with

\x + b(s)-g{s)\^ί for O^s^t.

The initial stages (Lemmas 2.2 and 2.3) will estimate the measure of this set of
paths and will lead to the study of the variational problem associated to (1.6).

Lemma 2.2. Let f be a fixed function with values in IRV with an almost everywhere
L2-derivative and wίthf(0) = 0. Then:

E{\b(s)-f(s)\^ 1,0^5^t}^e~^° l m l 2 d SE{\b(s)\SU O^s^t}, (2.11)

where E is expectation with respect to v-dimensional Brownian motion b starting at
time ί = 0 from the origin, Έ{A} =E{χA} with χA the indicator function of the set A,
and | / | 2 means the square of the Euclidean norm of the vector f
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Proof. Let Db denote the underlying measure whose expectation is E and let

The Cameron-Martin formula [36] says that:

— — — =exp - f J \f{s)\2ds~ ]f(s) db(s)
I'D o Ω

(2.12)

In (2.12) the left hand side is a Radon-Nikodym derivative and J — db(s) is an Ito-
stochastic integral. By this formula:

LHSof(2.11) = exp E (2.13)

Now by Jensen's inequality for the measure A Db, we have that:

. (2.14)

Since A and Db are left invariant by the map b-> — b, and since J/(s) db(s) is odd
o

under this map, we have that:

(2.15)

(2.13), (2.14), and (2.15) together imply (2.11). Q

Remarks. 1. The same proof show that:

for any set A invariant under b-> — b and depending only on b(s) for O^gs^ί.
2. The combination of a Cameron-Martin formula followed by Jensen's

inequality to get lower bounds is one that has been used in particular by Donsker
and Varadhan in their celebrated work on asymptotics of functional integrals, see
e.g. [18].

3. If one thinks of Db as exp — \ j\b(s)\2ds <3b with Θb a formally translation

invariant measure, and of J/(s) dfc(s) as j f(s) b(s)ds, then (2.12) is formally
o o

obvious [the condition /(0) = 0 is needed since $)b has a δ(b(O)) corresponding to
the b(0) = 0 boundary condition for Brownian motion]. For those unfamiliar or
uncomfortable with stochastic integrals, one can prove (2.11) avoiding them by
noting that:
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by the continuity of paths and:

E

j = i

E bl* (2.16)

(2.11) follows as in the above proof but now (2.12) is replaced by a change of
variable in a finite dimensional integral.

Lemma 2.3. Let a be the lowest eigenvalue of the operator HD = — \Λ on
L2({x;\x\Sl},dvx) with Dirichlet boundary condition. Then, for v-dimensional
Brownian motion and for all ί^O, we have:

e-at. (2.17)

(2.18)

Proof By a Feynman-Kac formula:

LHS of (2.17) = | > - ί ί ί D l ] ( 0 ) ,

where the 1 represents the function identically equal to one and the 0 means
evaluated at the point zero. Let η be the (positive) eigenfunction of HD with
eigenvalue α normalized so that η(0) = ί. Since η(x) takes its maximum value at
x = 0 [10], η^l, so since e~~tRΌ is positivity preserving

•
Remarks. 1. (2.17) stills holds if |fc(s)|^l is replaced by \b{s)\<,r and if e~at is
replaced by e~aψ2.

2. Considering the simplicity of its proof, (2.17) is remarkably good. For
example, the large t asymptotics of the left hand side of (2.17) is ce~at with
c = \η(x)dvxl\η(x)2dvx. Thus, for v = l , c = 4/π and for v = 3, c = 2.

Putting together, the Feynman-Kac formula (1.5) and these last two lemmas,
we see that:

Proposition 2.4. Let # = [0,T]->IRv be a C 1 function with 0(0) = x and g{T) = 0.
Then:

(2.19)

with:

and

(2.20)

Proof By standard arguments [13, 49] φ is continuous, (1.5) holds for every xβIRv

and t ^ 0 and C is strictly positive. The integrand in (1.5) is positive, so we can get a
lower bound by taking a subset of paths. Take t — T and those paths b(s) with

Vse[0,T], (2.21)
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By the last two lemmas, the total measure of this set of paths is bounded from
below by:

e'aTe °

Since (2.21) implies that:

VSG [0, T ] , V(x + b(s)) g W+(g(s)),

the integrand for any such path is bounded from below by

\-]w+Cexp\-\W+(g{s))ds
L 0

D

Theorem 2.1 follows immediately from the last proposition and the following
result which studies the function jtf+.

Proposition 2.5. Let stf+ be the functional defined by (2.20) and let:

^+(y) = J γ2W+(y(s))\y(s)\ds. (2.22)
o

Then: (i) There exist minimizing functions g and y for stf+ and <£+ with the boundary
conditions g(O) = x, g(T) = O, and y(0) = 0, γ(s) = x.

(ii) Any minimizing g for s4\ yields, via y(s) = g(T — s\ O:gs:gT = ,S, a minimiz-
ing y for cSf+, and in addition the minimum values are identical

(iii) For each xeIRv, pick a minimizing g for s$+ and let T(x) be the correspond-
ing value of T. Then:

T W .0. (2.23)

Proof (i) Existence of y as minimizing y for i f + is standard in differential geometry
(see e.g. [42, 53]). Existence of a minimizing g is standard lower semi-continuity
arguments (see e.g. [42]) if one notes that since W+^l, one can restrict attention
to paths with an a priori upper bound on T (this is needed to assure compactness
of the space of trial functions),

(ii) By the inequality :

(2.24)

we see that \ίyQ is defined by yg(s) = g(T—s\ 0^s^T=S then we have:

^Λl^^M (2.25)

Since equality holds in (2.24) only if a = b, we have that equality holds in (2.25) if
and only if

VSE [0, T] , \y(s)\ = γ2W+(y(s)). (2.26)

Given any y, we can always find a reparametrization y so that (2.26) holds for y.
Thus if g is the corresponding g we have that :
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since ££ + is invariant under reparametrization. Equality of the minima is now
obvious, and moreover by (2.26) and (2.25) any minimizing g obeys

Vse [0, T ] , \g(s)\ = ]/2W+(g(s)) (2.27)

(iii) By (2.27), if g is any minimizing g, then

ρ + (x) = 2 f W+(g(s))ds. (2.28)
o

Since W+ ^ 1 , we see that:

T(x)^ρ + (x). (2.29)

Fix some Ro > 0 and let a(R0) = miri|JC|>ΛoW+(x). If |x| > R 0 , let s0 be the first time
that \g(so)\ = Ro. Then s-+g(s + s0) on [0,T(x) — s0] is a minimizing path for the
problem with initial point g(s0), so by (2.29) we have:

Since \g(s)\^R0 for se[0, s 0], we have that

ρ + (x)^2s o

by (2.28) and the definition of a(R0). Thus

T(x)^[_2a(R0)r1Q

From this, (2.23) follows immediately. Π

Remarks. 1. Roughly speaking if Fis reasonably behaved at infinity,
QyX) y\X)

2. The equality of the minima of jtf+ and ££+ is even easier than the more
usual [42] equality of the minimum of jSf + and

ξ+(y)= \\2W+(y(s))\y(s)\2ds
1/2

(2.30)

except that the numerical inequality (2.23) that we use is replaced by the Schwarz
inequality on integrals in the usual case.

3. There is an illuminating alternative way of deriving (2.27). By rescaling g(s)
to g(λ~ιs) one sees that for the minimizing g we have that:

±]\g(s)\2ds = ]w+(g(s))ds. (2.31)
0 0

Euler-Lagrange's equation associated to jrf+ (for fixed T) is just the classical
equation:

g(s)=VW+(g(s))

(note: not — VW+) for which the conserved energy is:

but by (2.31), C = 0.
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4. Let us give another reason why the reparametrization of the paths is
natural. The eigenvalue problem (2.3) can be rewritten in the form

~ ΊVΓ\ Λφ{?c) + U W φ ( x ) = °
ΔV \X)

with U(x) = 1 — — - . Using Feynman-Kac formula we have that:

(2.32)

where Xt denotes the diffusion process governed by the operator — Δ and Έx

denotes expectation over paths starting at x at time t = 0. This process is in fact a
Brownian motion process up to a time change. Namely, if we set

o

and τt for its reciprocal function, that (2.32) can be rewritten in the form:

and if we use Ventcel-Freidlin type estimates, we are automatically conducted
(because of the reparametrization of the paths via τt) to the study of the function

The last two propositions immediately imply Theorem 2.1 as already
remarked.

We close this section with several comments.
In obtaining a bound like

VxelRv, φ ( x ) ^ C 3 exp [- (1 + ε)ρ(x)] ,

the ερ(x) is needed to accomodate two facts: the change from ρ+ to ρ which is
typically of order |x|~1ρ(x)5 and the T(x) which is typically of order V(x)~ιρ(x).
Thus, improved lower bounds are implicit in the above.

Next, let us be more explicit about the argument to accommodate eigenfunc-
tions φ with φ(x)>0 for | x | ^ # . Begin by noting that for |

where

Now fix |x| >R + 2, take the geodesic from x to 0 and run it to the earliest time
ί0 for which \g(s)\ = R + l. Take paths b with \x + b(s)-g(s)\^l for all se[0, ί o ] ,
where g is this geodesic.

For such path T(b) = t0 and we can argue as above using:

for such fc's.
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Next we note that if v = 1, the geodesic is just a straight line and so

as familiar with W.K.B. theory.
Finally we remark on an example of Agmon [2] consider a "wavy"

unbounded region Ω, for example the planar region:

Ω = {(x,y)eR2 )j/-x2 sinx| < M } .

Let 2HD be the Dirichlet Laplacian for L2(Ω) and let VeC% be such that
HD + V has a square integrable ground state φ. Suppose that:

{HD+V)φ = Eφ

with E = - |Jc2. One might think that φ{x) ~ e~fc(xl, which is the case if Ω is all of R2.
What happens now is that by his method one can prove a better bound, namely

with ρ(x) the geodesic distance from x to the origin with the usual Euclidean
metric, but with the restriction that the curve stays inside Ω. Thus, in the example
above, if we take xn = (nπ, 0), ρ(xn) ~ en2 not n. By going through the above proof
get that for any curve g such that g lies in:

one has:

which leads to the lower bound:

t- $\g{s)\2ds
o

with ρδ(x) the geodesic distance within Ωδ and kδ given by

-±fc* = E - < Γ 2 α .

3. Lower Bounds, some Special iV-Body Systems

In this section we describe the proof of the JV-body lower bound in two "warm up"
cases which will illustrate the main ideas: the case N = 2 and the special N = 3 case
associated with the ground state of the Helium atom (in the purely Coulomb,
infinite nuclear mass approximations).

First we begin by some notations and preliminary results needed in the sequel.
In the next sections, we consider N particles with masses m1,...imN in
v-dimensions. In order to use path integral techniques we introduce the X-valued
Brownian motion {b(t); ί|§:0} canonically associated with the Euclidean structure
of X. We call this process the mass weighted Brownian motion. The point is that if
Ho is the free Hamiltonian with center of mass motion removed, then for ψEL2(X\



72 R. Carmona and B. Simon

ί>0, and xeX we have:

and Lemma 2.2 now take form:

\ \ Έ{beA}9 (3.1)

where A is a set of X-valued paths on [0, t] invariant under the map £>-> — i>, / is a
X-valued function with /(0) = 0 and the norm || || is that of (1.7). Moreover, under
the usual assumptions on the potentials Vij9 we have the general Feynman-Kac
formula for the full JV-body Hamiltonian H:

[_e ~ tHψl(x) = E \ψ(x + b(ή) exp [ - } Σ ViMt + Hs) ~ Xj - bj(s))ds
I L 0 1 ^ i < j ^ N

for all ψeL2(X), ί > 0 and xeX, where fc1( ),...,i>N( ) denote the components of
b( ) when X is viewed as a subset of IRiVv. The reader should keep in mind the fact
that the components bx{ ), . . ., bN( ) of the process b( ) are not independent indeed
with probability one we have that for all ί > 0

even though, for each fixed i, the process b (ί) is usual v-dimensional Brownian
motion and consequently is of the form b^t) — {bt Jf) α = 1,..., v} where the bt α(ί)
are v independent one dimensional Brownian motions.

In fact the mass weighted Brownian motion can be thought of as the Nv
dimensional mean zero Gaussian process {bioc(ή; ΐ=l,...,JV, α = l , ...,v, ί^
whose covariance is given by :

u Λ{t)bjt β(s)} = AJa} β min (s, ί)

with

and

Second, we prove a little lemma that says that (even in the general JV-body
case) we can essentially restrict attention to potentials in C$ !

Lemma 3.1. Let φ be the ground state of an N-body Hamiltonian H with potentials
Vtj in Lp(Rv) + Lε°°(lR

v) for some p>v/2. Then, for any ε'>0,δ>0, and μ>0, there
exist constants C>0, q>\ and potentials W^eC™ so that:

(i) φ{x)^ CeiE-μ)tΈ\ φ{x + b{t))llq exp - J W(x + b{s))ds \ (3.2)
I L 0 Jj
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for all £>0 and xeX, where W(x) = ^ Wtj(x — Xj) and E denotes the

expectation with respect to mass weighted Brownian motion.

(ii) q^\+δ.

(iii) For every partition D we have:

where ΣD (respectively Σ'D) is the threshold given by the infimum of the spectrum of

HD I respectively Ho + £ Wtj \.
\ iDj j

Proof Let V = q(W+ Y) where 1 <q< 1 +δ, Wtj and Ytj are functions of x. — xp and

W= YJW^ and 7 = ]Γ YJ7 . Then by Holder's inequality we have:

with q' the conjugate exponent of q. Thus, using Feynman-Kac formula we have:

φ(x) ^ f(t)E {φ(x + b(ή)1 /q exp (3.3)

where:

For each pair i</5 let {Wf?]; n^l} be a sequence in C^ so that:

y / ; ) - ^ - 1 ^ . - ^ ; ) — - > 0 in (Z/ + Lε°°-norm).

For each partition D and n ^ l , let Z1^ be the threshold corresponding to the

infinum of the spectrum of Ho + ^ Wfp. By picking q close enough to 1 and then
iDj

n large enough (how large depending only on ε and q) we can be sure that:

for all partitions D. Increasing n if necessary, the (L^ + Lε°°)-norm of Yff can be
made arbitrarily small so that, by the basic estimation of:

— o i i n F Ί
o, oo ~" ί > u Pχe]R 2 V v J 1 '

in [13, 30, 48], we can be sure that f(t) (with Y replaced by Y{n)) satisfies

which, together with (3.3) gives (3.2). •
With this lemma, the lower bound in case N = 2 is easy (it is also easy by other

methods).

Theorem 3.2. Let VeU (Rv) + Le°° (Rv) wίίΛ p > v/2, feί H = - ^zl + V on L2(RV)
/eί us assume that φeL2(W) is nonnegative and satisfies:
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for some k>0. Then, for any ε>0 there exists a constant Cε>0 such that:

VxeIR\ <p

Proof. Choose W in CQ SO that (3.2) holds with μ = ±εk2, <5 =§ε and any ε' >0. Let
us assume that Ro > 0 is such that {XGRV |x| ̂ J R 0 } contains the support of W, and
let us fix R>0. Given xeW with |x |>i? + jR0, let g be the linear path of constant
velocity, defined on [09ί] and such that g(0) = x and g(t) = {R + R0)x/\x\. In (3.2)
take the contribution of those paths b such that:

Vse[0,ί], \x + b(s)-g{s)\^R. (3.4)

For such paths, W(x + b(s)) = 0 for all s in [0, t] so that:

* 2

where v = \x\(ί — (R-\-R0)\x\~1)t~1^\x\t~1 and α has been defined in Lemma 2.3.
Now if we pick t = \x\k~1 and R so that qaR~2=^εk, we find that

with:

Cε = C i n f | y | ^ o + 2 R φ ( y ) > 0 . •

Now let us consider the operator

on L2(IR6) where Δi denotes Laplacian on L2(IR3) for the variable x^elR3, i = l,2,
and where xί2 = x1— x2. We will write X = ( X 1 5 X 2 ) G R 6 and H= — ^A + V(x) with
V(x)=U(x1)+U(x2)+W{x12). Note that in the present situation X = IR6 with its
usual Euclidean structure so that || || is the usual Euclidean norm | | and the mass
weighted Brownian motion b(t) = (b1(t\b2(t)) is the usual 6-dimensional Brownian
motion. We suppose U^O.W^O, spherically symmetric, continuous and going to
zero at infinity and let E = — (ε1 + ε2) be the ground state energy of H and — ε2 be
the ground state energy of —^A1 + (7(x:). Of necessity:

εί<ε2 (3.6)

since W^.0. We want to prove that for each ε > 0 there is a constant C ε > 0 for
which:

Vxe R 6 , φ(x) ̂  Cε exp [ - (1 + ε)ρ(x)] (3.7)

with:

ρ(x)= ]/2ε~1msLx(\x1l\x2\)+ j / ^ m i n d x j , |x2 |). (3.8)

We show in Appendix 3 that ρ is the Agmon metric for this case.
The point is that if we look at the contribution of the set of paths which satisfy

(3.4), their measure will give us a factor of exp — \ j \g(s)\2dsas usual. When R is
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large, but still small compared to |x|, we can drop all interactions except those that
act for times proportional to |x|, i.e. keep only the interactions Σ Vip and the

allowed large R Brownian fluctuations will produce a time ordered exponential
T(exp[ — ii^cs))]) where the superscript R indicates a Dirichlet boundary con-

t 1
dition on the ball of radius R. This exponential should look like exp — J ΣD, ,s))ds

o J
so that the variational principle will enter. Having given the heuristic argument,
we present the details.

Without any loss of generality we can assume |xj ^|x 2 | . The minimizing path
for the variational principle (1.9) is:

where ί = |x1|/]/2ε^ and:

and:

where ί' = |x2|/j/2ε^. Notice that since | x 2 | ^ | x j and ε 2 >ε 1 ? we have that ί'rgf.
Notice also that:

so that:

= ε2t' + ε1t

=ΊQ(x), (3.9a)

and:

0 if O^s^t'
e2 if fSs^t

(3.9b)

The total time t involved in this path grows at the same rate as ρ(x) (i.e. t/ρ(x) is
bounded above and below) so we need only prove that:

-U+**)<?<*) ? ( 3 t l 0 )

where V is obtained from spherically symmetric potentials U and W in C£f\ with
identical thresholds since the J£Q(X) can be used to accommodate the changes in
thresholds, the factor of e~μ\ and the changes from arbitrary U,W to C£
potentials.
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Let Ro be such that:

\Y\>Ro=>U(Y) = 0 and W(Y) = 0,

and let:

We will look at paths b(-) satisfying

where R is a number to be adjusted later on. For any such path we claim that:

- } V(x + b(s))ds ̂  - } U(x2 + b2(s))ds - C o , (3.11)
0 t'

where Co is a /zx£<i constant independent oϊx (but depending on R, Ro and K). For
the total time τ' during [0,ί'] that either |gf1(s)|<R0 + i^ or \g2(s)\<R + R0 or
^ ( s ) —#2(s)|<.R0 + 2.R is bounded independently of |x|, and similarly for the total
time τ during [f',ί] for which \gx{s)\<R0 + 2R. So one can take C o in (3.11) to be

Using the translation formula (3.1) and (3.11) one finds that:

[L.H.S. of (3.10)]^Cexp[-^J|^(5)|2^L£ΈJexp - jU{b2(s))ds\; A\,
L 0 J I L t' J J

(3.12)

where C has a factor of e~CoP and of inf.v\<Rφ(y), where:

and where E{/; 1̂} stands for E{/χ^} with χA the indicator function of the set A.
Let # Q be —\Aγ—\A1 with Dirichlet boundary condition on the sphere of

radius R and let H^ = Hζ+ U(r2). Then the expectation in the right hand side of
(3.12) is just:

with χR the indicator function of the ball {xeR 6 \x\^R}. Let 0CQ12 and αf be the
lowest eigenvalues of HQ12 and H\, and let /^Q/2 and η* be the corresponding
ground states. Then:

where

Thus (3.13) is bounded from below by a constant times:
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By choosing R sufficiently large we can be sure that, up to errors which are small of
the order of ί,

Putting this together with (3.10), (3.12), and (3.9a, b) we obtain (3.7) as desired.
In the above, when we used (3.1), we actually used it in a slightly extended

form; namely, rather than (3.1) we used:

E{Gf; Af}^exp\-±]jf(s)\2ds\E{G; A}, (3.1)'

where:

Af = {b;b-feA} and Gf(b) = G(b-f)

with G and even positive function of b. It was because of this evenness requirement
that we careful to require spherically symmetric potentials since, in the above:

t

- J U{b2(s))ds
r'

Having made this remark, we want to show that one can still get a lower bound if
U is not even. The point is simple: in using Jensen's inequality, what enters is:

El(Hb)\g-db;A\/E{G(b);A}, (3.14)

where A is the set of paths defined by:

(3.14) is definitely not zero in general if U is not even, but since g is piecewise
constant, we have:

ft\ / t t \

j g(s) db(s) = 9 [2] I db(s) + U ( " T " ) I db{3)

Since b is bounded on the set A, we see that:

|(3.14)| g Λ \\gl- + 2
(t + f

(3.15)

and thus one can still get a lower bound [although, since R may have to be chosen
very large, the use of (3.15) will lead to obscenely small constants; but, of course
the arguments already given will lead to pretty bad constants since

i s a l s o exponentially small as #->oo].

4, Lower Bounds for General N-Body Ground States

In this section, we want to sketch the proof of the following result, which, together
with Theorem 2.1, is one of the two principal results of the paper:
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Theorem 4.1. Let Hφ = Eφ where H is an N-body Schrδdinger Hamίltonίan with two
body potentials Vt- in Lp + Lε

x> with p>v/2. Suppose φeL2(X) and φ^O. Then, for
any ε > 0, there is a Cε with :

\fxeX, φ(x) ̂  Cε e x p [ - (1 + ε)ρ(x)] , (4.1)

where ρ is the Agmon metric. In particular, given the upper bound of Λgmon [1] (see
Appendix ί), we have:

x/\x\->e \X\

The initial steps in the proof (Lemmas 4.2, 4.3) will show that it suffices to
prove (4.1) as x~^ oo inside a small tube about any fixed direction with a constant C
which a priori could be direction dependent (let us remark that by using a
Harnack inequality [20, 54], one can even reduce it to a bound in each fixed
direction but in the proof it is not hard to directly obtain the tube about each
direction).

Lemma 4.2. Let e be a fixed unit vector. Suppose that for all x with \\x—

we have:

(l+ε)| |x| |ρ(g)]. (4.2)

Then there exist D>0 and δ>0 such that:

φ(x) ̂  D exp [ - (1 + 2ε)ρ(x)] (4.3)

for all x with \\ | |x| | ~ 1 x — e|| <δ.

Proof. Let d denote the full Agmon metric so that ρ(x) = d(x, 0). Clearly:

\/-2(E-Σ)\\x-y\\^d(x,y)^y-2E\\x-y\\

with || || the mass weighted norm (1.7). Note that φ^O implies that E is the
ground state energy and consequently E<Σ. Now since:

|ρ(x)-ρO0l^(x,3>)

we see that ρ is continuous on the unit sphere and thus we need only prove (4.3)
with (l+2ε)ρ(x) replaced by (l + ε)||x||ρ(e) + ε'||x|| for small ε'.

By the Schwarz inequality and Feynman-Kac formula, for any t and x:

x + b(s))-E)ds) ί UV(x + b(s))-E)ds]

(4.4)

where we used the estimates of [13, 49] to bound E|β° r. In (4.4) C
and A are fixed constants. Now, fix x with || | |x| |" 1x — e\\ <<5, suppose that (4.2)
holds for y with \\y— \\y\\e\\ ^ 1 , and take ί = μ||χ|| in (4.4) to find:

This follows by looking at the contribution of those points y with y = x + b(t) and
\\y— \\y\\e\\ ^ 1 [exploiting the explicit distribution of b(t) and the fact that
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||x — y\\ ̂ δ\\x\\ for such y]. Taking first μ small and then δ small compared to μ, we
obtain the required estimate. Q

Lemma 4.3. If for each ε and e there exists a C so that (4.2) holds for all x with
||x— ||x||e|| < 1 , then for all ε > 0 there is a Cε with (4.1) holding.

Proof. This follows from Lemma 4.2 and an easy compactness argument. •
The reason we needed the above preliminaries is the following: we know

almost nothing about the detailed structure of Agmon geodesies for iV^4; in
particular, we don't know that there aren't infinitely many linear segments
(although we conjecture there are at most N). Thus, the natural estimates lead to
constants which a priori depend on x/||x||. The above "compactness" argument
then allows us to get a uniform constant.

Proof of Theorem 4.1. By the last two lemmas, we fix a unit vector e inX and study
a neighbourhood of {/U?;/leIR}.

Step 1. Picking an approximate geodesic

We first pick a function g0 on [0, T] with go(0) = e, go(T) = 0 and so that there
exists 0 = to<t1< ... <tk = T with go(s). and D(go(s)) constant on each interval
(£ί? ti+1) [Note: if a linear segment crosses a plane where D(go(s)) changes, then we
consider it as two segments] and finally so that:

T T ί ε\
2 ί II 9o(s) II 2ds + j (ΣD(go{s)) — E)ds ^ 1 + - ρ(e).

o o \ 2/
We show in Appendix 3 (Theorem A.3.2) that such a g0 exists. Given any x with
| | x | | > l and | | | | x- ||x||e|| < 1 , we define g on [0,T||x| | + l ] by letting 0(0) = x,
g{l)=\\x\\έ, g constant on [0,1] and g(l)= | |x | |0 o ( | |x | | "\s~ 1)) for se[1, T||x|| + 1 ]
and define s_v s0, ...,sk by s__1 =0, s0 — 1, s>= ||x||ί + 1 .

Notice that:

i f ^ | ^ ( s ) | | 2 d s + ^ Γ D ( ί ( s ) ) - E ) i s ^ C + ( l + ^Jρ(δ)||x||, (4.5)
o o \ ZJ

and as x runs through the requisite set:

0<C1 <sk\\x\\ ~1 ^ C 2 < + oo . (4.6)

Step 2. Replacement of potentials by ones in C™.

c
On account of (4.6) and Lemma 2.1, we can, by using a little of the -||x| |ρ(β)

2
still available to us, replace all potentials in a Feynman-Kac formula by
ones in C^, say with support in sphere of radius Ro. Moreover, we can suppose

ε 3ε

that (4.5) remains true if- is replaced by —- and Σ by the thresholds Σ associated to

the replaced potentials.

Step 3. Replacement of £ Vtj by £ V{.



80 R. Carmona and B. Simon

Inside a Feynman-Kac formula we look at all paths with \\x + b(s) — g(s)\\ <R for
0 ^ s ̂  sk where ,R is a parameter to be picked later. It is easy to see that the total
time that it can happen that

is bounded independently of ||x|| (just endpoints of the intervals (s._ 1,si)). Thus we
get a lower bound by a formula with just Σ Vij(χJf~h(s)) present in the
exponential. iD(β(s))j

Step 4. Translating g away

Using a Cameron-Martin formula and Jensen inequality, we replace x + b(s) by
x + b(s) — g(s) as at the end of Sect. 3, we control the Jensen error by noting that:

]g(s)db(s)= Σ # ( - ^ ^
o i = o \ *>

and that b and g are bounded.

Step 5. Lower bound on the semigroup product

The result of the above steps is a lower bound (ε' arbitrarily small):

φ(x)^Cβ- ε ' l l x l l + ^[β" ( s o - s - l ) H o- - ( ^ - ^ - i ) ^ χ j ( 0 ) , (4.7)

where Hf is HD, with Dί = D(g(\(si + sf _ 1))), with Dirichlet boundary condition on
Sk

the sphere of radius R and β = \\ \\g(s)\\2ds.
o

In (4.7) we still have a lower bound if we replace Hf by Hf ~(/c~ι). We then note
that if Hf~{k~i] has ground state ηt and ground state energy αf then:

with C' = inf(),|<Λ_( fe_ ί )_1 ?/(};). Therefore, if i^>/c we have:

-«||χ||-Hllg(s)||2ds-Σ(
0 ί = 0

6. Completion of the proof.

Finally, by choosing R large enough, we can be sure that:

with ε" arbitrarily small. With this choice we find:

φ(x) ^ C exp

completing the proof. •
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5. Upper Bounds by Path Integrals

In this final section, we will illustrate how path integrals can be used to obtain
upper bounds by considering the ground state of Helium. With similar methods
one should be able to treat the ground state of arbitrary atoms under the usual
(̂ 1 = ε2 = = %) assumption. To handle general N-body systems, one would need
more information about Agmon geodesies that we currently possess.

We assume that H has the form (3.5) with [7^0, W^O, and that:
) = 0 and lim|j,|^oo»7(y) = 0. (5.1)

Using an argument analogous to Lemma 3.1, (5.1) can be replaced by a weaker
condition, but it is somewhat simpler to assume it, so we shall. £,ε 1 and ε2 are as
defined after (3.5) except that E is not required to be the ground state, i.e. the φ in
Hφ = Eφ need not be positive. This is because we still have:

I-E)dsj. (5.2)

We begin by proving that for any δ > 0 there is a constant Cδ > 0 such that for any
x = (x1,x2)eTR6 we have:

To do this, note that since φeL™ [13, 49], we need only prove (5.3) for |x j >R for
some fixed, later to be determined, R. Let:

By (5.1), α—>0as R->oo. Fix x = (xvx2) with |.x1| ^R, and let Tbe the stopping time
defined by:

Γ = min(ί o ,Γ Λ f l ) , (5.4)

where ί0 > 0 is a fixed non random number and TR is given by

Since Γis bounded it is allowed to replace t by Tin Feynman-Kac formula and so
in (5.2) (see for example [49]). For times s prior to T we have U(xί +fc1(s))^ — α,
and since φeL00 and W^O, (5.2) implies:

ί Γ τ

\φ(x)\^CE\exp\T(E + α ) - f U(x2 + b2(s))ds
[ I o

Since the two Brownian motions b1 and b2 are independent and since T depends
only on bv we can first take the expectation over b2 considering for a while that T
is constant, say t. But note that:

E<exp o-th2
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where h2 = — \A% + U{x2) and β is an arbitrarily small number. We have used the
result of [50] that:

Letting δ = a + β and / ( x ) s E ( T ^ s } , we have:

= C e

by an integration by parts. Next notice that, by Levy's maximal inequality ([49,
Theorem 3.6.5]) we have:

Thus by (3.4') of [49] :

Taking ί0 to infinity we find that:

+ 00

| φ ( x ) | ^ C j exp [ — (|r1| — R)2/2s — (ε1 — δ)s^\ds.
o

lχ I — R
The integrand takes its maximum values for s = - x —, and it is easy to see

that for each δr>0 there is a constant Cδ, R such that the integral is bounded by

Since δ' and δ are arbitrarily small, (5.3) is proven.
Now we will prove that for each δ > 0 there is a constant Cδ for which:

|φ(x)|^Q[exp(— ]/2(ε1—δ)\x1\— ]/2(ε2 — <5)|x2|)

+ exp(— ]/2(ε1 — δ)\x2\— ]/2(ε2 — δ)\xί\)'] . (5.6)

Since εx ^ ε 2 , we have:

min( |/2(ε 1 -(5) |x 1 |+l/2(ε 2 -(5) |x 2 | , ]/2(ε1 - δ ) | x 2 | + ]/2(ε2 — <5) IxJ)

ί ax( |x 1 | , | x 2 | )+l/2(ε 2 -δ)min( |x 1 Ux 2 | ) , (5.7)

so (5.6) is an Agmon metric bound (see Appendix 3).

Given (5.3), (5.6) is obviously true if |x j ^R or |x2l = ^ f° r a nY ^ s o π x ^ (later
to be adjusted) and suppose |x j >R and |x2 | >R. Again we fix t0 > 0 and we define
the bounded stopping time T by:

0 , TR),



Pointwise Lower Bounds. V 83

where now TR is defined by:

By the same argument as before we have:

Now let:

where TR , has been defined in (5.5). Since either T = Tγ or T = Γ2 we have:

|φ(x)|= ΣVilφiXx+b^x. + bziTMe^-2*}. (5.8)
i= 1

The z = l term in (5.8) can be dominated by a constant times:

E{exp [ - \x2 + ̂ ( T J l/2ί f i l -δ)]β T l < E " 2α)} (5.9)

on account of (5.3). Since bγ and b2 are independent and Tx depends only on bv we
have that the conditional distribution of b2(T1) given that 7^=5 is exactly the
distribution of b2(s). Thus defining f(s) as before we have:

(5.9) = j έE~2φg(s)dM + [1 - f(to)Mtoy
E- 2a)t0

0

with:

g(s) = j exp [ - \x2 + y\ | / 2 ^ δ ) ] ( 2 n s ) " 3 / 2 e " W2/2sdy.

Integrating by parts, taking i0-»oo and using (5.5), we easily find that:

where CR > 0 is a constant, QE is a polynomial and

But:
\x2 + j | l / ^ ^ δ y = minf [|x2 + y\2/2t + {εί -

and thus (with / = x 2

Recognizing a2/s = j (a/s)2dt as the integral of the square of a constant velocity, we
o

see that α is exactly the minimum length of a trial Agmon geodesic that goes
linearly from x = (xί9 x2) to (0, / ) and then linearly from (0, / ) to (0,0). This proves
(5.6). •

We remark on two facets of the above proof: first, we see the choice of the
minimal value of the action (1.9) of several paths coming out explicitly in the proof.
Secondly, we note that one can compute or estimate quantities like:
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easily by noting that, as a function of x l 9 this is harmonic, spherically symmetric,
vanishing at infinity with the value 1 as |x1 | goes to R. This links up this method of
obtaining upper bounds to that exploited by the Vienna group [24].

Appendix 1: Upper Bounds by the Combes-Thomas Method, some Remarks

Besides introducing the Agmon metric, Agmon [2] has developed a new approach
to upper bounds, which, because it only depends on integration by parts is more
"elementary" then the Combes-Thomas [15] approach which has been used in
earlier papers of this series [47, 48, 17]. However, it does not seem to us to be
particularly simpler than the Combes-Thomas method (nor particularly harder!).
We note however (Deift [16]) that it seems easier obtaining sharper upper bounds
with Agmon's method than with the Combes-Thomas method. Our goal in this
appendix is to show how Agmon metric improvements on upper bounds can be
accommodated within the Combes-Thomas framework.

We consider first the case F-*oo, then the iV-body case and finally make a
remark about boundary value problems.

Fix Ho= —\Δ and V a continuous function with F(x)^ l for all xeIR". Let /
be a C 1 function with:

We want to show how to prove that e{1 ε)fφeL2 for all ε > 0 and for any
distributional eigenfunction φ of Ho + V with e~(1~~δ)fφeL2 for some δ>0.

Since the Agmon metric ρ obeys:

llmb,_

(by the triangle inequality), it is easy, by smoothing, to find for any ε > 0 a C 1

function / obeying (A.I.I) with:

VxeIR", /(x)>(l —ε)ρ(x).

Thus, the assertion following (A.1.1) we can replace / by ρ, i.e., in proving the
theorem below, we can without any loss of generality assume that ρ is C1.

Theorem A. 1.1 (Lithner [34], Agmon [1]). Let V be a continuous real function on
1R" which satisfies:

VxelR", F(x)^ l and lim | j c (_^ V{x) = oc .

Let:
a

ρ(x) = min< j ]/2 V(γ(s)) \γ(s)\ds y(0) = x and 7(1) = :
[o

Let φeLf0C satisfy Hφ = Eφ in distributional sense where H= —^Δ + V. Suppose
e~{1'δ)QδeL2 for some <5>0. Then for all ε>0, e(1"ε)ρφeL2.

Remark. In [48], the Combes-Thomas method was used to prove a similar result
by the \ was not present in the analog of (A.I.1) (nor was it known how to optimize
solutions). Below, in obtaining the result with \, we exploit a realization of Agmon
[2] that the imaginary part of H{ia) need not be bounded.
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Proof. As explained we may replace ρ by a C 1 function / obeying (A. 1.1). Define
for z real:

H{z) = eίzfHe'izf.

We will prove below that H(z) has a continuation to an analytic family in the sense
of Kato [29] in the strip |Imz| < 1. Moreover, since H has compact resolvent, so
will H(z). In the usual way [15, 43, 17], one concludes that the spectrum of H(z) is
independent of z and if H(z)η = Eη with ηeL2, then ei{w~z)fηeL2 for all w in
the strip.

Next note that for a real with |α| < 1, we will prove that H(ia) is sectorial Kato
inequality methods easily show that C$ is a core for H(ia) so that:

H(ί(l-δ))η = Eη

(with η = e~(1~δ)fφ) in distributional sense implies the same result in operator
sense. Thus we reduced to proving the analyticity and sectoriality.

Since H(z + y)=U{y)H(z)U( — y) for y,z real and U unitary, the usual argu-
ments [15] imply that it is sufficient to prove analyticity in a neighborhood of
{ίa; — l < α < l } . Write z = y + ia and note that, formally:

where we use the standard notation p for the operator — iV.
It is obvious that so long as φ,ψeQ(— Δ)nQ(V) then {φ,H(z)ψ) is analytic as a

quadratic function of z, so if we prove that for all ε > 0 there is a δ > 0 so that for
|α| < 1 — ε and \y\ <δ, H(z) is closed and strictly sectorial on Q, then we will have the
required analyticity by type (B) methods [29].

Given (A.I.I), the following estimates are obvious:

(A.1.2)

Taking δ suitably it is easy to prove from this that there exists a δ'>0 so that:

which, together with (A. 1.2) implies the required sectoriality and closedness. •
To apply Combes-Thomas to the N-body problem, we note the following

which is "essentially" a rephrasing of [17, Theorem 5.1] (and proven there by
extending the Combes-Thomas method).

Theorem A. 1.2. Let H be an N-body Hamiltonian, Hφ = Eφ with φeL2 and E<Σ.
Suppose that f is a homogeneous function of degree 1 and that there exists a
nonnegative function a so that :

(i) VX,J/EX, \f(x)-f(y)\^]/2\\x-y

with || || the mass weighted norm (1.7) on X.
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(ii) For all xφO inX, there is a neighborhood Nx of x inX so that for all yeNx

we have:

a(y)2^ΣD(x)-E. (A.1.3)

Then for any ε>0, β ( 1~ ε )>6L°°.

Remarks. 1. In [17, Theorem 5.1], an assumption is made about the gradient of/
but only the integral relation is used and the proof is identical.

2. There is a j/2 difference between the norm (1.7) and the one used in [17]

accounting for the j/2 in the condition (i).

3. The hypothesis in [17] is somewhat different from (A.I.3). If j/23 is the
gradient of a regularized /, then (A. 1.3) implies that

\\ά(x)\\2^ΣD{x)-E. (A.1.4)

In [17], the condition required is:

for all D with D >D(x). Since ΠD is a contraction and D t>D' implies ΣD, ^ ΣD,
(A.1.4) implies (A.I.5). It appears that we have lost something by doing this, but as
noted by Agmon [2], (A.I.5) implies directly that |/(x)-/(0) | ίgρ{x) [since
geodesies γ should have tangents which for almost all s obey ΠD{γ{s))γ(s) = 7(5)] and
ρ (when C1) obeys (A. 1.4) (see Theorem A.3.2 below).

With this result, which is proven in [17] by Combes-Thomas methods we now
prove:

Theorem A.1.3. // Hφ = Eφ and ρ is the corresponding Agmon metric (recall that ρ
is E-dependent) then e{1~ε)QφeLco for all ε>0.

Proof. For each x and ε > 0 define

and let ρ(ε) be the Agmon metric with ΣD(x) replaced by Σε

x. ρ
(ε) is homogeneous of

degree 1 since Σε

x is homogeneous in x of degree 0 and ρ(ε) obeys (i) of Theorem
A. 1.2 with:

a(a\x)=γΣe

x-E9

since there is a triangle inequality for the metric d{ε)(x, y) for which ρ{ε)(x) = d{ε\x, 0).
(A. 1.3) for α(ε) is trivial if we take:

Thus, for all δ>09 we have e^-
To complete the proof, we only need that ρiε\x) converges to ρ(x) as ε goes to 0,

uniformly on compact sets. Since:

we have uniform equicontinuity, so it suffices to prove convergence for each fixed
x.
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Now, x->ΣD{x) is lower semi-continuous, so it follows that if εw->0 and xn-*x
then:

Let jtf{ε) denote the action of paths for the definition of ρ(ε), i.e.:

^ ( £ )(7) = i j \\y(s)\\ 2ds + ί (Σε

γ(s) - E)ds.

For each ε >0, we pick a path yε defined on [0, sj going from x to 0 and such that:

topology. Using the weak lower semicontinuity of the L2-norm, (A. 1.4) and

Since Σε

x-E^Σ- £ ^ 0 , and since J ||γε(s)\\2ds^2j/(ε)(yε), we have uniform bounds
o

on sε and j ||yε(s)||2ds. By compactness, we can find s and a path 7 with γ(0) = x,
0

) = O and for some sequence εn going to zero, sEn->s and y£n-*7 in the weak-L2-
ology. Using the weak lo ii 2 ) d

Fatou's lemma, one sees that:

Q(x) ύ sί(γ) S limε^ 0

But since ρ(ε\x) rg ρ(x), we have the required convergence. •
Finally we would like to say a word about the applicability of the Combes-

Thomas method to boundary value problems. The Combes-Thomas method
exploits ideas of analytic continuation in a group parameter very similar to those
originally introduced for the study of dilation analyticity. Moreover, in order to
handle embedded eigenvalues, Combes and Thomas discuss both "boosts" and
dilations simultaneously in their paper. For this reason, there appears to be a
common misconception (see e.g. Faris [19]) that their method intrinsically uses the
dilation group which, of course, would invalidate applications to boundary value
problems. However, the basic group in their method is multiplication by ei0ίf for
some function / ; since this group leaves invariant the form domains of both the
Dirichlet and Neumann Laplacians, there is no problem using the Combes-
Thomas method to get fall-off of eigenfunctions in boundary value problems.

Appendix 2: Pointwise Upper Bounds

The upper bounds that Lithner [34] and Agmon [1] proved in the situation where
F-*co at infinity are only ZΛbounds, i.e. of the form e(1~ε)QφeL2 rather than
pointwise bounds.

Here we want to prove pointwise bounds. Since ρ is not usually globally
Lipschitz, the method of [17, Sect. 6] is not applicable. Originally, we proved a
result similar to Theorem A.2.1 below using path integral ideas but subsequently,
M. and T. Hoffmann-Ostenhof emphasized to us the applicability of Harnack
inequality ideas in the context of the iV-body problem (see below). With that in
mind we found the proof we give below:

Theorem A.2.1. Let us assume Hφ = Eφ with H= — \A + V{x) on L2(IRn) and
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Suppose f is a function for which efφeL2 and let r be a nonnegative function which
satisfies:

l i m |x |->oo(W- rW)=00.

Define:

g(x) = inϊ{f(y);\y-x\Sr(x)}.

Then for \x\ sufficiently large we have:

\φ{x)\^C;ll2r(x)~n/2e~9{x)\\efφ\\2,

where Cn is the volume of the unit ball in n-dimensions.

Remark. For |x| small the result is clear because one knows that φ is bounded
[13,49,30].

Proof We can find R such that:

{\x\^R and \y-x\^r(x))=>V(y)^E.

Thus using Kato's inequality:

on the ball of radius r(x) about x. Thus \φ\ is subharmonic in that ball so:

ί \φ(y)\dy
x\£r(x)

f \φ{y)\2dy\l2

χ\^r(x) J

; \ 2 . •

In terms of the notations of Sect. 2, it is clear that for \y — x\ ̂  1

Q(y)^Q-(x)-supN^! γ2V(u)
since we can always take as a trial path for the ρ_(x) problem, the path obtained
by first going in a line from 0 to x — y and then the path x — y + y with y a trial path
for the ρ(y) problem. Thus taking r = 1 in the above and using Theorem A. 1.1 we
have:

Corollary. (2.8) holds.

In terms of the above proof, we can describe the approach to iV-body pointwise
bounds which we prefer; it is essentially the approach exploited by the Vienna
group in their recent work [5, 24] exploiting Ήarnack inequality ideas" (also
called "subsolution estimates"). The above proof obviously goes through to turn
L2 to pointwise bounds so long as for some δ > 0 there is a Cδ with

\φ(x)\SC j \φ(y)\dy (A.2.1)

(the fact that C = C~1δ~n is irrelevant). But (A.2.1) for fairly general Schrodinger
operators is a result of Trudinger [20, 54]. There is a connection between all these
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things and Brownian motion; indeed (A.2.1) has a Brownian motion proof [6]
with only hypothesis on V

J \x-y\-in~2)V_(y)dy = 0 (A.2.2)
\x-y\^a

when n^3 and V_ = max(—V,0).

Appendix 3: Geometry of the Agmon Metric

The Agmon metric function ρ(x), for N-boάy systems is a basic object since it is the
rate of exponential fall-off of wave functions. In studying it, it is useful to think of it
as a minimum action: given any path y in

we say that y is ZΛrectifiable if there exists an L2 X-valued function, say y, with:

y(s) = γ(0)+]γ(u)du.
o

The action of y is then defined by:

^(y) = i ί \\y(u)\\2du+ \(Σy(u)-E)du, (A.3.1)
o o

where y is supposed to be defined on [0, ί] and where we used the notation Σx for
ΣD{x). Of interest is not merely

ρ(x) = inf {sf{y) y: [0, t] ->IRviV, y(0) - x, y(t) = 0, ZΛrectifΐable} (A.3.2)

but also the form of the minimum action path. That is because higher order
asymptotics should depend on more than just ρ indeed, in the analysis of [32],
Lieb and Simon use features of the geometry of this set up to obtain detailed
asymptotics in some special regions. Here, we wish to begin the study of the form
of y and the corresponding calculation of ρ. We will find explicit formulae for ρ in
the 3-body and in the atomic case.

Theorem A.3.1. There exists an L2-rectifiable path y minimizing the action subject
to y(0) = x, y{ί) = 0 (t variable). For any such path:

illy(s)ll2=Σy(s )-s (A.3.3)

for almost all s in [0, t~\. Moreover, ifD(y(s)) is constant in some interval (s0, s1), then y
is constant on this interval and so y is affine on (so,s1).

Proof. Since Σx — E^Σ — E, we see that stf(y)^.t(Σ — E\ so that trial functions for
(A.3.2) need only consider t bounded by To = 2ρ(x)/(Σ" — E). Let us define the set J

such that \y(u)du= -x and j \\y(u)\\2du^4ρ(x)\.
o o J
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J is not empty since any ZΛrectifiable path from x to the origin lies in J> if it is
defined on [0,ί] with t^T0 and if s/(y)^2ρ(x).

Topologize J by saying {tn,yn)-^(t,y) if and only if ίw-»ί and

tn t

if(s)°yn(s)ds-+ $f(s)oy(s)ds
0 0

for all L2 X-valued function / on [0, To] where:

is the scalar product inX and x. y. the usual scalar product in 1RV. In this topology
J is easily seen to be compact and stf is easily seen to be lower semi-continuous
since x-^Σx is lower semi-continuous. Thus s$ takes its minimum value on «/.
(A.3.3) holds as in Proposition 2.5 by noting that ab^\{a2 + b2) has equality only if
a — b and exploiting the in variance of

under reparametrizations.
As for the final assertion fix so<s2<s3<sv We need only show that y is

constant on [s 2,s 3] By (A.3.3), we need only prove that y is linear on that interval
since then the direction of y is fixed and its magnitude is fixed by (A.3.3). The
straight line y from y(s2) to y(s3) can only have D(y(s)) =t= D(y(s2)) for finitely many s
and thus, the length of y can be decreased if y is replaced by γ in [s2, s 3], unless y
already equals γ there. Π

As we will discuss below, we believe that there are at most N — 1 times 0 = s0

<sί<s2<...<Sj<sj+1=t (j^N—ί) with γ constant on each interval lsί_ι,si'],
with D(y(s)) a constant Dt on such interval if finitely many points are removed,
z = l, . . . j ' + l , and with DιoD2 O . . . D = * D J + 1 . At this point we are unable even to
prove that, in general, the minimizing y has finitely many intervals with y constant
on each! However, we can prove the following which we need in Sect. 4:

Theorem A.3.2. For any ε>0, there is a path y:[0, t]—>xfrom x to the origin with
s/(y) I* ρ(x) + ε and so that [0, ί] is the union of a finite number of closed intervals
with γ(s) and D(y(s)) constant on the interior of each of these intervals.

Proof We begin with some preliminary remarks. Let

First, if y is constant on (a,b) then either y([α,b])CiTD or else y([a,b~§nΠD is an
empty set or a single point. Thus if we show that [0, ί] is a union of finitely many
closed intervals on each of whose interiors y is constant, then by further cutting the
intervals we can arrange for D(y(s)) to be constant.

Let y0 be a minimizing path for sd. Suppose that for each δ >0, we find a finite
number of special open intervals in [0, t] with the total length of these intervals at
most δ and so that their complement is a finite union of closed intervals on whose
interiors y0 is constant. Let y be the path obtained by linear interpolation of y0 on
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each of these special open intervals. Then clearly:

so that:

and the theorem follows.
We say that s0 is a boundary point of type Do if D(yo(so)) = Do and if yo(s) is not

constant near s0. Suppose that s0 <s1<s2 are three boundary points of type Do.
Then we claim it cannot happen that D(γ0(t))oD0 for all ί e O ^ s J . For if
D(yo(ί))i>Z)o, then Σyo{t)^ΣDo and thus the action can only be decreased by making
y0 linear on [ S Q , ^ ] which would imply that sί is not a boundary point of type Do.

Now, ||y( )|| is continuous and non-vanishing on [0, t — (5/2], so it has a
minimum value, say ε. Let D be a decomposition with two clusters. If D(yo(s)) = D
for 0^s^t — δ/2, then the distance between individual particles is bounded away
from zero independently of s. If D(yo(ήtf>D for some t>s, it must happen that two
particles in distinct clusters of D come together. Since ||y( )ll is bounded by (A.3.3),
we see that there is a finite time necessary for this to happen. Combining this with
the three time result in the last paragraph, we see that in [0, t — δ/2] there can be
only finitely many boundary points of type D. Thus, in this interval, there are only
finitely many boundary points of type for a D with two clusters.

About each such point'remove an open interval so that the total size of these
intervals is δ/4. Let / be [0, t — δ/2] with these intervals removed.

Let D' be a decomposition with three clusters. Consider all sel with
D(y(s)) = Df. We claim that the minimum intercluster distance in such y(s) must be
bounded from below since / is compact and there are no two cluster boundary
points in /. Thus, as in the two cluster argument, there are finitely many boundary
points of type D' in /. Proceeding inductively, we find a finite number of open
intervals of total size δ containing all boundary points. This completes the
proof. •

Having established existence, we should say a word about uniqueness.
Uniqueness need not hold indeed a sign of non-uniqueness is non-smoothness of
ρ(x) at points where Σx is smooth. For example, in the two electron atomic case
(see below) on IR2v (N = 3) we have:

where εx <ε 2 . If x 1 φ x 2 and both are non-zero, Σx will be smooth but ρ is not
smooth at points with |x1 | = |x2|. Thus, there should be a non-unique geodesic
[from x = (x1 ?x2) to the origin] at points with |χ 1 | = | χ 2 | φ 0 and x1ή=x2. Indeed,
the path given in Sect. 3 and the path obtained by interchanging the roles oΐr1 and
r2 are both geodesic for this problem.

There are even more extreme cases on non-uniqueness. For example consider
three particles of mass 1 and suppose only the thresholds Σ2 and Σ3 are non-zero
and these thresholds and the energy E obeys (we use the notation Σk for ΣDk with

-E + Σ2<3(-Σ2) (A.3.4)
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a n d : , t /

oc=]/^(-E + Σ3) = \^T2+ ]/^(-E + Σ2)=β. (A.3.5)

In terms of coordinates r12 = xί — x2, Rι2;2, = x3~i(xi JrXi\ ^ n e mass weighted
norm has the form:

II fr D \ | | 2 _ 1 2 , 2 β 2
Hv l ,2 ' ' K 12;3/l l ~ 2 Γ 1 2 ^ 3 Λ 1 2; 3 *

The straight line path from (rί2 = 0,R12.3=A)to (0,0) has length α|A|. The point of
(A.3.4) is that it implies that there is a minimum length path yA from (0, A) to the
origin, which has two straight line segments; one from (0,A) to a point with
x1 = x 2 φ 0 and then from there to the origin. It will have length jδ|A|. Since α = j3,
both these paths have the same length, but if θe [0,1], the path which is a straight
line from (0, A) to (0, ΘA) and then yΘA will have the same length! Thus there are
examples with an infinity of geodesies.

In spite of these examples, it seems likely that there is a closed set X CX of
codimension at least 1 so that ρ is smooth onX\X" and geodesies from xeX\X to
0 are unique.

Next we want to consider the atomic case. As a preliminary we need a general
result.

Definition. Given any two partitions D,D\ let DCΛD' be the partition of intersections
of the clusters in D and D' (i.e. DCΛD'^D and DnD'^D' and it is the maximal
partition with this property).

Theorem A.3.3. Let ρ(x) be a function on X with ρ(0) = 0 and obeying:

\ρ(x)-ρ(y)\SV2\\x-y\\]/ΣD{x)nDiy)-E. (A.3.6)

Then ρ^ρ where ρ is the Λgmon metric.

Proof. Let y be a path from x to 0 for which there exists 0 = t0 < tί < ... < tk with y(s)
and D(y(s)) constant on each interval (ί£_ l 9ί£), ΐ = l , ...,fe. Now fix i and let
x = y{ti_ΐl y = y{ti\ and Di = D{y{\(ti_1 + ί.))). Then D^Dix) and D^D(y) so that

and ΣDi^ΣD{x)nD{y). Thus:

J ]/2(ΣDί-E)\\y(s)\\ds^ \/2]

Consequently:

where £{y) is the length of y in the Agmon metric. Minimizing over all such y and
using Theorem A.3.2, the result follows. •

Theorem A.3.4. Consider an N + 1 body system with particles 0,1,..., N with masses
m0 = co and wι{ = \, z'=l, ...,N. Suppose that there are numbers:
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so that:

w/ϊβrβ j is the total number of particles in clusters other than the one containing
particle 0 (i.e. the binding energy only depends on the number of particles in the same
cluster as 0 and εt is the removal energy of the i-th particle starting from all particles
bound). Given an N-tuple (x1? ...,xN)ex = lRNv define r1 to be the maximum of the
|xj, r2 to be the next largest, etc Then :

N

ρ{xl9...9xN)= X l / v \ = § ( * i , •••,%)•
ί = 1

N

Proof Let us begin by finding a path with action Σ |/ε^rί which will show that
ί = 1

ρ^ρ. Without any loss of generality we can renumber the particles so that:

Define tv ...,tNby ti = \xi\/]/4εί i = l, ...,N. By the ordering of the |χ.| and the εf we
have that

< . . . ^ ί 1 . (A.3.7)

Let:

Notice that on [0,f ] we have |^(s)|= ]/4ej. Now let

Then:

whenever se(£ ,f.^), and so, in that interval:

ι ~ 1 m
Σγ{s)-E = εi+...+εi_1=Σ^\

Thus:

tγ m

0 j Z

and so ρSρ To complete the proof, let us show that ρ obeys (A.3.6). Let:
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[i.e. C0(x) is the set of particles in the cluster of D(x) containing 0] and let n(x) be
the number of elements of C0(x). Then clearly, for all but finitely many a in [0,1]
we have:

[exceptional values are given by α for which ax + (l — a)y = 0 although x4=0 and
J V - l

y + 0]. Since Σx= Σ ej+1, we conclude that:
j = N~ n{x)

^ax + {l-a)y ZjD(x)nD(y)

except for a finite set of α. Moreover, it is easy to see that ρ(ax + (1 — oc)y) is smooth
in a for all but a finite number of values of a [exceptional values are those where
\oixt + (1 — a)yi\ = \axj + (1 — a)yj\ for some i+j with the equality not holding for all
α] and:

d

Thus, integrating -^, (A.3.6) holds. •
da

In studying geodesies, there are several useful pictures of how geodesies look at
points where γ and D change. We want to describe two pictures: the optical
analogy and the mechanical analogy. The basis of the optical analogy is:

Proposition A.3.5. Consider ΊR2 with the usual Euclidean structure and coordinates.

Suppose ε 1 ? ε 2 > 0 and that lengths of paths are determined by multiplying the

Euclidean length by ]/~&[ if the path is contained in the axis {(x,y)eM2 ;y = 0} and

otherwise by | /ε 1 +ε 2 - Let θ be defined by tanθ = |/ε2/ε1, and suppose x,y>0.

Then the geodesic form (x, y) to (0,0) is a straight line if and only if y/x §; tan θ. If
y
— < tan 0, then the geodesic consists of two straight line segments with intermediate
x
point (xo,0) determined by the condition that the angle between these segments is θ
(see Fig. i). Moreover, in that case the length of the geodesic is:

(A.3.8)

Fig. 1

(0,0) (xo,0)

The proof is a simple exercise of elementary calculus because clearly, we have only
to minimize the length of all paths shown in Fig. 1, i.e.,

subject to x o ^O. So it is left to the reader.

Equation (A.3.8) helps explain why in Theorem A.3.4, it is j/ε^ that enters even
though the basic lengths are multiplied by square roots of sums of ε/s. We call this
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result the optical analogy because it says that the angle of incidence θ is exactly
that at which SnelΓs law predicts that the refracted wave will move along the
surface. If we think of the plane in an TV-body system as limit of thin slabs, this is
exactly the condition for light to stay in the slab.

The above result determines the angle between successive segments of an
Agmon geodesic.

The mechanical analogy is based on the fact that X consists of sets of points
N

(x1 ?..., xN) with Σ mixi= 0 Thus, a path y in X consists of N paths y{ in IRV and at
i= 1

points 5 where γ(s) exists we have:

ΣmMs) = 0. (A.3.9)
i = l

This can be thought of as momentum conservation and (A.3.3), which holds for
minimum action paths, as energy conservation. An increase in the number of
clusters in D(γ(s)) represents some clusters "decaying" and there is an energy gain
in this. Suppose at some s0 we have the breakup of a single cluster C into two
clusters Cί and C2. Using the fact that one is minimizing an action, it is easy to see
that the velocities of all other clusters must be fixed as s passes through s0, or else
one could decrease the putative minimum action. This consistency of the other
velocities can be seen to be precisely equivalent to the angle condition in the
optical analogy!

Next we want to compute exactly the Agmon geodesic in the three body case.
The following is critical to our analysis:

Proposition A.3.6. Let Do be a partition with precisely two clusters C1 and C2, and
let ΠD = {xeX D(x) = Do}. If there is an xeΠD, x Φ 0 so that the straight line from x
to 0 is not an Agmon geodesic, then that is true for all xeΠD and moreover, any
minimum length path γ(s) from x to 0 does not lie in ΠDfor small s.

Proof The underlying Riemannian structure is invariant under scaling and under
simultaneous rotation of all the x . This shows that given any yeΠD with \\y\\ = 1
and any path of length £(y) from y to the origin, there is a path y from a given
xeΠD to the origin with length ^{y)=\\xV(yX obtained from γ by scaling and
rotation. Moreover y lies in ΠD if and only if y lies in ΠD. This proves the first
result.

Now, for xeΠD, let α||x|| be the length of the straight line from x to 0, and let
jβ||x|| be the Agmon distance from x to 0. By hypothesis β<ot. If a geodesic from x
to the origin begins in ΠD, then letting g(s) = y(s) for small s, we see that:

which is inconsistent with β<ot and the triangle inequality. Thus all geodesies do
not begin in ΠD. •

Corollary A.3.7. Let y be an Agmon geodesic from a point XEX in the three body
case to the origin. The y can be choosen to either be a straight line or a broken line of
two segments, one from x to some yeΠDfor some D = {{i,j}, {k}} and the other in
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Proof. Consider each partition Dk = {{ί,j}, {k}} in two clusters and the correspond-
ing Πk = ΠDk. If the geodesic from points in Πk to 0 cannot be choosen as straight
lines in Πk we call Dk ineffective, otherwise we call Dk effective. Let y be a geodesic
from xeX to the origin 0. If this geodesic crosses an ineffective plane, then, by the
above Proposition, the path cannot shift to lying in this plane so it must pass
directly through and remain straight (otherwise, we can shorten length in an
obvious way). Let x0 be the first point on the geodesic lying on an effective plane.
The path must be linear from x to x0, and then can be choosen (perhaps by
changing y: see the second example of non-uniqueness!) to be linear from x0 to

o. •
Now we can describe the metric and geodesic in the three-body case. Let

m1,m2,m3 be the masses and let:

μ1=(m~1+m~ίy1 and M1 = [mϊ1 + (m2 + m3)~
1 ] " * ,

and similarly for μ 2 ,M 2 ,μ 3 and M 3 . Let Σx be the threshold for the partition
D 1 = {{1}, {2,3}} and similarly for Σ2 and Σ3. Given X = ( X 1 5 X 2 5 X 3 ) G I 5 let:

yί = \x2-x3\ and z1 = \x1-{m2

and similarly for y2,z2,y3 and z3. Note that:

is independent of i and is the square of the mass weighted norm of x.
Define:

if {—Σλ)μ1y\^{Σ1

otherwise
j 1 y — \ — 1/

and ρ2(x) and ρ3(x) similarly. Then:

Theorem A.3.8. In the three-body case we have:

ρ(x) = min (ρx(x), ρ2(x), ρ3(x)).

Remark. This means that the upper bound found in [17, Sect. 8] is optimal, at least
for the ground state.

Proof We consider all paths from x to the origin in two linear segments with
x'eΠD. as intermediate point. By the above Corollary we know that we can look
for geodesies in this class. Now, by Proposition A.3.5 a geodesic will have
intermediate point x' different from 0 if and only if ( — Σ.)μ.y? ^ M z?(£. — E\ in

which case its length is ]/Mizi]/2(Σi — E)+ yrμiyi]/2( — Σt). Otherwise x' = 0 and
the result is clear. •

Given the above complicated form for the three body case, one expects that the
general iV-body case will be ghastly. The natural conjecture is that the number of
functions needed in the general case is the number of strings, i.e. sets of partitions
DVD2, ...,DΠ with 1,2,..., JV clusters respectively and with DίoD2t>...t>DN (e.g.
there are 18 strings when JV = 4). It seems to us possible that the following is true:
"the Agmon geodesic y can always be choosen so that there is a string Dλt>...t>-DN
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and times θ = to^t1 ... ^ίjv-i s o t n a t T *s constant on each interval (ί f _ l 5 ί f ) and
for all but finitely many s in that interval D(γ(s)) = DN+ί_". The proof of this
would go a long way towards finding an explicit formula for ρ in the iV-body case.
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Note added in proof. S. Agmon has emphasized to us that although stated in his announcement in terms
of global hypotheses on V, his passage to pointwise bounds only requires local hypotheses on V.




