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1. Introduction 

In this paper we shall discuss solutions of the time independent Schrodinger 
equation 

Since V will not be required to go to zero at infinity, one can obtain results on 
solutions of Hu = Eu by changing V to V - E. Two kinds of results will interest 
us. The first are often called subsolution estimates since they hold for functions 
with Hu 5 0, u 2 0 :  

the constant D depending only on some local norms of V. In many cases (1.3) 
will hold with a constant D which is independent of x. The second kind are 
results of the type of the Harnack inequaliy. It states that if 52,Q' are bounded 
open sets with c 52', then there is a constant C, depending only on 52,C and 
norms of V ,  such that all solutions of (1.1) with u 2 0 on 9' satisfy 

( 1 -4) u ( x ) S C u ( y )  

for all x, y E 52. We remark that if HI+ = 0, then H lI+l S 0 so that (1.3) holds with 

Both types of results were proven for a wide class of potentials V by 
Trudinger [36], following the approach of Stampacchia (341, which uses in part a 
set of ideas due to Moser [20]. Our interest in these results was stimulated by 
their use in work by M. and T. Hoffmann-Ostenhof and collaborators [I], [14], 
[15]; in particular, (1.3) is an ideal tool for passing from exponential fall-off in 

24 = 14. 
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average sense to pointwise exponential fall-off [ I ]  (see [30], [9] for other meth- 
ods), and ( 1.4) is useful in studying nodes [ 141. 

Our main goal here is to provide a proof of these and related results by 
exploiting Brownian motion ideas. This approach is suggested by relating (1.1) 
with an integral equation, via the Feynman-Kac formalism. (This relation has 
already been used in deriving a simple proof (see [ 151) of one of the consequences 
of (1.4).) The naturalness of these methods is shown by the fact that we succeed 
in proving necessary and sufficient conditions on the potential V so that a strong 
form of (1.4) holds. Explicitly we present the following definitions. 

DEFINITION. We say that H = - ;A + V obeys a strong Harnack inequality 
if and only if for each R.d  > 0 there is a function gR,d( . )  on ( 0 . d )  with 
limaLo gR,d(a)  = 0, such that if u is defined in { z J  Iz - XI  < 2 d ) ,  for some 1x1 5 R, 
and satisfies there 

( i )  H u  = 0 (distributional sense), 
( i i )  u 2 0, 

then 

for ally with Iy - XI 5 d .  

DEFINITION. We say that V E Kl!"', v 2 3, i f  and only if, for each R, 

lim [ sup J ~x - ~ J - ( J , - ~ ) J  ~ ( y ) l d y ]  = 0. 
U l o  ( . r lCR l . v - ~ l ~ u  

(1  4 

When v = 2, Ix -yl-"'-*) is replaced by { -1nJx - y l ) ,  and when v = 1, by 1. 

Among other things, we prove the following result: 

THEOREM 1.1. If V E K,!"', then H obeys the strong Harnack inequality. 
Converseh, suppose that 

(i) V S 0, 
(ii) for all R ,  there are eR > 0 and cR < QO such that 

for all $I E C,oO supported in ( x 1 1x1 5 R }, and 
(iii) H obeys the strong Harnack inequality. 

Then V E KF. 
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We remark that if V is allowed to have severe local oscillations, then i t  is 
quite likely that the strong Harnack inequality can hold even though V B K,f: 
see Example 3 in Appendix 1. 

While one can construct rather pathological examples in K,!‘” for which 
Trudinger’s methods will not work (see Example 2 in Appendix I ) ,  the main 
point of our work is not in such borderline cases, although it is a nice bonus to be 
able to handle them, and in physical situations one wants to be able to deal with 
some unbounded V’s (like sums of Coulomb potentials which certainly lie in K,,; 
see below). Rather, we feel that our approach is very natural. Indeed, for V = 0 
the standard method for proving the Harnack inequality is to get upper and 
lower bounds on the Poisson kernel, as one variable varies on the boundary and 
the other on a compact set away from the boundary. In essence, this is exactly 
how we shall prove the Harnack inequality here! 

To introduce the formula we shall use for the Poisson kernel for H. let us 
recall (without giving the precise conditions for validity) three formulas from the 
theory of Brownian motion as applied to Schrodinger operators [31] and to the 
Dirichlet problem (221. Let H, = - + A ,  and let E, (respectively P,) denote the 
expectation (respectively probability) with respect to Brownian motion starting at 
x .  If A is a set and f a function, E , ( J  A )  = E V ( f x A )  with x A  the indicator 
function for A .  The first formula is a standard application of Brownian motion: 

The second is the Feynman-Kac formula: 

and the last is the formula for solving the Dirichlet problem. While one big 
advantage of the Brownian motion approach to solving the Dirichlet problem lies 
in its ability to effortlessly accommodate irregular regions, we describe it for an 
open bounded region 52 with a smooth boundary an. For a continuous path, b, 
let T ( b )  = inf { s L 0 1 b(s)  B a), the first exit time. By continuity, b( T(b))  E an. 
Then, for any measurable f on an define 

(1.9) (Mof)(x) = E.,(f(b(T))), 

writing T for T(b) .  This solves the Dirichlet problem in the sense that Mof is 
harmonic in and for anyy E an, limx-,!(Mofi(x) = f(y) i f f  is continuous a ty .  
A glance a t  the change from (1.7) to (1.8) suggests that the solution of the 
Dirichlet problem for H = - + A  + V should be 

(1.10) 
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In  Appendix 4, we verify that this indeed solves the Dirichlet problem for any 
V E K,! so long as there is an cy > 0 for which 

for all + E CF with supp+ c 52 (and a condition like (1.11) is needed for M,.  
even to be defined). 

We should emphasize that there has been a prior work on the solution of the 
Dirichlet problem for Schrodinger operators. While (1.9) may seem quite natural, 
it is not valid without some assumptions on 52 in relation to V (see Remark 1 in 
Section 2). The relation (1.9) was studied by Chung-Rao [7] (see also [6] ,  [42]) 
who required V to be bounded; however the key condition (1.11) is not 
mentioned in that work (and neither are the various LP estimates which we 
prove). Closely related ideas appear in an earlier work by Khas'minskii [17]. 
Explicitly, he shows that ( M , . . I ) ( x )  = u ( x )  solves Hu = 0, and he emphasizes the 
importance of a condition which is closely related to (1.1 l) ,  namely the existence 
of a strictly positive solution of Hu = 0. 

I t  is not the general solution of the Dirichlet problem itself that is of 
importance to us in proving (1.3) and (1.4). Rather it  is the closely related fact 
that if Hu = 0 in a neighborhood of 52, then for x E 52 

(1.12) 

We shall give several proofs of (1.12) in Section 2 for 52 sufficiently small spheres 
about any fixed point xo .  The one that is most illuminating is simple under the 
extra restriction that u is a global solution of Hu = 0. Then e- IHu = u, and thus 
(1.12) holds for T replaced by any fixed time, t. The Markov property of 
Brownian motion then implies that 

is a martingale. Relation (1.12) results by applying the standard theorems on 
evaluating a martingale at  a stopping time (there is a critical subtlety in that T is 
unbounded and it is here that (1.1 1)  enters). 

Now fix xo. Let 52' C 52 be two spheres about xo, so small that (1.12) holds. 
We shall obtain (1.3), (1.4) from a pair of estimates which hold if C and !d are 
shrunk sufficiently, namely 
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and 

if f 2 0. In these formulae, du is the usual surface measure. Inequality (1.13) 
implies (1.3) by averaging over a small interval of values for the radius of 9, and 
(1.4) is an immediate consequence of (1.13), (1.14) and a compactness argument. 

One of the nicest features of the Brownian motion approach to these 
problems is that in a certain sense (1.13) implies (l.l4)! For the Schwarz 
inequality immediately implies that, for f 2 0, 

(1.15) [ ( M o f ) ( x )  125 ( M v f ) ( x ) ( M -  v f  )(x) 

where Mo is the map defined by (1.10) when V = 0, i.e., the Poisson kernel. 
Relation (1.15) says that if we have the upper bound (1.13) for M-, and the 
lower bound (1.14) for M, (the ordinary Harnack inequality), then we have ( I .  14) 
in general. We describe the details of this argument in Section 2. 

This focuses attention on the bound (1.13). Given the similarity of (1.10) and 
( I .@,  the bound ( I .  13) is very close to the bound 

(1.16) Ile-'"4Im 2 c,ll+llI- 

Let us recall the proof of (1.16) found by Carmona [5] and Simon [31] (a 
different proof is implicit in Kovalenko and Semenov [ 181; earlier, under stronger 
hypotheses on V,  (1.16) was proven by related methods by Herbst-Sloan [12]). 
An important input is the following basic result, which we shall use several times. 

THEOREM 1.2 (Khas'minskii's lemma). Ler g be a non-negative function on 
R" with 

(1.17) 

Then 

(1.18) 

Proof: Obviously, it suffices to show that 
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In this expectation, fix 0 < sI < . . - < s,,- I and condition on the path b(s )  for 
s E [O.s,,- I]. Since Brownian motion starts afresh at b(s,,- I),  and s,, - s,- I runs 
from 0 to r - s,!-, < r ,  we can use (1.17) to bound this conditional expectation. 
The result is 

A,, 5  CIA,,.-^, 

from which A,, S a”  follows by induction. 

The result appears to go back at least to the paper of Khas’minskii [I71 after 
whom we name it. It was later rediscovered independently by Portenko [23] and 
by Berthier-Gaveau [3]. (In [31] i t  is dubbed “Portenko’s lemma” since its author 
did not know of Khas’minskii’s earlier work.) 

For later purposes, we note that this result holds in much greater generality 
than stated. First, since the proof involves integration over the last time interval, 
it is applicable also if r is replaced by a (nonanticipatory) stopping time T, which 
“starts afresh”. Secondly, the proof extends without change to an arbitrary 
Markov process, replacing the Brownian motion. 

We can now describe the Carmona-Simon proof of (1.16) under suitable 
hypotheses on V: 

Siep 1. Use Khas’minskii’s lemma to conclude that 

for any A 5 2 and t > 0 sufficiently small, and then use the semigroup property 
to get ( 1.19) for all r > 0 with C replaced by Ce 

Srep 2. Use the Schwarz inequality in (1.8) to show that 

which implies 

Using properties of exp { - rHo ; and ( 1.19), we have that 
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Step 3. Use duality (selfadjointness of e - r H )  and (1.20) to conclude that 

(1.21) l F P {  - r ( H o  + V ) f l l 2  C,llflIl. 

Step 4. By the semigroup property, (1.20) and (l.21), we have that 

If one tries to mimic this argument to prove (1.13), there is no difficulty with 
Steps I and 2 (see Section 2). This yields an effortless proof of the analogues of 
(1.13) with J If(y)du(y) replaced by [J l ( f ( y ) 1 2 d ~ ~ ) ] ' / 2 ,  and thus of (1.3) with 
Jlx-.,,l<I u(y)dy replaced by (Jl.r-~,.l<l lu(y)12dy) (which suffices for many 
applications; see [I]) .  Although at first sight, M does not seem to have a 
semigroup property, it does: namely if Q' c Q" C 52, and if we make the Q 
dependence of M explicit, then ( M s 2 ' g ) ( x )  = ( M ' y ) ( x )  for x E 52' denoting g 
= ( M ' y )  PaQ". This is a simple consequence of the strong Markov property of 
Brownian motion (see Proposition A.4.9). Thus Step 4 poses no problem. It turns 
out that the trivial Step 3 of the above proof is the most subtle in the analogous 
proof of (1.13), since M is not symmetric. The key will be to realize the adjoint of 
M in terms of a Markov process (Brownian motion reversed at an exit time), 
which would permit to mimic Steps 1 and 2 also for the adjoint of M. 

In Section 2, we prove (1.12) and then use it to get ( I .  15) and to proceed 
through the analogue of the above Steps 1 and 2. In Section 3, we develop a 
convenient way of studying the dual of the map M and then complete the proofs 
of (1.13) and (1.14). Section 4, discussed below, is devoted to the study of spaces 
K,  and K,'". In Section 5 ,  we prove Theorem 1.1 and, in Section 6, (1.3) is proven 
for solutions of Hu 5 0. In Appendix I ,  we present certain pathological examples 
which delimit K. Appendix 2 contains some estimates on Green's functions 
needed in Section 3. In Appendix 3, we discuss various facts about exit times, 
including the remark that for any increasing function f, and all x and Q, 
E , ( f ( T ) )  is maximized, for a fixed value of ( Q 1 ,  by taking x = 0 and Q a ball 
centered at 0. For "nice" Q's, we also give an explicit formula for the joint 
distribution of T and b ( T ) .  In Appendix 4, we discuss the solution of the 
Dirichlet problem under the hypothesis ( 1.1 1). 

We close this introduction with a few words about the classes K,, and K,,"". 
This is partly because in Sections 2 and 3 we require some facts not proven until 
Section 4. We also wish to emphasize that these classes, which have already been 
introduced by Kato [16], are very natural for the problems discussed here. K,? is 
defined before Theorem 1.1, and K,, (at least for v2 2) is its analogue, with 

replaced by sup,r (K, is defined in Section 4). Spurred by their 
relevance, which is manifested by Theorem 1.1, we prove in Section 4 a number 
of equivalences. Some of these require that V S 0 or that V has compact support. 
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To be able to summarize the results we suppose both conditions in the theorem 
below. We emphasize, however, that most results do not require these restrictions 
( H 0 =  - fA ) .  

THEOREM 1.3. 

(i) V E K,; 
(ii) lim,Losup,, Ex(& 1 V ( b t s ) ) l h )  = 0; 

(iii) ( -A) - ' l  VI is a bounded map from L" to the subspace of continuous 

(iv) ( -A) - ' lV l  is a compact mapfrom L" to L"; 
(v) as map on L' ,  V is - A-bounded, in the sense of Kato, with relative bound 

(vi) exp( - f (  H, + V ) }  is bounded from L" to L" and its norm satisfies 

(vii) for some a and E > 0, (+, HOG) + ( I  + c)(+, V+)  2 - a(+,+) and H 

Moreover, if V is spherically symmetric and v 2 3,  then (i)-(vii) hold if and only 

(viii) J'trI V(r)l dr < M, where R is chosen so that V is supported in the sphere 

Let V 5 0 be a measurable function of compact support on Iw'. 
The following are equivalent: 

junctions ( i f v -  1,2 we replace ( - A ) - '  by ( - A +  l ) - ' ) ;  

zero; 

h J 0  Ilexp{ - t ( H ,  + V ) )  lloo.x = 1; 

= H ,  + V obeys the strong Harnack inequality. 

if 
of radius R. 

There are also a number of simple conditions which imply that V E K,; note 
that (i) (below) is slightly weaker than the hypothesis that Trudinger uses in his 
discussion of Harnack's inequality (he requires C(E) 5 DE -"'): 

THEOREM 1.4. Any of the following imply that V (no restriction on sign or 

( i )  (+IV)+)S c ( + , H , + ) +  C(r)ll+ll* wirh C ( E ) S  Dexp{ B E - " )  for some 

(ii) V ( x )  = W( Tx)  with T a linear map from R" onto R" and W E k,; 
(iii) f o r s o m e p > i v ( Z  l , i j u =  I ) ,  

support) lies in K,: 

a < I ;  

I V(x) I"d"x< w ;  
s;p~x-y,L, 

(iv) v 2 3 and, for some a > 0, 

Notice that, by (ii) and (iii), if v = p N  and 
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for x = ( x l ,  - - . , x,,), x, E Rp, with some OL < 2 (if p = 1, (Y < l), then V E K,,. In  
particular, the Coulomb potentials which arise in atomic physics, can be ac- 
commodated. 

In Sections 2 and 3, we require the following two results, which are proven at 
the end of Section 4. 

THEOREM 1.5. If u is a distributional solution of ( H ,  + V ) u  = 0 in an open set 
0 (in the sense that u, Vu E L,!, and f ( - A+, u)  + (+, Vu) = 0 for any + E CF(0)), 
and if V E K,!"', then u is a continuous function. 

Remark. By an explicit example, it is easy to see that it need not be true that 
u is Holder continuous of any order. 

THEOREM 1.6. Fix xo  and V E K,,!"'. Then for any c there is an R so that 

( 1.22) supE,(dr l  V(b(s ) ) lds  
X € Q  

for all 0 C { yI Iy - xoI d R ). R depends on4 on local K, norms of V. 

In (1.22), T is the first exit time from 0. If v 2 3, we can replace T by co, if 
we also replace V ( y )  by ? ( y )  = V xL2(y) with xs2 the indicator function of 0. 

We shall also need the following result which, given (1.9), is just the usual 
Harnack inequality. It can be proven, for example, by noting uniform upper and 
lower bounds on the Poisson kernel, as x varies in 0' a n d y  in a0. 

THEOREM 1.7. Let 0, Sl' be concentric open balls with c 0 and let du( y )  be 
the usual sut-jace measure on an. Then, there exist constants 0 < C, D < co such 
that, for any f E L1(i3s2), 

(1.23) 

and, for f 2 0 in L'(dS2), 

(1.24) 

In these expressions, T is the first exit time for 0. 

One final remark: in Section 3 it will be convenient (although not really 
necessary) to suppose that v L 3. While this is a restriction on (1.13) and (1.14), it 
is no restriction on (1.3) and (1.4), since by Theorem 1.4 (ii) we can always add 
extra dimensions and take u and V independent of the extra coordinates! 
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2. The Poisson Kernel for the Schrdinger Equation 

Our main goal in this section is to prove (1.12) for eigenfunctions. Since this 
justifies the study of the map M,., we shall then develop the simplest properties 
of M,,, explicitly (1.15) and the bound 

The following result is so basic that we shall give it three proofs. 

THEOREM 2.1. Let V E K,!"'. Let u be a continuous function obeying 

(2.2) H u = O  

in distributional sense. For an-y xo there exists R > 0 (depending on local norms of 
V )  such that, for every ball 52 about xo of radius at most R ,  we have 

and, for any x E a, 

where T is the first exit time from 52. 

We shall first give a mixed, analytic-probabilistic, proof which does not 
require any extra hypotheses on u. Remarks about extensions to other 52 will be 
offered later. Recall that, by Theorem 1.5, any distributional solution of Hu = 0 
is continuous, after a change on a set of measure zero. 

Proof: By Theorem 1.6, we choose R so that 

(2.5) 

and then use the proof of Khas'minskii's lemma (Theorem 1.2) to conclude (2.3). 
Moreover, this lemma also shows that 
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Let H f  be - ;A with Dirichlet boundary conditions on an. Then, it is easy to see 
(see Section 4) that ( H t ) - ' V u  is continuous on a and vanishes on &?. Moreover, 
in distributional sense, 

H, u + H t  - I (  V u ) ]  = Hou + Vu = 0. [ 0 
Since u + ( H i 2 ) -  I (  Vu) has boundary values u pan, we see that, on a, 

where the function g is harmonic on Q and continuous on an, with g(y )  = u ( y )  
for y E 82. Using (1.9) for g and Lemma A.4.4 (in Appendix 4) for (Hi ' ) - 'Vg,  
we see that 

Iterating and using the Markov property (since u is bounded on a, (2 .5)  justifies 
taking conditional expectations), we obtain 

with 

By (2.6), RN +O as N + 00 and the proof of (2.6) shows that one can sum the 
exponential series to get (2.4). 
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First Alternate Proof of Theorem 2.1: For this proof, we suppose that u has 
an extension to all of R' obeying H u  = 0 with u E L", and that V E K,. It then 
follows from the Feynman-Kac formula ( 1.8) and the Markov property of 
Brownian motion that 

is a martingale. Moreover, it is continuous in t for a.e. b since u is continuous (by 
assumption) and since fi I V(b(s))l dr < 60 for a.e. b. V E K, implies (see Section 
4) that, for each fixed n,  

Therefore, if T, = min(n, T ) ,  

by the standard result on evaluating martingales at  a stopping time; (2.7) is 
needed to pass from discrete stopping times to a continuous stopping time via a 
dominated convenience theorem. 

Equation (2.8) holds without any restriction on the size of Q. Some restriction 
is needed to assure that we can replace T,, by T (see Remark I below); with the 
restriction (2.5) and Khas'minskii's lemma, we have that 

so that the limit T,, + T can be justified by dominated convergence. 

Remarks 1. The following could almost be a textbook example of the 
dangers of evaluating unbounded martingales at a stopping time: let u = 1, 
52 = (0,l) and V = - 4 T', so that u ( x )  = sin(nx) obeys H u  = 0. Then (2.8) holds, 
since u(b(T) )  = 0 for a.e. b and exp( -Jl V ( b ( s ) ) d s )  < 00 a.e. b (since T < 60 

a.e. b). Nevertheless (2.4) fails. The problem is, of course, that 

does not go to zero as T +  60. 

2. One can use the argument in the proof of Lemma A.4.2, in place of 
Khas'minskii's lemma, to control (2.9). Doing this, one sees that (1.1 I )  is really 
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the only restriction needed on Q for (2.4) to hold. As we shall mention shortly, 
(1.1 I )  holds automatically if Sl is shrunk. 

Second A Iternate Proof of Theorem 2.1 : This proof uses the fact that we have 
solved the Dirichlet problem in Appendix 4. Since V E KF, H - f H ,  = f H ,  + 
Vxl is bounded below as an operator if xI  is the indicator function of the unit 
ball, Q', about x,. Thus, for + E C,"(Q) and Q C st', 

I ( + , H + ) d ' x b  1 JV+I2d'x- a Ir#~(~d"x. 

When the ball 52 is shrunk, the lowest eigenvalue of H ,  behaves like c/diam(Q)2. 
We see therefore that H 2 a > 0 for small enough balls. Hence, by Theorem 
A.4.1, the right-hand side of (2.4), call it f ( x ) ,  is well defined. Furthermore, u - f 
obeys: (i) u - f E C(H), (ii) H ( u  -f, = 0, and (iii) u - f = 0 on an. 

Since A(u - f) = V(u -f> E L'(@ (by u - f E L*@), K,,'" c L;K), we have 
that V( u - f) E L2@) (see, e.g., [33]). An elementary argument shows that if 
g E C @ ) ,  Vg E L2(Q) and g vanishes on aQ. then g is in Q ( H , ) ,  the form 
domain of H,; and if further Hg = h E L2 (distributional sense), then ( g ,  H g )  
= ( g ,  h) as the Dirichlet form. Since H 2 a > 0, we have a contradiction unless 
u - f = 0. This proves (2.4). 

The last proof requires only H 2 a on L2(a) ,  so it shows that R may only 
depend on KY norms of V -  = max(0, - V). This remark will be used below. We 
now define a map M," from Lm(aQ) to L"(Q) by: 

4 I J 

defined if 51 is a sufficiently small ball. Writing 

and using the Schwarz inequality, we immediately obtain 

From this and (1.24), we conclude 

THEOREM 2.3. Let Q', Q be concentric open balls with H, c Q. Let V E K,!'" 
and suppose that, for some constant C,  
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Then, for some constant D and all f 2 0, 

The other results which are immediate for Mf are analogous to Step 2 in the 
proof of (1.16): 

THEOREM 2.4. Suppose that a = sup.,.,,,[(M~~l)(x)] < co (which by Khas’- 
minskii‘s lemma and Theorem 1.6 is true if we shrink 52 enough); then for any 
concentric ball 52’ c 52 with a’ C 52 we have 

(2.1 1) 

where C depends only on a,  and the geometric relation of 52‘ and 52. 

Proof: By the Schwarz inequality, 

Now use the assumption a < 00 and (1.23). 

only depends on local norms of V - we have 
Averaging over the radius of 52 and using the remark that the truth of (2.4) 

COROLLARY 2.5. Let V E KF. Then, for every xo and every continuous 
distributional solulion of Hu = 0 in { y J  1)) - xol < 1 }, we have 

(2.12) 

The constant C,,) is bounded as xo runs through compact sets. If V _  E K,, then C,,! 
can be replaced by a constant which is independent of xo.  

It is (2.12) that is used in [l]. By using Holder’s inequality in place of the 
Schwarz inequality, we can obtain (2.12) with 2 replaced by any fixed p > I but 
C may a priori diverge for p > 1 (or worse, the radius of Q in (2.1 1) may go to 
zero). The goal of getting (2.1 1) with p = 1 will require the considerations of the 
next section. 
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3. The Exit Reversal Process 

In this section, we want to complete the proof of (1.13). The idea will be to 
prove that 

and combine this with (2.10) and a “semigroup” property to show that (1.13) 
holds. Relation (3.1) will be proven by studying the adjoint of M,?. Of course to 
study an adjoint, we need to choose a measure on 51. The choice of Lebesque 
measure is not appropriate since we clearly want to give little weight to points 
near an. 

Obviously, since M, involves running paths up to a stopping time, the adjoint 
must involve running paths backwards from a stopping time. Exactly how they 
run backwards will depend on what initial distribution we give to the Brownian 
paths; this choice is essentially equivalent to that needed to define an adjoint. 

Of course, the most natural choice of initial distribution would be an 
invariant one but the whole point of exiting is that there is no such distribution. 
Given this, the most natural choice is then one that will give an invariance for the 
distribution conditional on not having exited. This picks out the choice we shall 
take and as a bonus it will follow (essentially automatically) that with this choice 
the exit distribution and exit time become independent! 

Let 51 be an arbitrary bounded open set and let Hf be one-half the Dirichlet 
Laplacian on 51. We denote by a its lowest eigenvalue, and by + ( x ) ,  x E 51, the 
corresponding eigenfunction 

normalized by 

(3.3) I;n+(x)dx= I .  

(Note: not #2). The eigenfunction # is unique, and positive. We first point out 

THEOREM 3.1. Let E denote the probability distribution for Brownian motion 
with initial distribution + ( x ) d U x .  Let T be the first exit time from 51. Then T and 
b( T )  are independent random variables and the distribution of T is 

(3.4) ae - OLI ds. 
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Proof: We begin by computing 

E(  T 2 t ;  b ( r )  E A )  =I E,J T 2 t ;  b ( r )  E A ) # ( x ) d ” x .  

This is precisely (see [31]) 

with x A  the indicator function of A ;  thus the conditional distribution of b ( t )  
subject to T h t is exactly #(x)d”x.  It follows by the Markov property that 

E ( f ( b (  7’)); T L I )  

is independent of r ,  so that the claimed independence is proven. Moreover, 
taking A = s2 in the above equation, we find that 

P( T 2 t )  = e-a‘,  

from which (3.4) immediately follows. 

Remark. A similar argument shows that the probability distribution for 
{ b( T - s ) J o C s ~  I conditional on T 2 t is independent of T. This fact should be 
remembered in thinking about the constructions below. 

For the case where !2 is a ball, the E-distribution of b( T) is obviously du(y) 
by symmetry. The formula for more general !2 is discussed extensively in 
Appendix 3. If yo E as2 and, neary,, as2 is a smoothly embedded submanifold of 
R”. then the E-distribution of the exit place for b( T) is 

(3.5) (2cx-l- a+ du(y)  
an 

fory near yo. Here n is an inward pointing normal and du the usual surface area. 
When as2 is everywhere smooth, the normalization condition 

follows from 

(3.7) 

J(2a)f  g du(y) = 1 
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One way of understanding these formulas is in terms of the distributional 
equation (implied by (3.2) and Green's equality) 

Ho[ $d"x]  = a[ $d"x]  - - 1 - do(y ) .  
2 an 

From now on, we restrict ourselves to the case where 51 is a ball, since that is all 
we need. 

Define, for x ,  y E 51, 

(3.8) 

where e-""(x,  y )  is the integral kernel for e-,". 

Q , ( x 9 y )  = $ ( x ) - ' e x ~ {  - s H t ' } ( x ,  Y ) $ ( Y ) ,  

We shall prove the following technical result in Appendix 2: 

THEOREM 3.2 (= Theorems A.2.3, A.2.4, A.2.8). Let 51 be an open ball in R". 
Let Q, be dgned  by (3.8), on 52 X 51 X (0, m). Then Q, extendr to a continuous 
function on 51 X a X (0,~) (which we still denote by Q,) obeying 

(3.9) Q , ( x , ~ ) = o  for all y E a a , x E Q ,  

(3.10) h Q , ( x , y ) d y =  e p u s  for all x En. 

Furthermore, for any e > 0, 

(3.1 1) Qs(x9 U) ccp, I +,).Y(x -v)  
with some c, < 00 which is independent of n: P, being the integral kernel of 
exp{ isA} on all of R", i.e., P,(t) = ( 2 ~ s ) - " / ~ e x p (  -z2/2s}. 

Actually, in Appendix 2 we prove the key estimate (3.1 1) for fairly general 52, 
we do not try_to prove the more technical continuity result in such generality. 

Let ",ow Q,(x, y )  = ea'Qs(x, y) .  By (3.10) and the obvious semi4roup prop- 
erty of Q,$. we can define, for each y E a, a probability measure E,, on paths 
{ q ( s ) ) o s , Y s ,  so that q(0) = y and, for 0 < sI < - - - < s,, the joint probability 
distribution of q ( s I )  = yI,  - - * , q(s,) = y,, is 

~ s , ( v ~ Y I ) & , - , , ( v l . Y 2 ) ~  - . ~, , , - , ,~ , (U, , - l ,Y")dYl  - * * dY,. 

From the estimate (3.1 1) and Kolmogorov's lemma (see [31], Theorem_ 5.1), it 
easily follows that paths can be realized as continuous functions and { EV),,=n is 
a Markov process. By (3.9), q ( s )  E 51 for all s > 0. 
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Now introduce a random variable f with the distribution ae-a,lds.  f will be 
chosen independently - of q .  Notice that the joint probability distribution with 
respect to E,. of q(s , ) ,  * - - , q(s,,) and T 2 s, is 

Q . ~ , ( Y * Y I ) .  . Q , , - , ,  , ( Y ~ - I * Y ~ ) ~ I  * * * d ~ n .  

By e we shall denote the expectation of the Markov process { i,.} with the initial 
distribution du(y)-the normalized surface measure on aQ, and an independent 
variable f. The basic duality result is: 

THEOREM 3.3. The E-probability distribution of T and { b(T  - s ) ) ~ ~ , , ~  is 
identical to the k distribution of f and { q(s ) )o ,  ,,( i. 

Before proving this theorem, we want to note several things. First, the fact 
that we took a ball for Q obscures somewhat the general formula for the correct 
initial distribution for q(0). Obviously, we must take the distribution of b( T ) ,  i.e., 
(2a) - ' (a \ l / (y ) /an , , )du(y)  for general "nice" Q. 

Secondly, we note that there is a very close relation between I? and h- 
processes of Doob [ I  I ] .  In place of Q = JI-'P\l/, Doob considers h - '  Ph with h 
an excessive function; JI is not an excessive function but it is close enough for 
considerable formal connections. Indeed, various authors (see [ 191, [21]) have 
discussed reversal of processes at  an exit time in terms of h-processes. 

Proof of Theorem 3.3: Since T and f have identical distributions, it suffices 
to fix 0 5  sI 5 * - * 5 s, and prove the equality of the distributions of 
{ q ( s I ) ,  - , q(s,)) ,  conditioned on T L s,,, and of { b ( T  - sI), * * * , b ( T  - s,,)}, 
conditioned on T 1 s,,. Let F be a continuous function on 52" and fix s 2 s, and 
y > 0. We claim that 

where 

since the left side of (3.13) is, by the Markov property for Brownian motion (P, 
being the kernel of exp( -sHi'j), 
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which is the right side of (3.12). 
Note that d b  is a measure of total weight 

which goes to 1 as y + O .  Moreover, d b  is clearly rotation invariant, and, if 
f E C,"(Q), J f (y )dpJy)+ 0 as y + O .  Thus, 

(3.14) w* - lim dp,,= du(y ) .  
Y.lO 

Now fix m = 1, . . * , let ym = s , /m and define Tm = y m [ y i  IT], [XI being the 
integral part of x,,. Then, 

Using (3.12), we see that the right-hand side of (3.15) is equal to 

where 

m 

a,,= C Y , ~ ~ x P (  - j a Y m )  = Y m a / ( l  - ~ x P (  - a ~ m ) ) ~ 2 ~ 1 .  
j - 0  

Taking m + 00, (3.16) converges to 

~ ( q q p , , ) ,  * * * 9 q(s1)) ;  ri. 2 S,,), 

by (3.14) and the continuity of the q-paths. The left side of (3.15) converges to 

E (  F(b( T - s,,), * . * , b( T - ~ 1 ) ) ;  T >= sf,). 

This completes the proof. 
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Let N be a map from functions on 52 to functions on defined by 

Below, we shall worry about when N is well defined. For the time being, we take 
f positive so that (Nf ) (y )  is obviously defined although i t  might be infinite. 
Clearly the above theorem implies that N and M are adjoints: 

Proof: One uses a change of variables from s to T - s. 

Remark. We.emphasize again that for general nice 3, du(y )  should be 
replaced by (2a)- I( a$/a n,,) do( y ) .  

Next we make the first step in a Khas'minskii analysis for N: 

PROPOSITION 3.5. Let e ( y )  = ( Vxa)(y) ,  xa being the indicatorfunction for Q.  
Then for some constant D ,  independent of Q and V ,  

Proof: Clearly, since q and f are independent, 

where we used (3.1 I ) .  
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f is in a rather trivial way a stopping time; therefore, as we noted in Section 
1, Khas’minskii’s lemma holds. Using this lemma, the last proposition, and 
Theorem 1.6, we obtain 

PROPOSITION 3.6. 
ball 52 about xo with 

Let Y 2 3 and V E KiW. Then, for any xo, there is a small 

(3.20) 

Remark. With a little more work, one can prove this result for Y = 1,2 as 
follows: one actually proves that (3.1 1) is true with an extra factor of e - @  on the 
right side; is dependent on !J but behaves like [diam(52)]-’, by scaling. With 
this change, we obtain (3.19) with an extra e-BS on the right side. This is small if 
52 is shrunk even if Y = 1,2. 

We are now ready to prove the analogue of (1.21). 

THEOREM 3.7. Let (3.20) hold. Then for any Q, a ball which is concentric with 
52, @ C 52, we have 

(3.2 1) 

Proof: Since $.I is bounded below on a’ by a strictly positive constant, we 
need only prove that 

By (3.18) this would follow from a result of the form 

for all f supported in 52‘. Again, since Ic, is bounded below, we need only prove 
that 

However, the Schwarz inequality in 2,. implies that 
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Combined with (3.20) this reduces the problem to showing that 

for h L 0. Since 4 is bounded from above, we only need to show that 

Using the duality (3.18) again, we see that this is equivalent to 

X E W  

which is (1.23). 

The following is in many ways the first of the two main results of this paper 
( v  = 1,2 can be accommodated by using the remark after Proposition 3.6): 

THEOREM 3.8. Let v 2 3, V E K,‘”. Then for any xo, there are balls C Q 
about xo (depending onb on local norms of V )  such that, for f E L’(aQ; du), 

Proof: Let A be a closed union of spheres about xo with @ n A = 0, A C Q 
(see Figure 1). Let S, be a sphere about xo contained in A and let Qr be the ball 
whose boundary is S,. By the strong Markov property of Brownian motion, for 
x E Q’, 

(Mb?’i)(x) = ( M 3 ) P )  

Figure I .  A reference for the proof of Theorem 3.8. 
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if g = M;f IS,. Thus, averaging in r and using Theorem 2.4, we see that by 
shrinking 9 we can be sure that 

By Theorem 3.7, the last quantity is bounded by CJas21 f ( y ) l d u ( y ) .  
Given Theorem 2.1, we conclude: 

COROLLARY 3.9. Let V E K,’“. I f  u is a continuous function obeying Hu  = 0 
in a neighborhood of { yI I y - xoI S 1 }, then 

where C depends onk on local norms of V -  . In particular if V -  E K,, C may be 
chosen independently of xo. 

Finally, given Theorem 2.3 and a very elementary covering argument, we 
have proven Harnack’s inequality-the second main result of this paper. 

THEOREM 3.10. Let V E K,””. For each pair of a compact set K and an open 
set 9, K c 9, there exists a constant C (depending only on K , 9  and local norms of 
V )  with the property that, for any function u E C(9),  which satisfies u 2 0 and 
H u  = 0 on 9, one has 

sup u ( x )  S C inf u ( x ) .  
x E K x E K  

4. The Spaces Kl, and Kioc 

In  this section we study the classes K, and K,!”‘ defified as follows. 

DEFINITION. Let Y 2 2. V E K,, if and only if 

where 

(4.2a) g ( z )  = I Z I - ( ~ - ~ )  i f  Y 2 3, 

(4.2b) g ( z )  = -In(lzI) if Y = 2. 
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We say V E K,’“ if and only if V+ E KF for all + E CT. Obviously this is 
equivalent to requiring that (4.1) holds when supx is replaced by suplxls for 
each fixed R. For v = 1, we say that V E K, if and only if 

(4.3) 

i.e., K, = LAni,@), and KI“ = L;oc(R). 

By the monotone convergence theorem, if 

then 

Nevertheless, there are pathological examples (see Appendix 1) where V B K,, 
even though V has compact support and 

As we shall try to demonstrate, these classes are exceedingly natural for the 
problems studied here; even more so than in the context in which they were 
introduced by Kato [16]. Related classes were studied by Schechter [26], who 
defines the class Mfi,p by the requirement 

(for p = 2 the condition was introduced by Stummel [35]). If one examines his 
definitions, one finds that Schechter on page 155 of [26] defines -A + q as a 
form-sum when min(q,O) E K,, but, as he subsequently realized (see [27]), this is 
not a natural condition for the problem of form-sums. Obviously we have 

PROPOSITION 4.1. If /3 > 2 and Y L 3, then M p . ,  C K,. 

It is a direct consequence of Holder’s inequalities that Ma.p c M,,, so long as 
a < p p ,  and thus one can state 

PROPOSITION 4.2. If a > 2p and v 2 3, then Ma,p C K,. In  particular, M,, 
C K,. if a > 4. 
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The classes Ma.2 with a > 4 are precisely the classes introduced by Stummel 
[35]. By another application of Holder’s inequality, we have 

with 

where q is the dual index to p. If g E Lq, limaL,, f(a) = 0. Thus we obtain the 
following condition: 

PROPOSITION 4.3. If p > f Y, Y Z 2, and if 

then V E K,. If V E L i , ,  then V E K,,h. 

The following elementary fact will occasionally be useful: 

LEMMA 4.4. If V E K,,, then 

Proof: The bound is an immediate consequence of the fact that 
inf,,,. 1 /2gw > 0. 

Next we want to link K,, to the kind of condition needed for Khas’minskii’s 
lemma: 

THEOREM 4.5. V E K, if and on@ if 

(4.4) 

Proof: Suppose first that V E K, and v 2 2. Fix a and note that, For 
t S a 2 / v ,  

CE,(I v(~(s)) I ;  ~ b ( s )  - XI 2 a)ds 

( 2 ~ t ) - ” / ~ e x p {  -y2/2t)  I V ( x  - y)l dy qy,>. 
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which tends to zero as f&O, by Lemma 4.4. On the other hand, 

where f is the integral kernel of ( -  + A  + I ) - ' .  Since If(z)l S (const) g(z) in the 
region )zI 5 i (a restriction needed if Y = 2), this term goes to zero as a&O. These 
two estimates imply (4.4). 

For Y = I ,  let V E K,, 

Moreover, 

which vanishes as tL0. 

suppose that Y 2 3. We claim that for Ix -yI  5 t l12 we have 
To prove the converse, let P,T(x - y )  be the integral kernel of exp{ - sH,} and 

Postponing the proof of (4.5), we note that it implies that, for a sufficiently small, 

thus (4.4) implies V E K,,. 
Since P,,(x - y )  = (2ns)-"/2exp( - ( x  -yI2/2s), we see that 

if Ix - yJ 5 f ' 1 2 .  This proves the required result (4.5). 
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As for v = 2, the above steps show that 

However, for Ix - yI 5 a' 

thus (4.6) implies (4.1) if Y = 2. 
Finally for v = 1, we note that if 

sup I fE( I  ~ ( b ( s ) ) l h ) & <  

hence P,(x  - y )  2 (const) > 0 for 4 t < s < t and Jx  - y l S  1; thus V E K,.  
As Example 2 in Appendix 1 shows, it can happen that 

supEx(i ' l  X V(b(s)) lds)+O as t$O 

even though fi[supx Ex(I V(b(s))l)]ds = 00. 

COROLLARY 4.6. Let T be a linear map of [w' onto R". Let V(x) = W(Tx).  
Then V E K,  ifand on& if W E K p .  

Suppose first p = v. Then a simple change of variables, and c,IT(r)l 
5 IzI 5 czlT(t)l,  show that the result is true. For this reason, there is no loss in 
supposing that T is an orthogonal projection onto a subspace of [w'. But then 

Proof: 

E x (  V ( b ( s ) ) )  = Err( W ( b ) ) ) $  

b" being a p-dimensional Brownian motion. Now use the above Theorem 4.5. 

DEFINITION. We say that a self adjoint operator A on L2(R') generates a 
regular L"-semigroup if and only if for each t there exists a constant c, with 
which 

lle-'A+ll" 5 c,ll+ll, 
for all + E L2 n L" and, moreover, 

(4.7) limc,= I .  



236 M. AIZENMAN A N D  B. SIMON 

THEOREM 4.7. I f  V E K,, then V is -A-form bounded with relative bound 
zero and the operator H = - j A  + V generates a regular L"-semigroup. Con- 
verseb, if V S 0, and if 

H = s-resolvent limit( - + A  + max( V,  - n ) )  
n+ m 

defines a selfadjoint operator which generates a regular L "-semigroup, then 
V E Kls .  

Remark. 
for the converse. 

As Example 3 in Appendix 1 shows, the condition V S 0 is needed 

Proof: From the Khas'minskii lemma and Theorem 4.5, we conclude that if 
V E K,, then, for any A, 

From Jensen's inequality we obtain 

thus by Theorem 4.5 we see that, for any A, 

lim SUPE., exp - A  ' V ( b ( s ) ) d s  
- '10 x ( I s ,  

These facts and the ideas in [31] immediately prove the first half of the theorem. 
For the converse, we note that, if V 5 0, 

E,(exp{ - L ' V ( b ( s ) ) d s ] )  - 12 E.r( - J ' V ( b ( s ) ) d S ) ,  0 

since e x  2 1 + x for x 2 0. 

COROLLARY 4.8. I f  V S 0 and - + A  + V generates a regular L"-semigroup. 
then so does - + A  + AV for all A > 0. 

Remark. This is interesting since - r -*  is a counterexample for the analo- 
gous L2-result. If we drop the lirn,J,, ~ ~ e - f H ~ ~ m ~ m  = 1 hypothesis, then the result is 
false as Example 1 in Appendix 1 shows. 

Theorem 4.5 allows us to show that Kl, contains the class considered by 
Trudinger: 
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THEOREM 4.9. Let V be a function on Iw' such that for all E > 0, there is a C ( E )  

with which 

and suppose that, for some a < 1, and some A ,  B ,  

(4.9) C ( E )  S A exp{ B L - ~ ' ) .  

Then V E K,. 

Remarks 1. Trudinger [31] requires (4.8) with (4.9) replaced by the stronger 
but his method actually works under the hypothesis (4.9) (see [ 131). 

2. 
C ( E )  5 

As we shall see, these kinds of hypotheses lead to 

which is strictly stronger than V E K,; see Example 2 in Appendix 1. 
3. It is a remarkable fact that L2 estimates like (4.8) lead to L"? bounds on 

e - t H  

Proof: Let P , ( x , y )  be the integral kernel of exp{ -sH,} and let t&,(x) 
= (P , (x ,  y ) ) ' /* .  Then, noting that (+,+) = 1 and (V+, V+) = u/4s, we have 

for any y , s  and E > 0. Choosing E = Ilnsl-Y with y = 2/(1 + a) and using (4.9) 
we see that 

Theorem 4.5 completes the argument. 

For radially symmetric potentials, K, is a rather familiar class, at least with 
regard to the question of singularity at the origin. Let us first consider the case of 
V having compact support. 

PROPOSITION 4.10. Let Y L 3. Let V be radially symmetric with support in 
( ~ ( ( ~ ( 5 1 ) .  Then V E K , i f a n d o n l y i f  

(4.10) 
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Proof: Let V E K,. By Lemma 4.4, for any a!, 

SUP J Ix-yI-(”-2)1V(y)Idy < 00. 
x a < l x - , v l < l  

Thus, for V E K,  we have 

which is (4.10). 

V ,  bounded with compact support and JArl V2(r)l dr < c. Then 
Conversely, suppose (4.10) holds. For each c, we can write V = V ,  + V2 with 

SUP Jlx - YI - ( ” - 2 )  I V2(Y)l d’y 

I 
= J rl V2( r)l dr < E. 

Since V ,  E LP with p > 4 v, V ,  E K,. Thus V E K,. 

THEOREM 4. I I .  Let Y 2 3 and let V be spherically symmetric. Then V is in K,. 
if and onb if (4. lo) holh and 

(4.1 1) 

Proof: I f  V E K,, then (4.10) follows from Proposition 4.10 and (4.1 1) from 
Lemma 4.4. Conversely, let (4.10) and (4.1 1) hold. Write V ,  + V2 = V with 
V , ( r )  = V ( r )  (respectively 0) if 11-1 5 1 (respectively Irl > 1). By Proposition 4.10, 
V ,  E K,.. As for V2,  we note that, for any ro 2 I ,  a! 4 I ,  any x and any unit 
vector, 6, 

for some constant C. Here df i (y )  is the surface measure normalized so that the 
total surface area is JIJ,l=,dfi(y) = Dy”-’. From this fact, we see that, for a S 1, 

is, at  most, ca! multiplied by the right-hand side of (4.1 1); thus Vz E K,,. 
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Remarks 1. These arguments show that the phenomena given in Example 1 
of Appendix 1 cannot take place for centrally symmetric potentials, i.e., if V is 
central and supx Ex(fil  V(b(s)) lds)  < m for some t, then V E K,. Since this 
holds for Y = I ,  it is not surprising that it is also true for central potentials. 

2. As far as total singularities are concerned, these results nicely delimit K,: 
e.g. r-'[lnr]-'-' or r-'[lnr]~'[In(lnr-')]-'-' are in K, but r-'[lnr]-' or 
r-'[Inrl[~n(~nr-')]-' are not. 

THEOREM 4.12. Suppose that Y 2 3 and 

irnl p { x (  1 V(x)l  P A}I2"dA< 00 

with p ( - )  = Lebesque measure. Then V E K, .  

Proof: Without loss of generality, we can suppose that on the support of V ,  
V ( x )  L 2a, since min(2a, V ( s ) )  E L" C K,. Let V' be the spherically symmetric 
decreasing rearrangement of I VI. By definition, 

Suppose that V* is strictly monotone and continuous on its support. Define r(A) 
by V*(r(A)) = A for 2a 5 A < 00 and r(A) = r(2a) for A < 2a. Then 

6mr lV*(r ) ldr= l rndAtr (A)2=  c I p { x l  V * ( X )  ZA}I2/'dA. 
0 

Therefore, V* E K,. 
However, by general principles (see [4]), 

Thus V E K,. The general case follows by an elementary limiting argument. 

COROLLARY 4.13. Let v h 3 .  Let G(  y )  be positive and monotone nondecreas- 
ing in s with 

Suppose that 

Then V E K,. 
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Proof: We know that 

JG(I Y ( y ) l ) d ’ y Z l  V ( y ) Z a  [ ~ ‘ v ( ” ’ d h G t ( X ) ]  a d’y 
(4.12) =r G’WI  P ( A  I V(u ) lZ  A 1  I 

However, by Holder’s inequality, 

EXAMPLE. G(s) = s’/2[log(s + 2) r  with a > + ( Y  - 2). 

The next result shows the connection between K, and the class of Kovalen- 
ko-Semenov [ 18). 

THEOREM 4.14. V E K, if and only if, for all E ,  there is a C ( E )  with which 

(4.13) II Vull I 5 f c l l A ~ l l  I + C(E)llUll I 

for all u E C r ,  where 11 [ I I  3 L‘-norm. 

Proof: We first claim that (4.13) holds if and only if ( H o  = - ;A) 

lim 1 1  V ( H ,  + a ) - ’ ~ ~ l ~ l  = 0, (4.14) 

where 1 1  I l l , ,  is the norm as an operator from L’ to L ’ .  Relation (4.14) implies 
(4.13), using 

a+w 

IIVull, 5 IIV(HO+ a)r l I , . l [  f l lAullI + allulI,]9 

and (4.13) implies (4.14) since 

~ ~ H ~ ( H ~ + a ) - ’ l l ~ * ~ ~ ~ .  I I ( H o +  a)-Il l l . lSa-l .  

By duality, 

I IV(Ho+ a)-’111.1 = I I ( H o +  a)-IVllm.m 

I I (H0 + ~ ) - I V l l m . m  = I K H O  + 4- l l  VI Ilm 

and, since ( H o  + a)-  is positivity preserving, 
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(on the right side of this equation, we apply (H, + a ) - '  to the function 1 V (  and 
compute its Lm-norm). Thus, (4.14) is equivalent to 

and this is easily seen to be equivalent to (4.4). 

Remark. Kovalenko-Semenov [18] consider the set of all V for which (4.13) 
holds for some c < 1. Thus, K, is the set of potentials all of whose multiples obey 
the condition of [18]. The difference is only in the pathologies of Example 1 of 
Appendix 1. 

The next set of ideas involving K, that we want to present involves the study 
of ( -A) - 'V  as a map on La. We discuss in detail the case Y L 3. All the 
arguments carry easily over to v = 1,2 after replacing ( - A ) - ' ,  and its kernel, by 
what corresponds to ( -A  + I ) - ' .  

THEOREM 4.15. Let v L 3.  Let V have compact support. Then V E K,, if and 
onb  if (i) the integral defining 

(4.15) 

converges for all x ,  and (ii) f is a continuous function. 

Proof: Suppose first that Y E K,,. Let fa  be the function defined by adding 
the condition Ix - yI 2 a in (4.15). Then fa  is trivially continuous and V E K,, 
implies that lirnaJ0~~ f - falloo = 0, therefore f is continuous, being a uniform limit 
of continuous functions. 

Conversely, suppose that f is a continuous function. Let I V J  = V,, + W,,, 
where V,, = min(1 Vl ,n) .  Let f = fn + g,,, where f,,, g,, are the functions obtained 
by replacing I VI by V,, and W,,. Now, for fixed n, 

so that 

But fn converges monotonically upwards to f, which by assumption is continuous. 
Therefore, g,, + 0 uniformly on compacts (by Dini's theorem). Control of g,, far 
from the support of V is trivial; hence limn+all g,,lla = 0. 

The above proof, especially the Dini's theorem argument, can be summarized 
as follows: 
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THEOREM 4.16. Let Y 2 3. Let V have compact support. Then V E K,# if and 
onh if, for all E ,  there is a function W, such that V - W, is bounded and such that 

s u p ~ l x - y l ~ " - * ) l  X W , ( y ) ( d y  5 c. 

THEOREM 4.17. Let Y 2 3 and let V lie in L ' and have compact support. Then 
V E K,, if and onh if ( - A ) - ' V  defines a bounded map of La into C,(W), the 
continuous functions vanishing at infinity. 

Proof: Let V E K,. Write V = W, + ( V  - W,) in accordance with Theorem 
4.16. Since II( -A)- 'W, l lm,m S CE, we see that ( - A ) - ' V  is a norm limit of 
bounded maps from L a  to C ,  and therefore it itself is bounded. 

Conversely, if ( - A ) -  I V is such a map, let g(x) = v(x)l V (  x)l- ' (respectively 
= 0 )  if V ( x ) # O  (respectively=O). Then ( - A ) - ' V g = ( - A ) - ' l V l .  If this is 
continuous, then V E K,, by Theorem 4.15. 

The following result is primarily of academic interest: 

THEOREM 4.18. Let v 2 3 and let V be an L' function of compact support. 
Then V E K,. if and only if ( - A ) - ' V  is a compact map of Lm, i.e., [( - A ) - ' V ]  
X [ { f l  I l f l l , c  5 1 I ]  isprecompact in L". 

Proof: If V E K,,, as above, ( - A ) - ' V  is a norm limit of maps ( - A ) - ' V , ,  
with V, E La and supp V, compact. Such maps are compact by the Arzela- 
Ascoli theorem; hence ( - A ) -  ' V  is compact. 

For the converse, suppose that V 6! K,  but that ( - A ) -  'V  is a bounded map 
on L". Let 

where c is chosen so that cIx - Y I - ( " - ~ )  is the integral kernel of ( - A ) - ' .  Notice 
that if h E L ' ,  we can always, given c, pick a so that 

(We write h as a sum of two functions, one bounded and the other with a very 
small L' norm). Thus, since we are supposing ( - A ) - ' l  VI E La,  for any fixed x, 

(4.16) lim sup I g,,,, (x ) l=  0. 
UJO I 
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Since V B K,, we have 

(4.17) lim sup g,..v( x )  = e > 0. 
a10 .r 

Next let us pick a,, t, inductively by letting a l  = I and picking z ,  so that 
g,l,zl(zl) 2 t e .  Supposing a,, - . - , a,- and z I ,  . , z,_ I are picked, we first 
select a, so that 

which is possible by (4.16), and then z,, so that 

Let f, = g,,,..,,. Clearly, f, = (-A)-'Vp, with JJpnJlm = 1. Moreover, if n > m, 

I L ( z m )  - f ; n ( z m ) l ~  

hence((f, - f m l l m  2 i e  for all n,m. It follows that ( - A ) - ' V  is not compact. 

Finally, we want to prove Theorems 1.5, 1.6. We emphasize that all that is 
really used in their proof is Theorem 4.16. Again we only give the proof for v 2 3. 

Proof of Theorem 1.5: Here we give the proof assuming that u E Lzc .  Later 
(Theorem 4.18) we show that this is automatic. We only need to prove continuity 
near a fixed point, say near x = 0. Let 

(4.18) 

with c chosen so that cIx - ~ l - ( " - ~ )  is the integral kernel of ( - A ) - ' .  Then, for + 
in CF((xlIxI 5 I ) )  

(A& u + f )  = (4, VU) + (A+,(--A)-~~V~) = 0, 

where x is the indicator function of the unit ball. Thus u + f is harmonic in that 
ball and so continuous there. Since V E K,,"", f is continuous by Theorem 4.17. 

Proof of Theorem 1.6: Consider first the case v 2 3, without the stopping 
time, where we want to show that 

(4.19) 
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Since ( - A ) - '  has an integral kernel cIx - y l - ("-2 '  and 

if f h 0, 

we see that the left-hand side of (4.1 1 )  is at most 

because of the location of 52. Thus (4.19) follows directly from the definition of 

The result for V L  3 with stopping time follows from what we have just 
proven. If v = 1,2,  we proceed as follows. Let T,. be the first exit time from 
) y  - xJ  d 2 R .  Then T ,  I T and 

K,. . 

where G(x, y ;  R )  is the Green's function for : yI Iy - XI 5 2 R  1 with Dirichlet 
boundary conditions. Explicitly, 

- ( n ) - " l n [ l x - , v ( / 2 R ]  for v = 2 ,  
2 R  - I X  -yI for v =  I .  

G ( x , y ; R ) =  

Noting that, for 2 R  5 1, G(x, y ;  R )  5 - (n)-' In[lx - y l ]  in two dimensions and 
G(x, y ;  R )  1 2 R  in one dimension, the result follows. 

To get the strongest claim of Theorem 1.5, we need 

THEOREM 4.18. Let V E K,!')', let u, Vu E L,!, wifh 

- f A u  + V U = O  
in distributional sense inside some set 52. Then u is locally bounded. 

Proof: We suppose without loss of generality that v 2 3, since we can always 
add on extra dimensions. We shall prove boundedness of u ( x )  for x near 0, 
assuming 52 3 0. As in the proof of Theorem 1.5, we can write 

u = f + g  

with ,g harmonic near zero, and f given by (4.18), IyI 5 I being replaced by 
IyI S 6 for suitable S. By hypothesis, Vu E L,!,,, so by Young's inequality f is in 
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LP,, for any p < u / ( u  - 2). Since g is harmonic near 0, we conclude that, inside 
S2, u is in L[x for p < Y / ( U  - 2). Similarly, since 

(distributional gradient) we see that V u  E LP, if p < u / ( u  - 1). 

so small that S = { yI IyI 5 6 ) C S2 and so that 
Now fix somep with 1 < p < u / ( v  - 1) and let q be its dual index. Choose 6 

(4.20) 

where 

with % the indicator function of S; (4.20) can be arranged since V E K,I" and 
u 2 3. 

Pick q E C ~ ( R " )  with suppq c Sin' and with q = I in a neighborhood of 
f S = { yI IyI 5 1 6 ) .  Let w = qu. We shall show that w E L" in $ S; hence u is 
bounded in $ S  proving the theorem. 

Note that w obeys, in distributional sense, 

(4.2 1) - + A w +  Q w +  ~ = h ,  

where h = f ( A q ) u  + (Vq) - V u  E LP and supph C { X I  4 6 < 1x1 < 6). Now 
w E L' and, by (4.21), Aw E L' and moreover, V w  E L' .  It follows that w lies in 
the domain of the generator of the semigroup e" on L ' .  Since Q is a Kato 
bounded perturbation of the generator (see Theorem 4.14), w is in the domain of 
the generator of the semigroup CrH with H = - $ A  + Q .  Thus (4.21) which was 
proven in distributional sense is true in L'-operator sense. Therefore, 

where the second formula is true by (4.20) and Khas'minskii's lemma, which tell 
us that sup,lle-'HIII., < 00. By Holder's inequality, first in path space and then 
in dt, we find that 

I w ( x ) l S  ( [ ( - f A + q Q +  I)-'l](x))"'( [ ( - ; A +  l ) - ' ~ h ~ P ] ( ~ ) ) " ~ .  

By (4.20) and Khas'minskii's lemma, the first factor is bounded. Since lhlP E L' 
and supph c { yI IyI > f 6 1, the second factor is bounded. 
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5. The Strong Harnack Inequality 

In this section, we shall prove Theorem 1.1. The first half of it is 

THEOREM 5.1. Let V E KF. Then H obeys the slrong Harnack inequality. 

Proof: Without loss of generality (by adding extra dimensions) we may 
suppose that Y 2 3. For fixed R,d ,  assume that there is a function u 2 0 which 
satisfies Hu = 0 in a neighborhood of 52' = { zI Iz - yI 5 2 d )  with 1x1 < R. Let us 
denote 52 = { zI ( z  - xJ 5 $ d ) .  By Harnack's inequality (see Section 3), we know 
that 

supu(z) 5 C u ( x )  
Z € Q  

with C depending only V,R and d. As in Section 2, we know that in 52, 

H," being the Dirichlet Laplacian in 52 and g the function which is harmonic on 
52'"", continuous on 52, and equal to u on 352. By (5.1) and the explicit formula for 
g which yields a bound on V g ,  we see that 

(5.2) Is(r) - g ( x ) l  5 A Ix - YlU(X) if lx - YI 5 d 

for some A depending only on V, R and d. Now write V = V, + W,, with 

and write f = j l  + g, correspondingly. Since 

(see Theorem 4.16) and ( H i ' ) - '  has an integral kernel dominated by a multiple 
of 1z - yI - ( "  - 2 )  , we see (using (5.1)) that 

where 

(5.3) lim En= 0. 
n-m 
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Thus, if Ix - yI 5 d ,  

(5.4) I - g n ( Y ) l S  ZB,u(x).  

Finally, since 1 V,I 5 n, the explicit form of ( H f ) - '  gives us control of Vf,, 
leading to 

where 

f ( a )  = inf [ aA + 2 8 ,  + C,,a] 

depends only on R,  d and V. From (5.3), we see that limoJo f ( a )  = 0. 

notational complexities. 
As usual, we give the proof of the converse just for v 2 3, only to avoid 

THEOREM 5.2. Let V 5 0 be a measurable function on R" . Suppose that for 
any R there are eR > 0 and cR such that 

for all @ E C,"(lxl < R ) .  Let H be a corresponding form sum, and let H obey the 
strong Harnack inequaliry. Then V E KF. 

Proof: We shall show that, given E, we can find a! for which 

for all x with 1x1 < R. Obviously, by compactness, we need only do this for x 
very near 0. What we shall do is prove it for x = 0 but in our proof a! will only 
depend on cR and on the functions fd ,R  in the strong Harnack inequality, so the 
bound will hold uniformly in x near x = 0. 

Inequality (5.7) implies that 

if @ E C,"(lxJ S R).  It  follows, that we can take 6 so small that H" Z 1, where 
Q = (1x1 I 1x1 5 26 ] and H" is the "Friedrich's extension" of H on CT(Q) ( 6  
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only depends on cR,cR and the fact that Q c { 1x1 c R 1 and not on the fact that 
the center of the sphere is at  zero). Pick any function f supported in (x (6  < x 
< 26 } which is C" and positive. Let 

u = ( H ' y j - .  

Then u 2 ( H t ) - I f > O  since (-V)20. In a neighborhood of { x l I x I < S ) ,  u 
obeys Hu = 0, thus by the strong Harnack inequality, given ;we can find r such 
that 

We claim that, for any t ,  

Inequality (5.9) would hold by considerations of the type found in Section 2 if we 
knew that V E K,. To get it in general, let V,, = max( V, - n), H," = H t  + V,, 
and u,, = ( H f ) - I f .  Since V,, E K,,, (5.9) holds if u is replaced by u,, and V by V,,. 
Now, u,, is monotone in n since this is also true for V,,. By the monotone 
convergence theorem for forms, (If,:))- I + ( HL2)- I strongly, therefore u,, + u in 
L2.  Since u is continuous, the convergence is uniform. Applying the monotone 
convergence theorem, we obtain (5.9). 

Since (5.8) and (5.9) hold, we see that 

Since S and r are now fixed, we have 

(5.1 1) limE,(Ib(r)( 5 r and 
110 OCsSr 

sup Ib(s)l 5 6) = 1. 

The last two formulas imply, using e" 2 1 + a for a 2 0, that we can pick T so 
small that, if t < T, 

(5.12) 

Let P,'(x,y) be the integral kernel of the semigroup generated by the Dirichlet 
Laplacian in ( z (  Iz( < 6 ) .  Equation (5.12) says that 
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If IyI S t r, we can be sure that JIz1<, PI;( y , z )dz  2 + if u is small. Thus, shrinking 
t if necessary, we know that 

But if IyI 5 t < 4 6, we have, by scaling, that 

Thus, for a = min(t '/*,+r), 

Since c is independent of ?, we can make the a priori choice ?= i ce .  

6. Subsolution Estimates 

DEFINITION. 

( i )  u 2 0, 
(ii) u is locally bounded, 

(iii) u is upper semicontinuous, 
(iv) Hu 5 0 (in distributional sense). 

Let V E L,!c. We say that u is a subsolution for H = :A + V if 
and only if 

Remark. By Kato's inequality (see [16]), if H$I = 0 with $I locally bounded 
and continuous, then u = is a subsolution. 

In this section we want to prove the following: 

THEOREM 6.1. Suppose V 3 min( V ,  0) is in K,!"' and let u be a subsolution. 
Then 

so long as 6 is sufficiently small. How small 6 must be and how large C is depends 
only on local norms of V near x. In particular, if V -  E K, , ,  these may be chosen to 
be independent of x .  

As a preliminary remark, we note that 

( - ; A +  V - ) U = H U -  V + U S O :  
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thus without loss of generality we can suppose that V S  0 and V E K,!'". Given 
this, the theorem clearly follows from the results in Section 3 and 

LEMMA 6.2. Let u he a subsolution jor H = - $ A  + V with V E K,!"' and 
V 5 0. Then, for any small enough ball Q,  T - the first exit time from Q,  and all 
x € 5 2 ,  

Remark. Formal considerations suggest that (6.1) is true even if V is not 
negative but since the proof is more direct in case V S  0 and that is all we need, 
we only consider that case. 

Proof: Let f = (H,$'Vu. Then f is continuous and vanishes on K? by 
Lemma A.4.4. Let 9 = u + f. Then 

A T =  - 2 H u 2 0  

and 71 is upper semicontinuous: hence 9 is subharmonic. Thus, sincef = 0 on an, 

9 ( x )  5 K ( u ( b ( T ) ) ) .  

Using Lemma A.4.4 again to write (H;')-'Vu, we see that 

Since - V 2 0, we can iterate controlling the remainder by supposing Q to be 
small and so obtain (6.1). 

Appendix 1. Three Examples in Search of a Paper 

In this appendix, we present some pathological potentials which illustrate 
various points made in the paper. 

EXAMPLE 1. Take 11 2 3. Let x,? be points (2-", 0, - . , 0) in R", let S,, be the 
ball of radius 8-'I about x,, and let V,,(x)  be the function at x which is -g2" on 
S,, and zero off S,,. Let 

(A.I.1) 
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We claim that 

(A. 1.2) 

and that, for each fixed x ,  

but that nevertheless 

(A. 1.4) 

After proving these facts, we shall discuss the significance of such an example. 
Given (A. 1.2), (A. 1.3) is an immediate consequence of the monotone conver- 

gence theorem. To prove (A. 1.2), let 

p n ( x )  = ] I ~ - . Y I - ( ~ , - ~ ) I  vn(y)I d ~ .  

By scaling, sup, p,(x)  is independent of n; thus 

for all n and x and some C (indeed, the best C is f nu, 7" being the volume of the 
unit ball). Let T,, be the sphere of radius 4-" about x,. Since n,m 2 2, 

(A. I .6) Tn n T,,, =PI for n Z m .  

Outside S,,, p,, equals dn(x - x , , I - ( " - ~ )  by Newton's law, and by scaling we have 
d,, = d g - n ( Y - 2 )  . Thus 

(A. 1.7) 

By (A. 1.5-7), 

m 

c p , , ( y )  I C + d 2 -n("-2 )  < 00, 

n n = 2  

proving (A.l.2). To prove (A.l.4), we note that, so long as a 2 8-", 

~ X - Y ~ - ' " - 2 ) ~ ~ ( Y ) ~ d ~ ~ ~ , ( X n ) = ~ Y T Y .  
x,, -yI 5 a 
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Thus (A .  I .4) holds. By (A. 1.2), 

for a small. Therefore, 

exp{ - t (  - $ A  + u V ) }  F , ( a )  

defines an exponentially bounded semigroup on L" (see Theorem l.2), for which 

~ ~ ~ l l ~ , ~ 4 l l " . " ~  1 9  

by our basic result on K,,. Moreover, while & ( a )  is bounded from L" to L" for a 
small, it is not even bounded from L2 to L2 if a is sufficiently large. Indeed, let 
+(x) be the lowest eigenfunction of the Dirichlet Laplacian in the unit sphere 
and let 2e0 be the corresponding eigenvalue. Let 

Then 

(+,,?(HO + q#,,)/(#,,*#,,) = (eo - aP2"* 

by scaling. Thus, if a > eo, F,(a) is not even bounded from L2 to L2.  
Notice that the distribution function of V is essentially the same as that for 

r - 2 .  From this point of view, the surprise is that F,(a)  is even bounded from Lm 
to L". 

EXAMPLE 2. Let V,, be the potentials of example 1 and let 

W 

w =  c n - ' v , , ( x ) .  
n = 2  

Then clearly, 

where 

c =  C p .  < o c  ll j Jllm 

(by A. 1.2) 
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and 

Since Cisnj-'IV,(y)1 EL"  n L' ,  we see that 

lim bu.n = 0 
4 0  

for each n. It follows that W E K,. Thus (see Theorem 4.5) 

(A. 1.8) lim 1LO [ sup6'Ex(l x W(b(s) ) l )ds]  = 0. 

However, we claim that 

(A. 1.9) 

for any t > 0. Using the scaling we have 

if 0 S s S a8-2" for some a. Thus 

Summing over n, we obtain (A.l.9). 
The point is that while Trudinger type estimates can be used to prove that a 

potential is in K,,, they always imply that fisup,[ - - - ] < 00;  thus W will not 
obey Trudinger type estimates with a C ( E )  which can be turned around to give us 
W E K,,. Indeed, the C ( E )  for W will be essentially identical to the C ( E )  for 
r-'(logr)- ' for which Harnack's inequality can fail. 

EXAMPLE 3. It has been known for some years (see, e.g., Schechter [28], [29], 
Combescure-Ginibre [8] or Baetman-Chadan [2]) that there exist potentials V 
with severe oscillations which allow -A + V to be bounded from below on L2 
even though - A  + min( V,O) has no lower bound. We want to show here that in 
such a case it still may happen that exp( - r ( H ,  + V))  is bounded on L". It is 
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probable that one could prove a Harnack type inequality here also. The point of 
this example is that if V is allowed to oscillate, one cannot hope for any simple 
K,,-type condition to be necessary and sufficient for properties like L" bound- 
edness. Let V ( x )  = V ( ( x ( )  on R3 with 

for 1 d r or r 2 2, 
for I < r < 2, - ( 2 m ) - ' c ( r  - ~)-"'cos((r - I)-"") V ( r )  = 

where m is fixed, but arbitrarily large, and E is a parameter which will be 
adjusted. 

Of course, V is so singluar that one cannot directly define H = f A  + V by 
just integrating. There are several equivalent definitions, see [S]: 

(a) Define 

which exists for + E Cc. H is then form-bounded from below on CF, with a 
well-behaved Friedrichs extension. 

(b) Let V6 be the potential obtained by replacing r - 1 by ( r  - 1 + 6 )  and 
note that H ,  + V6 has a nice limit in norm-resolvent sense. 

(c) Note that 

(A. 1.10) 

with W bounded, and interpret 

These equivalent definitions yield an operator H, with e- 'H a bounded semi- 
group on L2. We shall show that for € small, the semigroup is bounded from L" 
to L"O. If H +  = 0 has a solution + which is in L" and inf,+(x) > 0, then, by 
standard ideas (see (321) the semigroup is bounded. (Actually, it is only for nice 
V's that one can easily see this; hence one uses the ideas to get a &independent 
bound on llexp( - t ( H ,  + L'8)}llm,m with Vs given in construction (b) above.) 

Our construction uses the following result: 

THEOREM A.l.l. Let M ,  N ,  K be smooth, finite matrix-valued, functions on 
( a ,  b )  with 

dM 
dx K ( x )  = - + N ( x ) .  
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Suppose that limxJa M ( x )  exists, and that 

(Y = l D l l N ( x ) l l d x <  00, p = J b I I M ( x ) K ( x ) l l d x <  a 00, y = a i x < b  sup IIM(x)ll< 1. 

Then, for any vector uo, there is a unique C '  function, u, on ( a , b )  obeying 
li(x) = K ( x ) u ( x )  and lim.r+o u ( x )  = uo. Moreover, if uo is fixed but M ,  N are 
varied in such a way that a, p, y + 0, then u ( x )  + uo uniform4 on (a ,  b) .  

Proof: Let u ( x )  = ( 1  - M ( x ) ) u ( x ) .  Since ( 1  - M )  is invertible for all x 
(y < I) ,  it is easy to see that ti = Ku if and only if u = ( N  - MK)(l - M ) - ' u ,  
and lim,,+u u ( x )  = uo if and only if limr+a u = ( 1  - M(a) )uo  = uo. Since, further- 
more, [[(A' - M K ) ( I  - M ) - ' l l  E L ' ( [ a , b ] )  we can solve for u by standard meth- 
ods. 

Remark. This theorem is a result of Wintner [38], [39]. In [24] it is attributed 
to Dollard-Friedman [ 101 who rediscovered it. We learned of Wintner's work 
from Devinatz. 

Now, to solve H+ = 0, 920, we try + ( x )  = Ix I - 'u ( lx l )  (as usual) with 
u"(r) = V(r)u(r ) .  Letting u ( x )  = p ( x ) x  + v ( x )  and u ' ( x )  = p ( x ) ,  we see that the 
differential equation is equivalent to 

(A.1.11) 

with 

K ( x ) =  V ( x ) (  1 ) .  
x 2  x 

Because of the form of V, K obeys the hypothesis of Theorem A. 1.1, and as E -+ 0 
the parameter a, p,y (with [a ,  b]  = [1,2]) all converge to zero. We now solve 
(A.l . l l)  on [1,2] with (p(l ) ,v( l ) )=(l ,O) and define 

f o r O < x <  1, 
u ( x )  = p ( x ) x  + v ( x )  for 1 < x < 2, 1" p ( 2 ) x  + ~ ( 2 )  for 2 < x < 00. 

As €40, inf u ( x ) / x +  1; thus we can find a suitable solution for E small. This 
shows that e-IH defines a bounded semigroup on L m .  

Appendix 2. Estimates on Green's Functions 

Let Q,$(x,  y )  be the kernel given in (3.8). Our main goal is to prove Theorem 
3.2 for the case where 52 is a ball, but we shall prove (3.1 1 )  for fairly general 52. 
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LEMMA A.2.1. Let D be the unit ball about zero. Then 

(A.2.1) c( 1 - r )  S J,(r) 5 d( 1 - r )  

for some 0 < c,d < 00. 

Proof: This is an immediate consequence of the fact that J, vanishes only at 
IrI = 1, J, is C“ up to the boundary, J, is radial and a$/ar(r = I )  # 0. 

LEMMA A.2.2. Let D be the unit ball about zero in R“. Then, there are 
constants m, C,  D < 00 such that for an orthonormal basis of eigenfunctions $J of 
H: we have 

(A.2.2) I+(r)l d C(  E +. 
and 

where E is defined by H+ = E+. 

Proof: By separation of variables, we can find a basis of eigenfunctions of 
the form 

+(r) = r - ( ’ -1 ) ’2u ( r )Yy (+) ,  

where Y,”’ is a spherical harmonic and u obeys 

- u ” +  L ( L +  l ) r - 2 u = 2 E u  

with L = I + + ( v  - 3). Now, ( H i ’ +  I ) - ” ’  maps L2 to L“, if m is sufficiently 
large, so that (A.2.2) is immediate. This yields (A.2.3) in the region Irl <+. 
Noticing that - f S L ( L  + 1) S 2 E  (the latter since Jlrld I r-’L(L + I)u2dr 
I 2 E )  we see that, by (A.2.2), 

(A.2.4) Iu”(x)I 5 C’( E + - _  ; 5 x s 1 ,  

where, without loss of generality, we can assume that C’ > 96. We claim that 

(A.2.5) Iu’( 1)1 S C’( E + I )”’+’ .  

Suppose the contrary and assume, without loss of generality, that u’( 1)  > 0. 
Then, by (A.2.4), 

U f ( X ) 2 + C ’ ( E +  + < x < l ,  
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which since u (  1) = 0 implies that 

257 

f < x < l ,  

so that 

I 1 1 lu (x)12dx2 - 96 C'( E + I)"'+'  > I ,  

which violates the normalization condition. Thus (A.2.5) holds. Using (A.2.4) 
again we get 

Iu'(x)I 5 2 C'( E + 
which yields (A.2.3). 

THEOREM A.2.3. Let #,,,En be an orthonormal basis of eigenfunctions for Hf, 
wilh 52 a unit sphere in Iw'. Then, for s > 0, 

converges. The convergence is uniform on set of the form 
so > 0, and QF obeys 

(A.2.6) 

X a X [so, a), with 

I Q,(x9 y)ls Cs(l - 1 ~ 1 ) ' .  

Proof: Given the above bounds and the fact that # { En S E ) is .bounded 
by C E'/' (see e.g., [25]) the convergence is easily seen, as is the bound (A.2.6). 

THEOREM A.2.4. Q, is continuous on a X X (0, m) and obeys (3.9), (3.10). 

Proof: Continuity follows from the obvious continuity of the sums CE,,CE 
and the uniform convergence. (A.2.6) implies (3.9), and (3.10) follows from the 
orthonormality of the +,,. 

We shall prove (3.1 1 )  for the following class of sets: 

DEFINITION. We say that i-2 is a rounded convex set if and only if P is a 
bounded open convex set, and there is an r > 0 with which for every x E ai-2 
there exists an open ball B, of radius r, with x E aB.r and B,, C a. 

Remarks 1. In some sense r is just an upper bound on the radius of 
curvature of aS2. 
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2. Except in v =  1, cubes are obviously not rounded but as products of 
interva s (which are rounded) they clearly obey (3.1 I )  once we know the bound 
for rounded sets. 

LEMMA A.2.5. Let 3 be a rounded convex set. Then 

(A.2.7) c dist( x, a0) 5 $( X)  5 d dist( x, a 3 )  

for suitable 0 < c,  d < 00. 

Proof: Since Hi$ = a#, 

For any x E 3, lety E 33 be chosen so that dist(x, a3) = dist(x, y )  and let n, be 
the half-space with a c n., andy E an,,. Then by (A.2.8) and the monotonicity of 
the integral kernel of ( H $ ) - l  in the region R, we obtain 

(A.2.9) +(x) 5 q(Hc? )-l$]C.). 

Let G(y , r )  be the integral kernel of ( H , " - ) - ' .  Then, by the method of images, we 
have 

if 2 is the direction perpendicular to &rx. This implies that, with q ( y )  = 
(H,"$)(y), q ( y )  5 c ~ ~ $ ~ ~ ~ ( y  * e^)  which proves the upper bound in (A.2.7). 

For the lower bound, we first note that since $ is continuous and non- 
vanishing on 3, we can find a non-zero lower bound, b, on $ in the region 
R ,  = { y)dist(y, aS2) 2 i r ) .  Now, let x E a, with dist(x, X?) 5 r. Let y E a3 be 
chosen with dist(y, x) = dist(x, a3) and let B,. be a ball of radius r as in the 
definition of roundedness. Then, by (A.2.8), 

Using the contribution of all points, L, in the ball B,. with (L - zOI 5 t r,  where zo 
is the center of B,,, we obtain the lower bound in (A.2.7). 

The penultimate preparatory step to proving (3.1 1 )  is to verify it for a 
half-line: 

LEMMA A.2.6. For x, y ,  E [ - 00, QO), let 
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Proof: By scaling we can suppose, without loss of generality that s = 1. We 
consider separately the two cases: y 2 2x and y 5 2x. If y 5 2x, then 

since S’/~P,(X, y )  is monotone increasing in s. 
If  y 2 2x, we proceed as follows: 

which is bounded. 

LEMMA A.2.7. For x, y E R’, let 

Then, for every c, there is a C, such that (A.2.10) holds. 

Proof: Make the v-dependence explicit by writing P!“),  Q,’”). Then 

and 
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Thus, (A.2.10) follows from the one-dimensional case (Lemma A.2.7) and the 
bound 

which follows from the monotonicity of S ' / ~ P , ' ' ) ( X ,  y )  in s. 

THEOREM A.2.8. Let 52 be a rounded convex set in R'. Let P, be given by 
(A.2.11) and let 

Q s ( x 9  u )  = + ( x ) - 1 W V ' ? ( x 9  Y ) ?  

P L 2  being the integral kernel of the semigroup generated by the Dirichlet Laplacian 
in 52. Then (A.2.10) holds for any c > 0. Moreover, C, depends onh  on Y and on the 
ratio 

sup[ dist(x, aQ)+(x)]/inf[ dist(x, aQ)+(x)]. 

In particular, the Same C, will work for all balls. 

Proof: We bound instead 

(A.2.12) dist(x,aS2)-1P:(x, y)dist(y, an) 

by C, P, I + , ) s ( x ,  y) independently of 52 and then use Lemma A.2.5. Given x, pick 
z E a52 so that dist(z,x) = dist(x, 352) and let T be the half-space with z E aT, and 
Cl C T. By translation and rotation, we can suppose without loss of generality 
that T = {z l z l  > 0) .  Then dist(x, aS2) = xI and dist(y, a52) S y , .  Since PR is 
monotone in 52, we see that (A.2.12) is bounded by 

so Lemma A.2.7 yields the required bound. 

Appendix 3. Some Remarks on First Exit Times 

Let Cl be an open subset of R' and let T be the first hitting time for R'\52. The 
first fact that we want to note helps explain why Chung-Rau [7] obtain results 
which depend only on )QI. 

THEOREM A.3. I .  Let f be a monotone non-decreasing function on [O,m). Then 
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where f is the first exit time for 6-the ball about zero with 161 = 101 (IAI 
= Lebesgue measure of A ) .  

Proof: By standard arguments, it suffices to consider the case f ( s )  = 0 
(respectively 1) for s 5 a (respectively s > a) ,  i.e., 

(A.3.1) P,(T > a )  s p0(j: > a) .  

Let 0, be an increasing sequence of open sets with a,, C Q, ,  I and UQ, = 0. 
Then 

Px( T > a )  = lim lim P,(b( j a / m )  E a,l; j = 0,1, . . - , m),  
n+mm-+m 

where 

P-r (b ( ja /m)  E w,; j = 0,. . - , m )  
(A.3.2) 

=JGm(x  - x l )m(x l )cn i (x I  - x ~ ) x ( x ~ )  * * * xn(xrn)dvx1 * * * d'x 

with G,,, a Gaussian function, and ~1 the characteristic function of Q,,. A general 
result of Brascamp et. al. [4] asserts that any integral like (A.3.2) increases if 
every function is replaced by its spherically decreasing rearrangement. For 
Gm(x - .) this is just G m ( - ) ,  for C,,, ( - )  it is G, , , ( - )  and for xl i t  is dominated by x, 
the characteristic function of 6. Thus 

S r ( b ( j a / m )  E a n ; j  = 0, * , m )  = P,(b( ja /m)  E 6 ;  j = 0, - , m) 

which yields (A.3.1) upon taking limits. 

and b( T): 
The second result involves an explicit formula for the joint distribution of T 

THEOREM A.3.2. Let 52 be a bounded open set with smooth boundary. Suppose 

( i )  the integral kernel P,(x, y )  of exp{ - s H i l )  has, for each fixed s > 0 and 

(ii) the restrictions to 30 of functions which are harmonic in a, and C I up to the 

Then for fixed x the joint probability distribution of T = s and b( T )  = y is 

that: 

x E a, an extension to a which is C I up to the boundary, 

boundary, is dense in the set of continuous functions on aQ. 

(A.3.3) 2 a P r ( x ,  an,. y ) d u ( y ) d s ,  

where n,. is an inward pointing normal and do is the conventional surface measure. 
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Remarks. 1 .  We shall not worry about when suppositions (i), (ii) hold. They 
should be valid under rather minimal conditions. It is easy to verify them for 
balls and annuli. 

2. For the case of balls and annuli, P , ( x , y )  has an explicit spherical 
harmonic expansion from which one can easily read off E,(e-”Y(b( t ) ) )  (where 
Y is a spherical harmonic) in terms of Bessel functions. Thus we obtain, again, 
recent results of Wendel [37]. 

3. There is an analogous formula when $2 is the complement of a bounded 
set. 

4. Smoothness of aQ everywhere is not really essential. For example, one 
can prove this formula for $2 when it is a cube. 

5.  Both E. Dynkin and S.R.S. Varadhan have emphasized to us  that this 
formula is just a “parabolic” analogue of the fact that exit distributions yield 
harmonic measures which are normal derivatives of fundamental solutions, and 
that therefore this formula is “obvious”. 

We shall need the following lemma. which is of independent interest. 

LEMMA A.3.3. Let Q be an arbitrary open set and h an arbitrary bounded 
function on aQ. Define f on H by 

Then, for any s > 0 and any x E 9, 

where T V s = min(s, T). 

Proof: By the Markov property, the E,,-distribution of b( t  + s) conditioned 
on T > s and b(s )  = y  is just the E,-distribution of b ( t ) .  Thus 

E,.(h(b( T ) ) :  T > s )  = J P , ( b ( s )  E dy; T > s)E, . (h(b(  T ) ) )  

which proves the result. 

Proof of Theorem A.3.2: Let a function h be harmonic in Q and C ’ up to 
aQ. Then, by Green’s formula, for any s,x: 
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where we used P \ ( x ,  y )  = 0 fory  E an and Ah = 0. Integrating over s from 0 to t ,  
we find 

But, by the path integral formula for P.,, 

the lemma tells us that 

In view of the assumed density of these trial h's we have identified the required 
joint distribution. 

If #(x) is the ground state of Hf and If,$) = a#, then, at least formally, 

in line with our discussion in Section 3. 
Let us sketch the ideas that should lead to a proof of (3.5). Since it is 

peripherial to our concerns, we do not try to give technical details. Because of the 
independence of b( T) and T and the known ae-'"ds distribution of T, we need 
only to show that 

d 
ds - P( TI s i b (  T )  E A )  

for A a small set neary,. But for s near zero all paths must come from very near 
A .  Therefore one should be able to reduce this to a statement about the 
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one-dimensional Brownian motion: 

ax 1 - P P , ( T S s ) d x =  - a  
2 

lim J 
SJO IXlCI s 

which, given the explicit formula for T in one dimension, is equivalent to 

verifiable by an elementary calculation. 

Appendix 4. The Dirichlet Problem for Schrodinger Operators 

Let D be a fixed but arbitrary bounded open region in R". We let Hi' denote 
the Dirichlet Laplacian on Q times +, i.e., the Friedrichs extension of - + A  on 
C,"(D). For any continuous path b on [0, M)), we define T ( b )  = inf(  s > 01 b ( s )  
fji D ) .  By continuity, b ( T ( b ) )  E aD. We recall (see, e.g., Port and Stone [22]) that 
a point y E as2 is called regular if and only if P,( T = 0) = 1, where P,, is the 
probability for Brownian motion starting at  y .  If there is an open cone, 'K, with 
vertex y so that K n { X I  Ix -yI < R }  n Cl = 0, then y is a regular point (see 
[22], Proposition 2.3.3). In  particular, if C2 is convex, every y E an is regular. 

In this section we want to study the Dirichlet problem for the Schrodinger 
equation. We emphasize that we know of no direct application of the solution of 
this problem to quantum mechanics (although, as we have seen, the explicit form 
of solutions of Hu = 0 in terms of their boundary values is significant, at  least for 
nice D). Nevertheless, it is a natural mathematical problem with a solution which 
is easy to describe in terms of the ideas in this paper. We shall prove the 
following: 

THEOREM A.4.1. Let D be a bounded open subset of R" and let V E K,,!". I f  
inf spec( H ) > 0, for H = Hi' + V as an operator on L2(!2), then for any junction f 
in L"(aQ), the expectation ( T  is the stopping time described above) 

defines a bounded continuous function on C2 which is a distributional solution of 
Hu = 0 ( i .e . ,  (Hrp, Mf) = 0 for all + E Cr(D)). Moreover, if y E a D  is a regular 
point and if j is continuous at y ,  then 

(A.4.2) 
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For bounded V a closely related result has been obtained previously by 
Chung and Rao [7]. 

Before turning to the proof of this theorem, we want to note that the 
condition inf spec(H) > 0 is more or less necessary for Mf even to be finite. For 
example, let us show that if V S  0 and f =  1, then ( M f l ( x )  < 00 for a single 
x E S2 implies that E, = inf spec(H) > 0. For H has compact resolvent since V is 
relatively form-bounded on L2(Q) with respect to Hf with relative bound zero on 
account of V E K,I"'. Thus, there exists a non-zero u E Lm with Hu = E,u and, 
by general principles, u 2 0. By Harnack's inequality, u ( x )  > 0 for all x .  Let 

a, = E,(exp( - l n V ( b ( s ) ) d r ) ;  T 2 n ) .  

Then, by the Feynman-Kac formula, 

a,, = [exp( - n H ) l ] ( x )  2 I lu l l - ' (e-""u)(x)  2 Ce-"€ 

with C # 0. But ( M f ) ( x )  < GO and V S 0, implies that a,, +O as n + 00 by a 
simple use of the dominated convergence theorem. Thus E, > 0. 

The defect in the theorem is that if 0 B spec(H), then one would expect to be 
able to solve the Dirichlet problem; for nice Q's and V's one can do this by 
analytic methods (in terms of the normal derivatives of the integral kernel of 
H - '). 

We also note that if there is a function u which is strictly positive in a 
neighborhood of S2 and Hu = 0, then it is not hard to show that E, > 0; see 
Theorem A.4.9. 

We prove Theorem A.4.1 through a sequence of lemmas: 

LEMMA A.4.2. Let V E K,'OC. If E ,  = inf spec(H) > 0, then Mf given by 
(A.4.1) dejnes a bounded map from L"(aS2) to L"(S2). 

Proof: Clearly, I(Mf)(x)l 5 I (Ml) (x) l  l l f l l m ,  so we need only show that 
I (Ml) (x) l  < GO. Let 

a , (x )  = E,(exp[ - i T V ( b ( s ) ) d s ) ;  n S T < n + 1 . ) 
Let x be the characteristic function of a. Then 

hence 
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in view of the fact that X V  E K,, (see Theorem 4.7). But, clearly, 

a n ( x )  = (e-nHa,)(X), 

and thus, for n 2 2, 

ll%lla Ile-H112;mpP{ -(n - 1)H )a1112 

5 11e-"112:aexp( - (n  - ~ ) ~ O } I I ~ I I I ~ ~ [ ~ ~ X ] ' ' ~  

Since X V  E K,,, e - H  is bounded from L' to L"; consequently, 

Ilanllm < D ~ x P {  -nEo)*  

Since E, > 0, 

LEMMA A.4.3. If Eo > 0, V E K:K., then, for some E > 0, 

(A.4.3) sup ~ , ( e x p (  - ( I  + E ) l T ~ ( b ( s ) ) & ) )  0 < m. 

Proof: In view of the previous lemma, it is sufficient to show that E, 
= inf spec( Hi' + ( 1  + E) V )  > 0 for some E > 0. But, since V is Hil-form bounded 
with relative bound zero, E, is continuous in E.  

Proof: Since xV E K,,, the right side is the limit as n, m + 00 of the same 
thing with V replaced by min[max( - n, V ( x ) ) , m ]  (see Theorem 4.16). By using 
monotone convergence theorems, one concludes that it suffices to consider the 
case V E La and thus, replacing Vg by g, to suppose that V = I .  Also we can 
assume g 2 0. Clearly, 
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The last two equalities are only intended to be true in the L2 sense. However 
(using the fact that the distributional Laplacian of ( H f ) - ' h  is h )  it is easy to see 
that both sides of (A.4.4) are continuous in x (when I/ = I ) ;  hence equality in the 
L' sense implies equality pointwise. 

LEMMA A.4.5. 
g ( x )  = ( M f ) ( x ) .  Then 

Suppose the hypothesis of Lemma A.4.2. For any f E L" write 

Proof: We begin by noting that, for any function q ( s )  and T, 

(A.4.5) follows once we justify the fact that one can take a conditional expecta- 
tion on { b ( ~ ) } , ~ , ~  inside 

To do this, we need only prove finiteness of the expectation when we replace f by 
I f l  and V by I VI in the first place it appears (but not in the exponential). 
However, for this positive integral, we can take the conditional expectation and 
note that, by the previous lemma, the result 

is finite. 

LEMMA A.4.6. Suppose that the hypotheses of Lemma A.4.2 hold. Then, for 
any f E L"(aQ), g = Mf is continuous on Q and (H+,  g) = 0 for any + E C,"(Q). 

Proof: As is well known (see, e.g., [22] or note the mean-value property), the 
first term in (A.4.5) is harmonic. We have already noted the continuity of the 
second term. Moreover, if + E C,"(Q), 

( H , f + ,  g )  = (H&. h )  - (Hf& ( Hi') - ' Vg) ,  

h being the first term in (A.4.5). We have used Lemmas A.4.4 and A.4.5. Since h 
is harmonic we see that 
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The following is standard (see, e.g., [22], Proposition 2.3.4). Since the proof is 
so easy, we give it to keep this paper relatively selfcontained. 

LEMMA A.4.1. Let y E as2 be a regular point. Fix 6, t > 0. Then 

(i) liliyPx(T5 t )  = I ,  
X € Q  

(iii) lim P,(f(b(T))) =f(y) ,  
x +.v 
X E Q  

for any bounded function f on as2 which is continuous at y. 

Proof: (iii) follows trivially from (ii). (ii) follows from (i) and the fact that 
lim,LoPx(lb(s) - XI  5 46; all 0 d s 5 t)  = 1 uniformly in x .  Thus, we need only 
prove (i). Note that 

P z ( T Z t ) =  P , ( b ( s ) E Q ; O S s < t )  

Notice that f,(z) = (exp{ - ~H,) f~) (z) ,  with H ,  = - ;A, implying that L ( z )  is 
continuous. Since y is regular, limcJoL(y) = 0, so given 6, find E > 0 with 
L(y)  4 46. Then find y such that Ix - yI < y impliesL(x) 5 6. Butfo(x) < f , ( x )  
and thus we conclude that 

lim P ( T  2 t )  = 0. 
x + y  

LEMMA A.4.8. 
A.4.2 hold. Then 

Let y be a regular point in as2 and let the hypothesis of Lemma 

x lim -’y E,v( I [  exp{ - lTV(b( s ) )ds )  - 111) = 0. 
x€n 

Proof: For each 6 > 0, write the expectation as a sum of two terms &(x) 
and g, ( x )  corresponding to the expectation over those paths for which 
sup,, ,ss Ib(s) - yI 5 6 and, correspondingly, over those where this fails. We 
shall prove that limb-rosupx I fs(x)l  = 0 and that 1irnx+.” I gs(x)l = 0 for any fixed 
6 > 0, from which the result follows. 
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Let q be the dual index of p = ( 1  + 0. Then, by Holder’s inequality, 

with 

By Lemma A.4.3, (Y < 00;  hence by Lemma A.4.7 (ii), 

lim 1 gs(y)I = 0. 
X+Y 

Now let xs be the characteristic function of ( x  I Ix - y (  d 6 j .  Then, by 
Khas’minskii’s argument (see Section l), 

S U P I f S ( X ) l S  P(1  - & - I ,  

where f i  = supx Ex(Jl(xa V)(b(s ) )  ak), provided P < 1. However p + 0 as S + 0, 
since v E KY. 

Proof of Theorem A.4.1: We have already shown (Lemma A.4.6) that Mf is 
continuous and a distributional solution of Hu = 0. Thus, we need only prove 
(A.4.2). But 

Therefore, the desired result follows from Lemma A.4.7 (iii) and Lemma A.4.8. 

The following result is of interest since it tells us when inf spec(H) > 0. 

THEOREM A.4.9. Let V E KYW, and assume D is a bounded open set in w’. 
Suppose that there exists a function u on D such that Hu = 0 (distributional sense) 
and 

(A.4.6) 

Then inf spec(H) > 0. 

inf u ( x )  > 0. 
X € Q  

Remarks 1. For the case V S 0, Khas’minskii essentially proved this result 
in [17]; his proof exploits Y < 0 heavily. 
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2. Of course, if infspec(H) > 0, there exists a u obeying (A.4.6); for, by 
Theorem A.4.1, the function 

obeys H u  = 0 and, 

inf u ( x )  2 inf E ,  
X € Q  

with V ,  ( x )  = max( V ( x ) ,  0). The second inequality is Holder's inequality and the 
last follows from Khasmin'skii's lemma and the hypothesis V, E K,,'"'. 

Proof: Let u' be any strictly positive function on which is C" on 52. Let 
f =tAu'/u" and letf E CT(52). Integrating by parts, one finds that 

(f,(- ; A +  f 1 )  f = 3 'I (u"(x)(Z[V(F1)(x)I2d~x. 

Letting G,, be a smooth set of approximates to u, we see that 

at first for smooth f s  and then, by a limiting argument, for all f E Q ( H )  
= Q( Hi') .  (A.4.7) shows that inf spec( H )  Z 0. Since 52 is bounded, H has 
compact resolvent so that if inf spec(H) = 0, there is an f with (f, Hf) = 0. By 
(A.4.7), this can only happen i f f  = u;  i.e., it can only happen if u E Q( Hi') .  Of 
course, since u does not vanish on as2 and functions in  Q ( H ; )  vanish on as2 in 
some sense, one expects to be able to show that u G Q ( H i 2 ) .  

Following we give a proof that u @ Q(Hi ' ) .  The semigroup generated by H i z  
is a contraction on all LP. The ideas of Beurling-Deny (see Theorem XIII.51 of 
[25]  and its proof) imply that, for any constant c, the map f +  min(f,c) maps 
Q(HA') into itself. Thus, if u E Q ( H i 2 )  so is ( i n f u ) l .  Since (f, H , j )  = 4 J'(Vf12d"x 
for any f E Q ( H f ) ,  we see that if u E Q ( H i ' ) ,  then inf spec(Hi') = 0 which is 
impossible for a bounded 52. This contradiction shows that u G Q ( H , ) ,  and 
concludes the proof of the fact that inf spec(H) > 0. 

Finally, we want to note an immediate consequence of the strong Markov 
property of Brownian motion and our definition of M ;  making the S2 dependence 
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of M explicit by writing M n: 

PROPOSITION A.4.10. Let 52 obey the hypothesis of Theorem A.4.1 and let 52’ 
be an open set with c Q. I f g  = MS2fraQ’, then MS2g = M y o n  52’. 

Proof: Without loss of generality we can suppose that f 2 0. Let x E 52’ and 
let T‘, T be the first exit times from Q’, respectively 52. Clearly, T‘ < T and 

Now use the strong Markov property (since t is positive we are justified in taking 
conditional expectation). 

Note. R. Getoor has kindly pointed out to us that by using the general 
theory of [21] (especially in the form given in M. Sharpe, Ann. Prob. 8, 1980, pp. 
1 157-1 162), some of the technical results of Section 3 (e.g., Theorem 3.3) can be 
proven. This is because our process q is a special case of Nagasawa’s theory. 
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