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Let V<O, VECF(R”) with v>3 be such that H=-jA+V>O but for any 
E > 0, -fA + (1 + E)V is not positive. We determine the exact rate of divergence of 
the norm of e-“’ as a map from Lm to Lm. A number of related problems are 
discussed. 

1. INTR~OUCTI~N 

This paper is a sequel to our earlier paper [8]. For a large class of 
potentials, V, Carmona [l] and Simon [ 71 independently showed that the 
Schrodinger Semigroup emtH, H = -&I + V initially defined on L’(R”) is an 
exponentially bounded semigroup on each LP(R”). If (]A &,,4 is the norm of A 
as a map from Lp to L4, then it was proven in [8] that the rate of 
exponential divergence of ]I e-‘H]jp,p is independent of p. This p-independence 
is only for the lending order as t + co. In particular, in [8], we gave 
examples with ]]e-t”/]2,2 = 1 but lim,, ]]e-tH]]oo,oo = co. One of our main 
goals in this paper is to determine the precise rate of divergence of this 
II . Ilto,* -norm for these examples of “critical potentials.” 

To describe things more precisely, let us begin by recalling some of the 
results of [ 1, 7,8]. 

DEFINITION. A function f on R” is called unl@x-mly locally Lp (written 
LP,) if and only if 

SUP x [J ,x--y, <, If(YI” dY] 1’p < m. 
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DEFINITION. Yi is the smallest class of real-valued functions on R” 
closed under sums and containing (i) any positive L:,,, function: (ii) any 
function of the form V(Tx), where T is a linear map from R” to R’ and 
VE LP,(R’) for some p > (42) (p > 2; p > 1 if ,U = 1). 

DEFINITION. Let v > 3. W; is the set of real-valued functions on R” with 
VELpnLqforsomep,qwithp(v/2<q. 

Later, we will need a third class for some special purposes. 

DEFINITION. We say that V E “yj if V is F’; and for any R, there exists a 
IV, E Yi of the form Cz’$ f,( T, r) with T, a linear map from R” to R“a 
and f, E Lp(R’~) some p > b,, so that V(x) = W,(x) for Ix] < R. 

Thus V E Yj has anegative part consisting of potentials of type (ii) in the 
definition of F’; and its positive part has locally the same structure. 

THEOREM 1.1 ([7]). Let VET,. Then for any p and t>O, eeLH 
(defined for p < 00 by density from L2 n Lp and for p = 00 by duality on L’) 
is bounded from Lp to Lp with 

Ile-fHllp,p < Ce+“. 

For any t > 0, p < q, eWtH is bounded from Lp to Lq. 

(1.1) 

THEOREM 1.2 ([8]). Let V E “y;. Then 

ap z lim t f-r00 -’ ln Ile-‘Hllp.p (1.2) 

is independent of p. 

Remark. In Appendix 1, we extend Theorem 1.2 to include the norm for 
any p < q. There we also prove that for V E F3 and for any positive function 
f E L’ + Lm, and any x 

CI~X) E ii+= t-l In [(e-“f j(x)] (1.3) 

exists and equals a, independently off and x. 

DEFINITION. Let V E Y2. We say V is supercritical if a,(V) > 0, V is 
subcritical if a,((1 + E)V) = 0 for some E > 0 and V is critical if a,(V) = 0 
but a,((1 + e)V) > 0 for all E > 0. 

DEFINITION. If a,(V) = 0, we define /3,(V) = sup, ]]ePfH]loo,,,. 
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THEOREM 1.3 ([8]). Let VE T2. If Vis subcritical, thenP,(V) < co. If 
V is critical, /3,(V) = co. 

In this paper we want to concentrate mainly on the question of how fast 
lle-‘“IL co diverges as t -+ co when V is critical. Reference [S] has some 
information on this : 

THEOREM 1.4 (181). Let VET,. Then 

lie-‘“II ca,co < C( 1 + t)Oj2 en2(“jr. (1.4) 

Remark. Since I]e-‘Hl]z,2 < e a~(‘~’ by self-adjointness, duality and inter- 
polation, (1.4) is the main step in the proof of Theorem 1.2. 

Let us begin by presenting a convincing argument, using Brownian 
motion, that in the critical case, ]le-‘HIJ,,oo diverges at least as fast as t(“-2M2 
and which strongly suggests this is the precise behavior. Suppose that I’< 0 
and VE CF(R”). If V is critical, then [8] there exists a function q > 0 in L”O 
with EQ = 0 which solves the homogeneous integral equation 

ij = (-A)-’ (-Vq). (1.5) 

Since V has compact support and --Vq > 0, (1.5) implies that 

TpCIxl-‘“-*), /xl+ 00, (1.6) 

for some C # 0. The Feynman-Kac formula implies that 

q(0) =E exp ( (-J; V(s)) ds) NW) (I-7) 

with b(s) Brownian motion [7] and E expectation with respect to Brownian 
motion. 

Let x,( + ) be the characteristic function of {x / 1x1 < R ] and XX = 1 - xR. 
Brownian motion goes a distance of order t”’ in time t in the sense that 

can be made small by taking 6 small. Thus, it is reasonable to suppose that 
paths with ] b(t)1 < dt”* make a small contribution to (1.7) so that for 6 small 
and fixed and t large: 

MO) < E exp ( (-j; W(s)) dx) v(W)) xh@(W) . (1.8) 
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But 

RHS of (1.8) = (e-fH~~&,Z)(0) 

G Ile-tHllm.m lImQtvzllm 
= Ile-tHllm,oo O(t-‘“-2)‘2) 

on account of (1.6). Since ~(0) # 0, we get the required t(“-2)!2 lower bound. 
Some thought about this argument suggests also that t(“-2M2 will be an upper 
bound. 

There is one major defect in the above argument; its conclusion is FALSE 
(except for Y = 3, where t’12 is the right answer but preseumably not on 
account of the above)! (1.8) is false: While not many paths have 
I WI & a ‘I2 the contribution of the exponential is sufficiently large to 3 
overcome this: the usual attempt to use Holder’s inequality to estimate 

fails because E(exp(--p J”b -)) diverges exponentially in t for any p > 1. 
Indeed, for v = 5, our results in this paper show that the small fraction of 
paths with lb(t)1 < ta contribute all of the expectation in (1.7) as t + 00 so 
long as a > (V - 2)-l. 

To end the suspense, let us say we will show that for v > 5 

(1.9) 

exists an is a non-zero finite number. For v = 4, t-r must be replaced by 
(t/in t)-’ and for v= 3, t-l must be replaced by t-‘12. 

What distinguishes v > 5, from v = 3, 4 is that for critical V’s, the q we 
discuss above is in L* if v > 5 and is not in L2 if v = 3,4. As we will describe 
in Section 2, the growth of Ile-‘Hllm.oo is intimately related to the growth of 

If VE L2 and if H > 0, as it is in v= 3,4, then Ile-9’l12-+0 so (1.10) is 
o(t) but if VE L2, then Il(e-‘“V)- (V, ~)~112+ 0 and if (V, v)# 0, then 
(1.10) is 0(t). We make these arguments precise in Section 2. 
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To treat the cases v = 3,4 and VE L2 we will have to be a little less 
direct. By Tauberian theorems the large t divergence of If, eeSHV ds is related 
to the small a divergence of J‘,” eesaeeSHVds = (H + a)-‘V. This divergence 
is essentially the same as the divergence of ]](l + (H, + a)-1’2 
VW, + a)-“2)~‘/12,,, a divergence which has been analyzed by Klaus and 
Simon [2]. These arguments are described in Section 3. 

In Sections 2 and 3, we completely analyze the divergence of ]]e-fH]]co,a 
for cases where VE 7; and a,(V) = 0, /3,(V) = co. This leaves open the 
situation when a,(V) = 0, p,(V) = co for more general V E YI. This is 
something we discuss further in Sections 4 and 5. 

2. C,?p-NEGATIVE POTENTIALS, v > 5 

In this section, we will prove the following pair of theorems: 

THEOREM 2.1. Let V E Cp(R”) with H = --id + V > 0 (i.e., (4, H#) > 0 
for all 4 # 0, q4 E L2). Then 

f$ t-llle-fHllm,m = 0. (2.1) 

THEOREM 2.2. Let V E Cp(R”) v > 5. Suppose that V< 0, that 
H=--fd+V>Oandthatthereis~EL2withHq=0,11q)I,=1. Then 

‘,\E ~-‘lle-%,~ = II vllco j- r(x) V(x) d”x # 0. (2.2) 

Remarks 1. The hypotheses V E CF (and V < 0 in Theorem 2.2) are 
very restrictive and one can easily use the methods to handle much more 
general Vs. Since we will prove stronger results for general V E Y2 in the 
next section (except that we will not check we get the constant --]I v]]~ (17, V) 
of (2.2)), we do not bother to make this explicit. 

2. We do not use v > 5 in our proof of Theorem 2.2 but the existence 
of such an v implies that v > 5. 

3. Theorem 2.1 is only interesting in the critical case with v = 3,4 
since, in all other cases where H > 0, we know by Theorem 1.3 that 
supl lle-%,m < ~0. 

We begin by noting that ePtH is positivity preserving and thus ]eefH’] < 
;hrs]“]. Moreover, since If] < ]]f]], 1, we have that emfH If] < ]]f]], (eefH1). 

Ile-fHllm,m = IWfH1 IL. (2.3) 
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Next, we note that 

71 

e-rH = e-rHo + 
I 

t e-SH(-V) &S)HO &* 
0 

Applying this to the function 1, we find that 

I 
I 

eCtH1 = 1 + e-““(-y)ds. 
0 

(2.4) 

Proof of Theorem 2.1. Since H > 0, s - (L2) - lim eCsH = 0. Thus 
iii:;+ ]] eeSH(-V)l12 = 0. But e --H is bounded from L2 to Lm (Theorem 1.1) 
,. 1l ~;,-,‘d;;o~~‘t)~“,“]/~ = 0. Since VE Lw, (le-SH(-V)l]ao is bounded on 

9 * 

(2.5) 
1 Jo 

as t+ co. (2.3), (2.4) and (2.5) imply (2.1). 1 

Proof of Theorem 2.2. Write -V = ay + W with a = (Q -V) and 
W = -V - ay so that W is orthogonal to v. By general principles [4] r is a 
simple eigenvector so H > 0 on (4 I (4, II) = O}. As in the above proof, we 
conclude that ]I ePfH WII, + 0. Since (2.4) and e-?l= q implies that 

e --IH1 = 1 + tart + 
I 
’ (eC”“W)ds 

0 

we have that 

From (2.6), a # 0, and (2.3), we conclude (2.2) holds. a 

We cannot resist pointing out a lucky irony in our choice of the terms 
“subcritical,” etc., in [8]. We had in mind an analogy with the scattering 
theory for the linearized Boltzmann equation [5], which is a characature of 
neutron scattering off a chunk of uranium. In that problem there is an L’- 
semigroup, W(t), depending on the size of the chunk of uranium. As that size 
passes from below a critical one to above the semigroup is expected to 
change from being bounded to becoming exponentially unbounded. This 
analogy motivated our choice of names. It did not occur to me that there 
was an even closer analogy in that the behavior was the same at the critical 
size. In the Boltzman case, there is a simple picture suggesting linear growth 
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of (( IV(f)]l, in t: namely, a steady state is set up in the uranium producing a 
steady source of neutrons. This is exactly what happens in (2.2): A steady 
source a~ is produced which generates more and more Loo-norm. 

We should emphasize that there is no proof of the existence of a critical 
size in the linearized Boltzmann equation at which /) IV(t)]], grows linearly. 
Perhaps one can base a proof on the ideas of this section. 

3. v= 3,4, GENERAL V AND TAUBERIAN THEOREMS 

The basic formula (2.4), which we rewrite 

(e-‘“l)(x) = 1 + A,(x), 

A,(x) = 1’ [eCsH(-V)](x) ds, 
0 

(3.1) 

(3.2) 

relates the divergence of JJe-f”]Jm,m to be divergence of the integral (3.2). By 
Tauberian theorems, the divergence of this integral can be read off from the 
small a divergence of 

B,(x) = Jm e -““[e-sH(-V)](x) ds. 
0 

(3.3) 

But the integral in (3.3) can be done explicitly: 

B,(x) = [(H + a)-’ (-V)](x). (3.4) 

Using the second resolvent equation, we have that 

(H + a)-’ (-V) = (1 + (Ho + a)-’ V)-’ [(Ho + a)-’ (-V)]. (3.5) 

Note that the (--I’) on the extreme right of (3.5) is viewed as a function, so 
for V E TX, (Ho + a)-’ (-I’) E L* uniformly as a 10 and the function is 
continuous in a. The V in (Ho + a)-’ VE L, which appears in (1 t L,)-’ is 
a multiplication operator. L, is a compact operator on L* which is norm 
continuous as a 1 0. General analysis of the critical potential situation [2, 81 
shows that L,=, has -1 as a simple eigenvalue. It follows that L, has 
associated a projection P(a) so that (P(a) = 1 -P(a)) 

(1 + L(a))-’ = (1 + co(a)>-’ P(a) + Q(a) P(a), (3.6) 

where Q(o) is norm continuous with finite limit as a 1 0. In (3.6), co(a) is the 
eigenvalue of L(a) approaching -1 as a IO. 
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Thus 

!jf P,(x) - (1 + eda)>-’ Pb)IW, + a>-’ (-OIlI, < ao, (3.7) 

i.e., the small a divergence of B,(x) is uniformly in x due to the small a 
divergence of (1 + e,(a))-‘. 

In order to apply Tauberian theorems, one needs a positive integrand. 
Therefore, write -V = V- - V, , where V, = max(k V, 0). Equation (3.3) 
with -V replaced by V, we denote as Bi so that 

B,=B, -B,t 

Equation (3.7) remains true with -V replaced by V, and B, by B: by the 
exact same arguments. 

The small a behavior of eO(a) was analyzed by Klaus and Simon [2] 
(actually, [2] considers the eigenvalue of the L* operator K, = 
V112(Ho + a)-’ ] VII/*, but in [8] it is proven the eigenvalues of K, on L* and 
L, on L”O are the same). 

e,(a)=-l+ca+..*(v>5), 

e,(a)=-1 +calna+ ..a (v=4), 

e,(a)=--1 +ca”*+... (U=3). 

Since P(a = O)w = ql(w), where 1 is a suitable linear functional and r7 
obeys Hq = 0 as usual, we find by (3.7) that 

B,f(x) = c+ r(x)f(a) + C~(X), (3.8) 

where 

(9 II cc . Kc is bounded as a -+ 0. 

(ii) f(a) N ax-l (v > 5), (a In a)-’ (v = 4), a-l’* (v = 3) 

(iii) c=c-- *c+ # 0. This follows because, a calculation shows that 
c = (const)(q, V) with the constant non-zero. But 

= I (-drl)#Osince~-d]x]-“-2dfOasx-+~ [2] 

We can now apply the Karamata Tauberian theorem suitably modified to 
include logarithms (see [7] for a discussion and proof of this theorem) to 
conclude : 
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THEOREM 3.1. Let V E 7; be a critical potential. Then 

;‘z g(t)-’ Jle-‘Hll,,m = d# 0, co, + 

g(t) = t (v>5) 

= t/(ln t) (v=4) 

= t”2 (v = 3). 

4. SOME MORE RESULTS 

In this section, we want to report some additional results about the 
divergence of ]I e-tHljoo,a,, especially in case v = 1. Of course a,(V) = 0 is 
possible when v = 1, when V is positive or when V has both signs (but not 
when V is negative [6]). In particular, one can have critical potentials in 
CF. The following is of some interest: 

THEOREM 4.1. Let VE Cr(--a~, a~) with H = -i(d’/dx*) + V> 0. 
Then p,(V) < co. 

ProoJ Suppose that supp V c (-1, 1). Let u solve the Schrodinger 
equation Hu = 0 with ~(-1) = 1, ~‘(-1) = 0. We claim that u has no zeroes 
in all of (-1, co), for if it did, then by solving the same equation with 
~(-1) = 1, w/(-l) = E with E small we would have a solution with two 
zeroes which is inconsistent with H > 0. It follows that u’(1) > 0. If 
u’(1) = 0, we have a solution, r, in all (-co, co) with rl E L”O and v > 0, 
from which ~up~]Ie-‘~l]~,~ < co follows as in [Xl. 

If u’(1) > 0, let uA 

--fu”+ vu-AWu=O. 

Where W is the characteristic function of (-+, +) with the boundary 
additions ~~(-1) = 1, ai = 0. By a simple comparison argument, there 
is a unique A, so that uAO is positive on (-1, 1) and uiO( 1) = 0. It follows that 

sup II e- f(“-ylm,m < 00 

so that, since I]e-f(H-AoW)l/OO,OO > ]le-fHlloa,m, we have the required result for 
H. i 

Remarks 1. We have a rather striking differences with v > 3. If v > 3, 
then Hq = 0 has a positive solution r EL O” if V is subcritical [S]; at the 
critical point q + 0 at infinity. For v = 1, we only get a solution q E L” for 
critical potentials and these solutions do not go to zero. 
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2. It would be good to prove this for Y = 2 and to prove that there also 
Hq = 0 has a positive L”O solution only for critical I%. 

The fact that /3,(V) < co for any VE Cr with a,(V) = 0 does not mean 
that there can be no one-dimensional V E Y, with p,(V) = co, a,(V) = 0. 
In fact, the first two attempts to construct such P”s seem to violate the 
general Ile-‘Hil m.oo < C(1 + t)“* rule for any VE Y, with a,(V) = 0 [8]. 

Attempt 1. The restriction of -$I + V(lxl) in five-dimensions to s-waves 
(spherically symmetric functions) is unitarily equivalent to the restriction of 
-f(d2/dX2) + V(lxl) + 1x1-2 in one dimension. If V is critical in live 
dimensions and W = V + lxlP2 is one dimension we have a,(w) = 0 and it 
appears that lle-lH(loo,oo diverges linearly in t. (Actually W @ Y, because of 
the singularity at x = 0 but that is not the problem.) This argument is wrong 
since the unitary equivalence is on L2 functions and does not carry over to 
Lp or L”O. 

Attempt 2. Our argument in Section 2 shows that if V E L2, and there is 
rl E L* with Hq= 0 and (II, v)#O, then Ile-f*llm,oo diverges linearly in t. 
Let us try to construct such a V and q. The idea is to guess q and then define 
V by 

v = $ry/q. 

For example, if q - r - ’ at infinity and bounded, then rl E L2 and V - r- ’ 
will be in L2. If v > 0 pointwise, then a,(v> = 0 (see Appendix 2) so we 
appear to be in business. However, 

(% v> = j” @yx) dx = 0 
-co 

since q E L* and thus q’ + 0 at infinity. This example is illuminating, since 
in three dimensions or more when q - IxI-(“-*), the boundary term 

Vq . ds 

will be non-zero. 
The failure of these attempts does not mean that one-dimensional cases 

with a,(v> = 0, supt Ile-Nlllco,a, = co do not occur. Indeed: 

THEOREM 4.2. Let q E L”O be a positive function obeying Hq = 0 for 
some V E Y3. Suppose that q 6Z L2 but rl E Lp for some p < 00. Then 
a,(V) = 0 and /l,(V) = 00. 
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Proof: Since v > 0, H 2 0 on L*( 13 ] ; this paper requires additional 
regularity on V but that is not required for this; see Appendix 2). Thus 
a2( V) < 0. Since Ile-‘Hqllm = /I ~/loo, a,(V) > 0 so a2 = a, implies that 
a,(V) = 0. 

Next, we note that as we prove in Appendix 2, H is strictly positive on 
L*(R”). Thus for any gE L*, ectHg -+ 0 in L* as I-+ co. Given p E (2, co) 
and g E Lp, use Holder’s inequality on path space to obtain 

I(ecfHg)(x)l < [(ecfH I glp’* (x)1*‘” [(e-‘“l)(x)\‘-“” 

and conclude that 

Thus, if supr lle-‘j’l Iloo < co we find that 

‘,i; lle-‘“gllp = 0 + 

for any p E (2, co) and g E L”. Taking g = q, we obtain a contradiction. 
Hence, sup, Jle-fHllm,m must be infinite. 1 

EXAMPLE 1. Pick r] E C” and strictly positive on (-co, a~) with 
q- r-v2 at infinity and let 

V(x) = (2q)- ’ (x) d*q/dx. 

Then q & L*, so the corresponding one-dimensional H has p, = co. 

EXAMPLE 2. Similarly if q - r-a with a < 1 in two dimensions, we will 
get V with /?, = 00. 

The significant open question is to figure out the rate of divergence of the 
norm. For q - r-U it should be a dependent and one might conjecture that it 
will approach the absolute f “‘* limit of [8] as a 1 0. This seems unlikely for 
there really should be no difference between v = 1, 2 and v > 3 for long range 
potentials. Thus, if the limit were obtained in v = 1, 2, one would expect it 
also in v = 3. But for that case, V- r-* so VE L* and since H > 0, 
arguments in Section 2 imply that Ile-fHllm,m/t -+ 0 so t3’* is not possible 
with these examples. The behavior of these examples clearly warrants further 
study. 

Further results on when Hg = 0 can have a positive L* solution when 
v = 3 can be found in Appendix 3 
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5. SOME OPEN PROBLEMS 

There are a number of interesting problems remaining open in the general 
area of divergence of ]]e-‘H]]p,p when a,(V) = 0. A few we have already 
mentioned : 

Problem 1. Prove for VE C$‘(R*) with a,(V) = 0, one has /?, < co. Is 
it true that Hq = 0 has a solution v > 0, q E L”O if and only if V is critical? 

Problem 2. If Hv= 0 has a solution rl- rea at infinity, how does 
](e-fH]],,a, diverge? 

Related to this problem is 

Problem 3. Is t’/* growth, the worst case allowed by [8 1, actually 
realized, is it arbitrarily close to being realized or can [8] be improved? 

Problem 4. What about ]]e-‘H]]p,p norms? Even in the VE CF critical 
case, this is open. By interpolation, when v > 5, p > 2 

However, we would guess that this is not the correct asymptotic power. 
Indeed, in this case, the value p = v/2 is special since q EL’ only if 
r > V/V - 2 and p is the dual of this criticai value. Indeed we suggest 
(conjecture is too strong) that (]e-fH]]p,p might be bounded for p < v/2. 

APPENDIX 1: SOME MOREP-INDEPENDENCE 

In this Appendix, we want to discuss various extensions of Theorem 1.2. 

THEOREM A.l.l. Let VET,. For any 1 <p<qQ o3, let 

Q~~= !\z t-‘ln ]]e-‘H]]p,qS (A.l.l) 

Then apq is independent of p and q. 

Remark. It is not directly evident via convexity that the limit exists. By 
introducing L& and gpq to denote lim and lim and following the proof below, 
one establishes the existence of the limit. 

ap4<a,. (A.1.2) 
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Similarly, I(eP(‘+‘)” I/l,m G lle-HIll,p lle-fHllp.q Ile-Hllq.m so 

aloo G apqT (A.1.3) 

so we only need to prove that a,,m = aoc. Next, note that by interpolation 

Ile-fHl12,m G lIe-tHlltl,200 lle-‘HIIE,m~ 

SO 

a2,co G fal,m + fa,,, (A.1.4) 

Combining this with a,,, < h 2,00 < a, (special case of (A.1.2) and (A.1.3)), 
we see that it s&ices to show that 

a,., 2 am. (A.1.5) 

Equation (A. 1.5) is actually proven in [ 81 (but not in that terminology); the 
proof there that a2 = am comes from proving (A.1.5) and using 

lie- (‘+‘)HIIZ,m G II~-H/12,m lle-1Hl12,2 1 
The following answers a question raised by R. Carmona: 

THEOREM A. 1.2. Let V E “25, let f > 0 lie in L’ + L”O. Then for any x 

axx) E $2 t-’ ln[(e-‘“f)(x)] (A.1.6) 

exists and equals am. 

Remark. By the proof of Corollary 25.8 of [7], Ran(e-“) consists of 
continuous functions, so (e-‘“f) can be defined pointwise without any 
ambiguity. 

Proof: Without loss, suppose that am = 0. Also without loss, suppose 
f E L”O, since emHL’ -+ L*. If f E L”O, it is obvious that 

- 
‘,!; t-l ln](e-fHf)(x)] Q a, = 0. 
I 

Thus, (A.1.6) follows from the result that for x fixed and any a, there is C 
(depending on E and x) with 

(eC’“f)(x) > Ce-“. (A.1.7) 

Since for any positive function h with 0 < h < 1, 

(e-Yf) > (e-‘“(hf )), 

we can suppose without loss that f E L’ AL”. 
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Given E, pick g E CF with I] g/l, = 1 and (g, Hg) < fe. Let W be the 
function which is --E on some ball containing the support of g and which is 0 
on the complement of that ball and let 

H’=H+ W. 

Then, since Q(H) c Q(H,) and W is H,-form compact, W will be H-form 
compact so that o(H’) n (-co*, 0) is discrete. Since (g, H’g) < -$, 
a(H’) n (-co, 0) # 0 so there exists an L2-eigenfunction q associated to 
inf a(H’). Since W + V E 7;) 7 is strictly positive (Theorem 25.15 of [7]). It 
follows that (q,f) # 0. Let H’v = eq so that e < ---is < 0. Then 

e-‘(“‘-@f+ (q, f)q, (A.1.8) 

the limit being in L,. But since e-H’ is bounded from L2 to L”, the 
convergence in (A.1.8) is also in La). In particular, since (a,f) v(x) # 0 and 
e --le > 1, (A.1.8) implies that 

(e-‘“y)(x) > C > 0. 

Since W > -a, the Feynmann-Kac formula implies that 

(ec”y)(x) > e-‘c(ectHf)(x), 

so (A.1.7) holds. 1 

APPENDIX 2: UNIQUENESS OF THE GROUND STATE 

Here we want to prove the following result, which we needed in the proof 
of Theorem 4.2 : 

THEOREM A.2.1. Let V E 7,. Let q E Lw obey Hq = 0 in the sense that 
e -IHrl = q and q > 0. Then a,(V) = 0. Moreover, any g E L2 obeying Hg = 0 
must be a multiple of tf. In particular, if g & L2, H is strictly positive on L2. 

Remarks 1. The result for q E L2 (i.e., uniqueness of the ground state) is 
well known (see [4]). In [8], we prove for V in the much smaller class Y2, 
that Hq = 0 has at most one positive Lm solution (and g E L2 with Hg = 0 is 
automatically in Loo). 

2. That the existence of 9 > 0 obeying Hq = 0 implies H > 0 on L2 is 
a result of Moss and Piepenbrink [3], but under more regularity on I/. 

580/40/I -6 
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Proof: We first that q > 0 by general principles [ 7 1. We will prove that 
for any f E CF: 

(“c fJY7 = 4 j Iv(fq’)l’ g2d”X. (A.2.1) 

Equation (A.2.1) implies that H > 0 on Cp, so a, < 0. 
But clearly e-I”q = r] implies CI, > 0, so (A.2.1) implies that aoo = 0. 

Moreover, (A.2.1) and a simple limiting argument implies that 

for any fE Q(H). In particular, if (g, Hg) = 0, then V( gr]-‘) = 0 a.e. so g is 
a multiple of q. 

To prove (A.2. l.), we begin by noting that for any y E C” with y > 0 and 
any fE Cr : 

f I I VW’)/*Y*~“x = (f, (Ho + Wf> (A.2.3) 

with H, = -fd and W = f&)/y. Equation (A.2.3) follows by a simple 
integration by parts. Now, Hq = 0 and q E L” implies that dq 
(distributional sense) is in L,‘,,. By the lemma below Vq is in L:,,, so since 
q > C > 0 on each compact, V(q-‘) is in Lf,,. Thus (A.2.3) implies (A.2.1) 
by a limiting argument. 1 

In the above, we needed the following “interpolation lemma.” We make no 
claim to its originality; presumably, it is a special case of results in the 
literature. 

LEMMA A.2.2. Let q be a locally bounded function with Av 
(distributional sense) in L:,,. Then Vy is in L&. 

Proof. Since the result is local, consider x with Ix/ < f . Suppose first 
~23. Let A?=[ and let c,/xI- (U-2) be the fundamental solution of -A. 
Since c is in L,‘,,, the distribution 

0) = C” I ,y,<, Ix-A-‘“-*‘KY)& 

can be defined by usual convolution of a function in Lp + Lq with an L’ 
function. A(q - ii) = 0 for 1x1 < 1 so 

v=h+f 

with h harmonic. It follows that we can replace q by rj, i.e., we can suppose 
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that drl E L’ with q harmonic for 1x1 > 1. Thus, multiplying q by g E CF 
with g z 1 for 1x1 < 2, we find that without loss, we can suppose 
qEL’nLm, dq E L’. Now let g, be a sequence of positive Cp functions 
with g, > 0, (2x) g, increasing monotonicly to 1 and (27~)“” b,,(O) = 1. Let 
v,, = &rl. Then IIVrl,Il~ = (II,, -4,) G ll~nllm J14nlll G llt4l, ll4h since rn 
is smooth and s g,d”x = 1. Looking at the Fourier transform of q, we see 
that Vq E L2. 

If v = 1,2, use the Green’s function (integral kernel) for (-d + 1))’ and 
elliptic regularity to replace the use of harmonic functions. 1 

APPENDIX 3: ON POSITIVE L* ZERO ENERGY EIGENFUNCTIONS 

The results obtained in this Appendix were found in response to a query of 
E. Lieb. In [2], Klaus and Simon proved that if (1 + Ix]) V E Ly2+E(Rj) f7 
L3’*-‘(R3), then Hv = 0, q > 0 implies that q & L2. The examples in 
Section 4 with V(x) - CX-~ at infinity and Hq = 0, q > 0, q E L* show that a 
result on q 6? L* will require some hypothesis on the falloff of V at infinity 
but the borderline appears to be lx]-* falloff, not the /XI-~ falloff required in 
[2]. In fact: 

THEOREM A.3.1. Let VE L3’*(R3) and Hq = 0, q > 0. Then q @J L*. 

As we will see this follows from: 

THEOREM A.3.2. Let v = 3. Let V, > 0 obey 

lii [A3’21{x 1 V+(x) > A}l] = 0, 

slip [A”* 1(x 1 V+(x) > n}l] < co, 

and let q 2 0 obey 

(Ho+ V+)rl=f>O. 

Proof Suppose f = 0 a.e. If q E L2, then 

@I. Ho, 6’) > (rl, (H + V, )q) = 0, 

(A.3.1) 

(A.3.2) 

(A.3.3) 

which is impossible. Thus, without loss suppose that f is not zero: 
Let P be the symmetric decreasing spherical rearrangement [9] of V,. 
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Then (A.3.2) says that 
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sup [rV(7(r)] < 03 
I 

as I+ co and thus, for small E 

H,-&P>O, 

since r-* < -44. It follows [9] that 

(Ho-EV+)>O 

for small E. 
By Lemma 10.4 of [2] 

for all g> 0 and some 0 depending only on E (This is a consequence of 
Holder’s inequality in a path integral). Now pick a nonnegative g E L* with 
compact support and 0 # g <J: Then Hi ‘g E Lp if and only if p > 3 
because of the Ix]- ’ falloff if H; ‘g. Moreover, if q E L*, then 

O<(H,+ V+)-‘g<(H,+ V+)-‘f=qEL? 

If we prove that (H, - &I’+)- ’ g E LJ’ for all p > 3, (A.3.4) would imply that 
Hi ‘g E LP so long as p > [l/2 t9 + l/3( 1 - 0)] -I, a contradiction. 

Thus, if we prove that (Ho - EV, )- ’ g E Lp for all p > 3, we can conclude 
that q $ L’. But, by the results of (91, 

with g* the spherical rearrangement of g. Since g* and r are spherically 
symmetric, one can write F = (H, - eq7>-’ g* in terms of solutions of the 
ordinary differential equation [--f(d*/dx*) - Ed] u(x) = 0. By a 
comparison argument using the fact that by (A.3.1), r’p(r) + 0 at co, one 
sees that as lx]--+ co. 

/xl’-“F(x)+0 

at infinity for any 6 -+ 0. As a result, FE Lp for any p > 3. 1 

Proof of Theorem A.3.1. (ZY, + V+)r = -V-q > 0. Note that any L”* 
function obeys (A.3.1, 2). 1 

Remarks 1. One does not need L3/* assumptions on V-. 
2. One does not need the limit in (A.3.1) to be zero but only that the 

lim is not too large; how large depending on the value of the sup in (A.3.2). 



SCHRdDINGER SEMIGROUPS 83 

ACKNOWLEDGMENTS 

It is a pleasure to thank R. Carmona and E. Lieb for a number of valuable discussions and 
the students in Math. 556 for patiently sitting through my random walking towards a solution 
of the problems described here. 

REFERENCES 

1. R. CARMONA, Regularity properties of Schrodinger and Dirichlet semigroups, J. Funcfional 
Analysis 33 (1979), 259-296. 

2. M. KLAUS AND B. SIMON, Coupling constant thresholds in non-relativistic quantum 
mechanics. I. Short range two body case, Ann. Phys. 130 (1980), 251-281. 

3. W. Moss AND J. PIEPENBRINK, Positive solutions of elliptic equations, Pacific J. Math. 75 
(1978), 219-226. 

4. M. REED AND B. SIMON, “Methods of Modern Mathematical Physics. IV. Analysis of 
Operators,” Academic Press, New York 1978. 

5. B. SIMON, Existence of the scattering matrix for the linearized Boltzmann equation, 
Commun. Math. Phys. 41 (1975), 99-108. 

6. B. SIMON, The bound state of Weakly coupled Schrodinger operators in one and two 
dimensions, Ann. Physics 97 (1976), 276288. 

7. B. SIMON, Brownian motion, Lp properties of Schrodinger operators and the localization of 
binding, J. Functional Analysis 35 (1980), 2 I S-229. 

8. B. SIMON, “Functional Integration and Quantum Physics,” Academic Press, New York, 
1979. 

9. H. BRASCAMP, E. LIEB, AND J. LUTTINGER, A general rearrangement inequality for 
multiple integrals, J. Functional Analysis 17 (1974) 227-237. 


