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1. Introduction. Suppose A is a Hermitian operator on a Hilbert space,
3¢. If Yy € D(A™) for all n, we say ¢ ¢ C*(A4). Let us define:

Definition. A vector ¢ ¢ C7(A) is called a semi-analytic vector for A if and
only if
,;, @n)! v <
for some ¢ > 0.
The name comes from the similarity to the notion of analytic vector [7]

for which the stronger condition that Y =, (||4™¢||/2)* < o for some t > 0
is required. Our major goal in this note is the proof of the theorem:

Theorem 1. If A is a Hermitian operator which is bounded below so that
D(A) contains a dense set of semi-analytic vectors, then A s essentially self-adjoint.

This theorem is in the genre of the by-now classic theorem of Nelson [7]
that a Hermitian operator with a dense set of analytic vectors is essentially
self-adjoint (although, we shall see it lacks a certain deep aspect of Nelson’s
theorem). Theorem 1 is a special case of a theorem of Masson and McClary
(Theorem 2, below) which was proven in a recent interesting paper [6]. To
state their theorem, let us first recall two definitions:

Definition. A vector ¢ ¢ C”(4) is called quasi-analytic if and only if

> A = e,
Y e C°(4) is called Stieltjes if and only if

-]
2 (|47 = o,
n=1

The relations of the four kinds of vectors is shown by the diagram:
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¢ Analytic = ¢ Quasi-analytic
!l

¥ Semi-analytic = ¢ Stieltjes

The top row is stronger than the bottom row in that the allowed growth rate
of ||A"y|| is the square root of the growth rate allowed on the bottom. The
left is only slightly stronger than the right in that ¢ can only be quasi-analytic
(Stieltjes) without being analytic (semi-analytic) if ||A"¢|| does not have a
fairly regular growth. The Masson-McClary theorem says:

Theorem 2. (Masson—McClary) If A is a Hermitian operator which is bounded
below so that D(A) contains a dense set of Stieltjes vectors, then A 1is essentially
self-adjoint.

This theorem is to Theorem 1 exactly as Nussbaum’s generalization of
Nelson’s theorem [10] (which says a Hermitian operator with a dense set of
quasi-analytic vectors is essentially self-adjoint) is to Nelson’s theorem.

In §3, we provide a new proof of Theorem 2 which we feel is more transparent
than the proof of Masson-MecClary [6] which is somewhat computational
and which has a somewhat magical quality. Despite the fact that Theorem 1
follows from Theorem 2, we provide a separate proof of Theorem 1 in §2. This
proof is elementary making no use of moment problem lore and we feel explains
exactly why theorems of the type we consider here are true. §2 is thus the heart
of this note.

2. The semi-analytic vector theorem. The proof of Theorem 1 consists of
four simple remarks:

(1) Since A is semi-bounded, it possesses self-adjoint extensions by a theorem
of Von Neumann [9], in particular, the Friedrichs extension [4, 5] exists. Thus
Theorem 1 is not an existence but only a uniqueness theorem; as a result, the
deep part of Nelson’s Theorem (existence of self-adjoint extensions) is by-
passed.

(2) As we show in Appendix 1, a semi-bounded Hermitian operator with
a unique semi-bounded self-adjoint extension has a unique self-adjoint extension.
Thus, we need only show that A in the theorem has a unique semi-bounded
self-adjoint extension.

(3) If A has a dense set of semi-analytic vectors, then A has at most one
self-adjoint A > 0. For let ¢ ¢ D(A) be a semi-analytic vector. Pass to a spectral
representation [8] for 4 so A is multiplication by =z on @Y., L*(R, du,) (N =
1,2, --- or »). We know that

N ©
> [ @ g, W du, = |4 < @ @mD) < ed”(@m)!
n=0 Y0
Thus

© N © m
>3 [ e L e nl e < @ i ] <
0 .

m=0 n=1
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so by the Dominated Convergence Theorem Y, [% " |¢(x, n)|* du, <
if || < d™*% Let f(y) = cos %) = Do, (—)"/(2n)!. Since [cos ¥y <
exp (|Im y*%)), we see 27, [ [f(2)| [¥(x, n)|* dun < o if [Im ¢| < d7* Thus
g,(0) = 2N, [5 () |¢(x, n)|* du, is analytic in the strip [Im | < d”** and is
given by the power series Y o_, t™/2n! (¢, (—A)"P) if |t| < d7'* As a result
(¥, cos (tA"*)¢) is uniquely determined by (¥, A™¢) for ¢ real if ¢ is semi-analytic
and 4 is a positive self adjoint extension. If A has a dense set of semi-analytic
vectors, cos (tA'?) is uniquely determined independent of A. Since the Spectral
Theorem implies

©

A+D' = f et cos (t4'?) dt.

We see that 4 is uniquely determined.

(4) If ¢ is a semi-analytic vector for 4, it is a semi-analytic vector for A + M
for any real number M > 0. Thus (3) implies an operator 4 with a dense set
of semi-analytic vectors has at most one extension A with A > —M. To see
the claim made above, note that if [|[A™y|| < ab™(2m)!, then

m

A+ 2ol = 3 (") jlar

n=

m

a@m)! 3 (Z’”)M"""b" < a(d + M)"2m)!

n=0

IA

3. The Masson-McClary Theorem. Basic to the proof we give of the
Masson—MecClary Theorem is the notion of vector of uniqueness and a simple
lemma of Nussbaum.

Definition. [10]. Let ¢ ¢ C”(A). Let D, be the algebraic linear span of
¥, Ay, «-- , A", -+ and let 5¢, = D, . Let A, be the operator in 3¢, with
domain D, given by A, = A|D, . ¢ is called a vector of uniqueness if and only
if A, is essentially self-adjoint in 3C, .

Lemma 1. (Nussbaum [10]). If A has a total set (i.e. a set S whose finite
linear combinations are dense) of vectors of uniqueness, then A is essentially self-
adjoint.

Proof. (Masson—-McClary [6]). We need only show Ran (A =4 7) are dense
[8]. Given ¢y e3¢ and ¢, find ¢y, +++ ,c,eCand ¢, « -+, ¢, vectors of uniqueness
so that ||y — D7, cib:|| < ¢/2. Since ¢, is a vector of uniqueness we can find
ni e Dy, so that ||¢; — (A4 + Dn:l| < /22 les]). Then D.%_; cin: e D(A) and
[l — (4 4+ 9) D.".; emil] < e As a result, we see Ran (A + 1) is dense. Sim-
ilarly Ran (A4 — %) is dense.

Nussbaum’s theorem on quasi-analytic vectors follows from this lemma
by noting: (a) ¢ ¢ C”(4) is a vector of uniqueness if and only if (¢, A"Y) = a,
is a sequence for which the Hamburger moment problem has a unique solution.

(b) Employing the well-known uniqueness criterion of Carleman for the
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Hamburger Moment Problem. We can provide a parallel proof for the Masson~
McClary Theorem:

Lemma 2. Let ¢ ¢ C°(A) where A s Hermitian and semi-bounded. If the
moment problem for a, = (¥, A™Y) has a unique solution in every interval (—M, «),
then ¥ is a vector of uniqueness for A.

Proof. Suppose A; and 4, are two self-adjoint extensions of 4, (since 4,
is bounded from below, it has self-adjoint extensions). If dE, . are the spectral
resolutions of A, », then (¥, dE;¢) and (¢, dE,¢) both solve the moment prob-
lem for a, in an interval (—M, ) (M = inf (¢(4), ¢(4.))) so they are equal.
Thus, also (A7, dE:(NATY) = X" (¢, dE;(My) and (A%, dE.(NA3Y) =
N, dES(\)¢) have identical matrix elements on a dense set in 3¢, , 7.e.
A, = A;.

Lemma 3. If 2.2, |a.™"/"" = o, then there is at most one measure u on
(=M, o) with

a,.=[ z" du, .
-M

Proof. See Appendix 2

Proof of Theorem 2. Let ¢ be a Stieltjes vector. Then by Lemma 3, the
conditions of Lemma 2 hold so ¢ is a vector of uniqueness. Then, by Lemma. 1,
A is essentially self-adjoint.

The proof of Theorem 1 is related to this proof as follows: steps (3) and (4)
of the proof of Theorem 1 (using (x + 1)™" = [5 e’ cos (tz})dt) are essentially
a proof of Lemma 3 in case |a,| < Cd"(2n)!

Appendix 1. Self-adjoint extensions of semi-bounded operators. We wish to
prove here that if 4 > 0 and if A has at most one semi-bounded extension,
then A4 is essentially self-adjoint. The proof is elementary but does not appear
to be in the basic literature. We also note the result is not true if A has only
one positive self-adjoint extension; e.g. A = —(d*/dz”) — 1 on L’[0, =] with
D(4) = C5(0, =) has only one positive self-adjoint extension but has deficiency
indices (2, 2).

Lemma. If A > 0 and A has deficiency indices [m, m] (m < o) then every
self-adjoint extension of A is semibounded.

Proof. See [1], pp. 115-116. The idea is that if 4 is any self-adjoint ex-
tension of A, D(A)/D(A) has dimension m so that A has a spectral projection
on (— =, 0) of dimension at most m.

Theorem. If A > 0 and has a unique semibounded self-adjoint extension,
then A is essentially self-adjoint.

Proof. Suppose not and let A have deficiency indices [m, m] (all the arguing
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is in case m = o). Let Ay be the Friedrichs extension. Then, if m 7 0, we can
find a Hermitian operator A with deficiency indices [1, 1] so A C A C .Ap .
Since Ay > 0, A > 0 and thus all the other self-adjoint extensions of A are
semibounded (by the Lemma). Thus, A has more than one semibounded ex-
tension if m £ 0. We conclude m = 0, 7.e. A is essentially self-adjoint.

Appendix 2. On the Moment Problem. We wish to prove that if Y, |a,|™**
= o, then the Moment Problem on (—M, ) has at most one solution for
any M. Again the proof is easy but doesn’t seem to be in the standard texts
[2, 11].

We need Carleman’s standard criterion: Carleman’s Theorem ([3]). If ¢(r)
is analytic in the region {z | |arg z| < 7/2; || = 7o} and in that region |g(z)| =
a, 2| ™ with D2, a7/ = , then ¢ is identically 0.

By rotation of the sector translation upwards plus a simple “‘interpolation”
argument, we see:

Corollary. Let g(z) be analytic in the region {z | Im z > R} and in that region
suppose

g@)| < a, 2™ =0,1,2, -+
with

> a7 = @ . Then g = 0.

n=0Q

Theorem. Let a, be a set of numbers with D% |a,|™/*" = ©. Suppose p, , pa

are two measures on (—M, ) (M > 0) with [, N'dp;(\) = a,(i =1, 2;n =
O, ]., 2, ”‘). Then pP1 = P2 .

Proof. Let f:(2) = 2 [, dp;(\)/(z* — \) which are analytic in the region
cut by z° ¢ (—M, «). Since p; may be recovered as a boundary value of f;

we need only show f, = f, to prove the theorem. We will first prove that if
Imz > (3M)* then

N—~1
f.@) — 2 a2 £ o] (ay + 2MYa) M.

n=0

It then follows that

7% 1) = f2()| < |e| ™"

in the region Im z > (3M)! with b, = 2M*(a, + 2M"a,). We will finally show
that Do, b;*" = o, This implies 7%, = 27%, .
By the geometric series with remainder formula

N-—-1 @ N
0@ = 16 — L azm =g [ 00
n=0

-M 22—)\

Writing 2 = z 4 4y we see that |\ — 2°| > M if \ > —M and if > > 3M
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(forif y* > 8M, 2> < M,then |\ — 2°| > [ReX — )| =y  + N — 2" > M
and if y* > 3M, z* = M, then |\ — 2°| > [Im (A — 2)| > 2(3M)%. Thus, if
Imz > (3M)}

- °
o@) < b [ a0

Y 0
< M [zl_”’”( [ ¥ dp, + 2 f l)\INdp‘) < 3, .
-M -M

Finally, we note either |a,|] < 2M"a, for infinitely many =, in which case
bt > (M /4a.)"*"M* for infinitely many n so 2 |b,|™"* =  or else |a,|>
2M"a, for n > N so that [b,|""*" > GM)Y™ |a,|~*" for n > N so 2o |ba| ™"
= 0o,

We have seen how the Moment Problem can be used to study Hilbert space
problems in §3. The train of ideas can be turned around to tell us something
about the Moment Problem. Explicitally:

(1) By looking at the operator —d*/(dz*) — 1 on L*(0, 27) we see there
exist moment sequences for which the Stieltjes Moment Problem has a unique
solution but for which there are many solutions in (—M, «). This illustrates
(given our last theorem) the existence of Stieltjes moment sequences for which
> e, a;/*" < o but where the Moment Problem has a unique solution.

(2) This last theorem combined with the basic theorem of appendix one
proves the following theorem about the Hamburger Moment Problem:

Suppose a, is a sequence of numbers obeying >, a;** = ® so that a, =
I3 X'dp(\) for some measure p on (—M, «). Then the Hamburger Moment
Problem has a unique solution also!

Notes added in proof:

1. The theorem we have called the Masson MecClary Theorem appeared
previously in A. E. Nussbaum, Studia Math. 33 (1969) 305-309. Because of our
remarks at the end of appendix 2, his objection to the use of Lemma 1 is not valid.

4. The operator mentioned at the beginning of appendix 1 has two positive
self-adjoint extensions. By taking f(0) = f(x) = /(0) = 0 boundary conditions,
we get an operator with deficiency indices (1, 1) and a unique positive self-
adjoint extension.
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