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We provide a simple proof that the kth gap, A *, for the Mathieu operator -dz/dxs + 
2~ cos (2x) is A& = 8(~/4)* [(k - l)!]-* (1 + o(k-s)), a result obtained (up to the value 
of an integral) by Harrell. The key observation is that what is involved is tunneling in 
momentum space. 

I. INTRODUCTION 

We consider here certain differential operators 

with Aperiodic; i.e., V(x + a) = l’(x) for some a. Of particular interest are the gaps 
LJ~, which are the size of various forbidden regions of the spectrum in the one elec- 
tron theory of solids (see, e.g., [12, Sect. 12, XIII. 161) or alternatively regions of 
instability in the theory of parametric resonance in classical mechanics (see, e.g., 
[1, Sect. 251). According to the basic theory [2, 10-121, for k = 2Z + I, Lli is the 
difference of the (2Z + 1)st and (21+ 2)nd eigenvalues of (1) on the interval [O, u] 
with antiperiodic boundary condition z&z) = --u(O); z/(a) = -u’(O) and for k = 21, 
& is the difference of the (2Z)th and (2l+ 1)st eigenvalue of (I) with periodic boundary 
conditions z@) = a(O); u’(u) = a’(O). 

Here we are interested in the behavior of A,+ for k large. It is known that this 
behavior is sensitive to smoothness properties of V, e.g., [S, 131 Llk = O(k+‘) for all 
n if and only if V is Cm and Ak = 0(e+) for some a if and only if V is analytic in a 
strip about the real axis. Until recently, the precise asymptotics of dk were not known 
even for the simplest cases. This situation was changed by the calculation of Harrell 
[6] of the asymptotics of 4k for the heavily studied Mathieu equation 

w = 2K COS(2X) (2) 
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for which he proved 

A - 2?czk 1 e2K/4kz /k c 

with c the absolute value of the integral 

(3) 

1 
Ai Bi(r) 

om [Ai2(r) + Bia(r)12 “’ (4) 

where Ai and Bi are the standard Airy functions. In (3), - is intended in the sense 
that the ratio of the two sides goes to 1, As (4) suggests, there are some involved 
gymnastics with special functions in Harrell’s argument. Here we give an elementary 
proof (and compute the O(k-2) term) that 

Ak = 8 $ ’ [(k - l)!]-2 {l + ~(k-~)j. t J 

Stirling’s formula shows that (3) and (5) agree if c has the value 7r/8 (this is consistant 
with numerical evaluation of the integral in (4) 171). 

The period of V is r, so the natural basis for the periodic eigenvalue is e2inx/7$/2, 
n = 0, *1, &2 ,.... In terms of this basis, the periodic eigenvalue equation 

-d(x) + V(x) 24(x) = Eu(x) (6) 
becomes 

P2$@‘) + Kt#t!’ + 2) + 9%’ - 2)) = &%‘)T (71 

where I&) = +/2 l e--@%(x) dx. F or K zero the eigenvalues are doubly degenerate: 
E,, = (2n)2 with corresponding &,*(p) = 8P,2,, & aD,-2n (these are normalized to have 
norm 2, not 1). For each fixed K if n is large, the true eigenfunctions will be near 
#r,*(p) essentially because the distance between successive eigenvalues gets large 
(see Section 2). Moreover (7) can be rewritten 

with L the finite difference Laplacian 

Between the points P = &2n, there is a potential barrier (E - 2K - p2) and the 
splitting is a tunneling problem. It is one of a very simple nature because for tunneling 
problems finite differences equation are easier to treat than differential equations. 
Ironically, our approach owes much to other work of Harrell [3-51 on double wells 
and tunneling problems. 

Another way of saying the same thing is that starting from I&,* one constructs 
by a direct perturbative scheme the normalized gerade and.ungerade approximations 
to the wave function. The width of the gap is the difference in the expectation values 
of these two solutions. This is, of course, the old fashioned method to estimate the 
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energy splitting of the ground state of, say, the HZ+ or the double well, things that 
are now recognized as tunneling phenomena. 

We would like to stress that the problem of gap asymptotics, holding IC fixed and 
letting k + co, is distinct from, albeit related to, the perturbation limit where k is 
held fixed and K -+ 0. The perturbation limit has been discussed by Levy and Keller 
[14] for periodic potentials that are a finite sum of exponentials. For the Mathieu 
equation the final result is the same but as we shall discuss in Section 4 this coincidence 
is not expected to occur for general finite sums of exponentials. Nevertheless, the 
method in [14] and that in our paper are closely related. 

In Section 2, we give the details of the proof of (5); in Section 3 we discuss some 
connections with perturbation theory and in Section 4 remarks on some extensions 
to other Vs. 

2. TUNNELING IN MOMEN~JM SPACE 

We begin with the periodic eigenvalues. Since the operator on the left side of (7) 
commutes with p + -p, all eigenfunctions #(p) obey either 4(-p) = z,b(p) or 
$(-p) = -$(p). Let Eoi, El+,... be the even parity eigenvalues and El--, E2-,... the 
odd parity eigenvalues. Then 

Aan = 1 En+ - En- 1 v-9 

by the general theory [2, 10-121. Fix n and K and define #* by 

VW* (P) = En*+*(p) (9) 
normalized by 

#*(2?r) = 1 w 

(recall p has values 0, &2,...). Our first input is a discrete analog of a formula of 
Harrell [3-51: 

PROPOSITION 1. 

&+ - En-) x #+@/‘-(P) = ‘4+@)+-(9 (11) 
w 

ProojI Writing (En*+*)(p) = pa@(p) -t ~(#+$p 4- 2) 4- $+(p - 2)) w he that 

U-IS cd (11) = fc 2 i#+@ + z)+-(P) - #+(p)#-(p - 31 
z9 

+ IC p;. [#+(I’ - 9!‘-h4 - #+b’h-(I’ + 31 

= - K++(0)+(-2) + K++(-2)$-(o) 

= RHS of (11) 

if we note that @(O) = 0 and #-(-2) = -@(2). 1 
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Let Er’ = (2~)~ be the eigenvalue when K = 0. The next result, which is an explicit 
example of Kato’s estimate [9], will allow us to use lower order perturbation theory 
for n large with H, = -d2/dx2; V = 2 cos 2x. 

PROPOSITION 2. Let Pp’ = $lh-EF),=2n(h - H, - K V)-l dh/2+. Then for K com- 
plex with I K I < &n, P,(K) is analytic and in that region 

II Pn(J4 d 2. 

Proof. We begin by noting that the nearest eigenvalue to EF’ = (2n)2 is E$-l’ 
which is a distance 4(2n - 1) > 4n away. Thus, if 1 h - EC’ 1 = 2n, the nearest 
eigenvalue of H,, to h is Er) so 

Thus 
Il(fb - W II < (W1. 

11 KV(H, - A)-’ 11 < 2 1 K / (2n)-l < 4 

by hypotheses on K. It follows that (h - H, - KV) = (A - H&(1 - K@ - H&l V) 
is invertible and has inverse with norm at most 2 11(X - H&l 11 < n-l. From this the 
theorem immediately follows. a 

PROPOSITION 3. E,* = (2n)2 + O(n-2) for any jixed K. 

Proof: Write 

En* = <h*> (Ho + ~v>pn~o*)/(~o*~ P&t*) 

= E:’ + ‘d&f, vp,“&*)‘(&,* , p&,*) 

so long as (&*, P,(K) a,$,*) # 0. Now K-‘[P,(K) - P,(O)] is analytic if I K I < &n 
and bounded by 6n-l on the boundary so (remembering 11 #* I/ = 2) 

I(&*, p,(K) $0’) - 2 1 < l’b-‘K. 

Thus K-l[&* - EC’] i s analytic in 1 K / < &n and bounded by 8. By a Cauchy 
estimate we see that the coefficients E,*(K) = C ag,)(,Km obey 

1 ag,; 1 < Cm+ln-(m-l) (12) 

for any explicit constant C and n > 1. But, by explicit calculation 

I 1 
a’“’ - E;’ _ E(O) + E$N _ E(O)- = csn2 - 2)-1’ 2.5 

n+1 n-l 

Thus, using (12) and summing the series we see that E,* - EA”’ = O(n-3. u 

595lr34iI- 6 
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Remark. In fact, one easily verifies that E,,* = (2~)’ -k +W* i- O(n-‘). 

PROPOSITION 4. 

2 #+(PM-(P) = 1 + ow2>* 

Proof #* is the eigenfunction normalized by (&,*, #*) = 2, see (lo), so 

** = p?a*o*l~(~o*, P,tio’)* 

By the estimate 11 P,(K) - P,(O)11 < 2~n-” of the last proposition 

f 4’ - *o’ f = 0 I 
0 n 

so, by the Schwarz inequality, 

2 $fCPhwP) = 1 + z. [P(P) - v4I+wl[~-(P) - h-WI 

is 1 + O(n-3. 1 

Remark. In fact CD),, #+(p) g-(p) = 1 + K2/32n2 + O(l/n3). 

PROPOSITION 5. For j = l,..., n, 

$-@j) = #-(2) p=2 ,n 
. ,....2j-2 

#-(2) = K’+~[(E~) - 22) --- (Er) - (2n - 2)“)]-l (1 + 0 (--&)) . (14) 

Proof. We first note since #-(2n) = 1 that (14) follows from (13) for 
c p-2 ,..., 2n-2 (En- - p2) is ON-3 since 

n-1 n-1 
- k2)-2 < n-2 C (n - k)-2 

k=O 

= n-2 f k-2 < $--2 

k=l 

and, by Proposition 3, 

(En- - P”) 
(Ep) - p”) 

= 1 + O(r3) 
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so the n replacements of E,- by Ep) in the product introduces an error of O(n+) at 
most. Equation (13) follows inductively from 

$-(2j) = -$-(2j - 4) + b(E,- - p”) $-(2j - 2) 

starting from #-(0) = 0, #-(2) = $-(2). B 

PROPOSITION 6. 

z/~+(o) = 2Kn[(/?‘“9(E’n’ - 22) *.* (E ‘%) - (2n - 2)3]-’ (1 + 0 ($)) . (15) 

ProoJ We begin by noting that by evenness 

E,+++(O) = 2Ki,b+(2) 

or ++(2) = &K-~E#+(O). The result now follows inductively as in the last proposi- 
tion. l 

Remark. In (14) and (15) 0(1/n”) = ~~/64n~ + o(l/n2). 

THEOREM 7. For any n, 

A,, = 8 $ 2n [(2n - 1)!]-2 (1 + O(rcz)) 
( ) 

(which is (5) for k even). 

Proof. By (8), (1 I), (14), (15) and Proposition 4, 

dzn = 2K2n 
[ 

n-1 
(24” n [(2?$2 - (2j)‘]’ --I (1 + o(n-2)) 

j=l I 

= 8 ($)2” [n2 z (n -.j)2(n +.j)“]-’ (1 + O(r2), 

proving the theorem. 1 

Remark. In fact, in Theorem 7, O(n-3 = o(n-3. 

THEOREM 8. For any j 

d,j-1 = 8 ($)“-’ [(2j - 2)!]-2 (1 + O(.j-2)) 

(which is (5) for k odd). 
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Proof. We just indicate the changes from Theorem 7. Now we deal with anti- 
periodic B.C., sop takes the values f 1, f3 ,.,.. If &,j = 1,2 ,... are the even and odd 
parity eigenvalues, then 

A,,-1 z 1 Ej+ - Ej- / e 

Proposition 1 is replaced by 

= -K+‘(l)+-(-1) + K#+(-l)+-(l) 

= 2K$!J+(1)#-(- 1). 

There is no change in Propositions 2, 3, 4. In proving the analogs of Propositions 
5, 6, we use 

16’(-1) = +J”(l) 

to begin the induction. For this reason, (13) has an additional error of order 
(Ej* - 1)’ but this is O(j-2) so that is no problem. The result is that 

#*(l) = .j-l[(E;i) - l)(Ehl) - 3) *.* (QJ(2j - 3)2)](1 + O(j-2)) 
so 

I 

j-1 

I 
-2 d2jel N 2K2jp1 n [(l!j - 1)2 - (21 - 1)2] 

Ll 

= 8 
I 

($)‘j-’ ‘2 (j _  Q(j $-  1 _ 1)  e-2 

l=l I 

as required. 1 

3. EICENVALUE PERTURBATION THEORY 

In this section, we compute the lowest nonzero contribution for the perturbation 
theory in K for d, . We find precisely (5) for this contribution. This suggests an even 
simpler proof could be possible for (5) if one could find an efficient way of estimating 
still higher orders contributions which get quite complicated. We only consider the 
even cases. 

Rather than use the basis I,LJ~*, we use the basis j2n) = rr-1/2e2ins, which for n = 0, 
&l, 12 is an orthonormal basis. The vectors ) f2n) are degenerate for Ho . If one 
looks systematically at the theory of degeneracy reduction [9], one works systematic- 
ally in higher and higher order until one reaches the first point that the 2 x 2 matrix 
of lth order is non-constant. In the 1 f2n) basis, the .matrix in any order clearly has 
the form (II t) by p + -p symmetry. Such a matrix has eigenvalues a f b so that 
2b will be the lowest order term for the eigenvalues splitting. The 1 order perturbation 
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then for b is quite complicated [9, 121 but all terms involve sequences of states 
IQ,..., Ikr-J with (kj+l I I/ I kj) # 0 and (k, I VI 2n) # 0, (-2n I I/ j kl-t) # 0. 
Since (k I V I j) # 0 only if I k - j I = 2, the first order in which b + 0 will be 1 = 2n 
and only one string of intermediate states will occur there. Since (k 1 V 1 k & 2) = I, 
the value of b is 

from the intermediate states 12n - 2),..., IO),..., j-2n + 2). Remembering that the 
gap is 2b, we have: 

THEOREM 9. For anyJixed n > 0: 

d,, = 8 (+)2” [(2n - I)!]-"(1 + O(K)}. (16) 

This result is very suggestive for getting the large 12 asymptotics for d,, especially 
since we saw in the last section that the natural expansion parameter is in many ways 
K/n, not K. 

The rub is that K/n is natural only in that we have an a priori n(K/n)” bound on Ith 
order perturbation theory. If a given order happens to be of much smaller order, cf. 
(+z2)z as above, that does not mean that the next orders must be smaller by additional 
factor of K/n. Indeed, for E rather than the gap, we saw that second order was K2/n2, 

not K2/n. But fourth order will not have the same cancellations and will be K4/n3, not 
K4/n4. Thus more work is needed to turn the suggestive formula (16) into a really 
simple proof of (5). 

4. SOME OTHER POTENTIALS 

Here we want to consider the case V(x) = 2a cos x + 2b cos 2x. We will mainly 
wave our hands but our point is that even the leading asymptotics for d,, is likely 
to be extremely complicated involving factors like exp( l/log m) which is certainly 
one of the more unusual asymptotics. 

We consider periodic eigenvalues where now the unperturbed states are In). 

Rather than try to solve the difference equation, we take the calculation of the last 
section seriously and imagine that the only candidates for the leading asymptotics 
for d,, are of the form (--ml VIn,)(n,jn,I VIn2)..*(njInjI Vim) x 
Wm - J%)-~, where --m < n, < It2 < ..* < nj < m. At first sight, the leading 
contribution would seem to be in steps of size 2, i.e., nz = 21- ml = l,..., m - 1. 
This will contribute 8bm4-m[(m - 1)!]-2 as before. It would seem that inserting two 
step 1 steps for one step 2 is a bad idea since the extra energy denominator will be 
at least O(m-3. This is true but we can put down the two extra steps in (“r) N 2m2 
ways and a typical energy denominator is 0(m-2) so it appears the two possibilities 
are competitive. 
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Actually because there are a few O(m-l) denominators, the situation is worse. 
Roughly speaking (this ignores the shifts in double steps which will fix the value of 
the constant (II below), the sum over the 2 single step possibilities will be 

m-1 
2mC ’ -T----T = f j=z;l 1 &a * j=-m+l m -.l 

As m -+ co, this looks like 4 $t-“” (1 - x”)-’ dx N 2 log m. Taking into account the 
fact that one has to choose 21 steps, the term with 1 pairs of single steps should roughly 
behave like (log m)l/(21)!. Note that 

f &(log m)l/(21)! = cosh(v’G) N exp(dx), 
z=o 

which suggests such factors will be present in the asymptotics. 
This calculation clearly has the flavour of gaps of’instantons, the excttatlons cor- 

responding to adding steps to the shortest path. 

Note added in proof. There is Russian literature on the asymptotics of gaps for cases where V 
is not as regular as cos x; see V. Latzutkin and T. Parkratova,, Soviet Math., Dokl. 15 (1974), 649 
and S. K. Simonya, Soviet J. D$2rential Equations 6 (1970), 1265. 
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