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The Rate of Falloff of Ising Model Correlations 
at Large Temperature 
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We recover results of Abraham and Kunz and Paes-Leme on falloff of Ising 
model correlations at high temperature by using nothing more than high- 
temperature diagrams. 
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1. I N T R O D U C T I O N  

In this paper, we want to consider the nearest-neighbor v-dimensional Ising 
ferromagnet at inverse temperatures fi (with Hamiltonian normalized by 
each neighbor pair counted exactly once in H) .  There has been some 
interest in determining the leading behavior of the rate of falloff of the 
two-point function which has rather complicated directional dependence 
because the symmetry of the lattice is only discrete. Camp and Fisher (2'3) 
found the behavior using formal arguments and subsequently Abraham 
and Kunz (1) and Paes-Leme (s) found rigorous proofs. Let ~0 E S " - I  the 
unit sphere and define 

m(~0, f l ) =  lim -IIc~lJ-lln(o~o0)B (1') 

where ( . ) ~  is the state at inverse temperature fl (unique for /3 small). 
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lim 

Letting ~0j be the components of ~0, Paes-Leme proves 

m = ( - l n / 3 ) ~ l % l + ~ i @ l n l @  - I%11n I%1 + 0 ( / 3 )  (1) 
1 1 

All the above papers depend on analysis of direct correlation functions 
and analyticity arguments. Our purpose here is to give a simple proof of (1) 
in terms of elementary high-temperature diagrams. The point is that for 
f ixed  ix = (a 1 . . . .  , ix~), the leading term as/350 is (if a i/> 0) 

L( ix , /3 )  = (ixl + ix2 + " ' "  + a~)! ( tanh/3)  ~1+ ' +~ a l ! ' ' "  %! (2) 

If one uses Stirling's formula, one sees that 
P 

-lixl-~L(ix,/3) = l n ( t a n h / 3 ) E  It~ 
1 

_L 
+ X I~176 + " ' "  + [r (3) 

1 

Thus (1 ) jus t  says that for the mass falloff, one can, in a sense, 
interchange the fl ~ 0 and the a ~ oo limits. Using diagrammatic ideas, we 
will prove upper and lower bounds that rigorously justify this. In Section 2, 
we prove that 

[ 1 ] (4) 

for some c and all ix,/3. In Section 3, we prove that for/3 sufficiently small 
and [ixl sufficiently large 

<Oo%}~ < 3L( ix , /3 ) (1  + d/3) 271~'1 (5) 

for a constant d. (3), (4), and (5) immediately prove (1). 
In Section 4, we discuss extensions including general even spin distri- 

bution. 

2. LOWER BOUNDS FOR SPIN-l /2 

Writing 

exp(fioflj) = cosh B(1 + oiojtanh t )  (6a) 

[since ( o i l y =  1], we see that for any volume A 

(o0%1-I<~>( 1 + oiojtanh f l )}o 
(00%)A3 = (I'[(~)(1 + oiojtanh fl)}o (6b) 

and in the usual way (see, e.g., Ref. 4), we extend the product and associate 
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terms with graphs. A graph consists of some sets of nearest-neighbor 
bounds. The boundary of a graph is the set of sites where an odd number 
of bounds occur in the graph. In the denominator of (6b), only graphs with 
no boundary count and in the numerator only graphs with boundary {0, a ) 
enter. The value of a graph is (tanh/3)" with n the number of bounds in the 
graph. 

Two features of these graphs are critical: 

(a) All values are positive. 
(b) The value of a graph is the product of the values of its connected 

components. 

To get the lower bound, only keep the graphs in the numerator with 
the property that they have as a connected component, one of the 

N =  (a ,  + . . .  + % ) ! / a ~ !  . " " %! 

graphs of length a 1 + �9 �9 �9 + a~ which join 0 and a (this is the number since 
among the a 1 + - - .  + % steps one must choose a I going in the 1- 
direction, etc.). Label these graphs 3'1 . . . . .  7u- Thus, the set of graphs 
discussed gives a contribution 

N 

<O0%>A,B /> ~ ( t a n h / 3 ) Z ' Z ( T i ) / Z  (7) 
i = 1  

where Z is the denominator of (6b) and Z(yi) is the set of graphs disjoint 
from 3'i. But Z(yt) is exactly the partition function for a model with all 
interactions of spins in ~,~ dropped, i.e., 

Z ( 7 i ) / Z  = I~ (1 + oko, tanh/3)  
<kl> A,fl 

<[ ]> = I-I e-~OkO'c~ /3 
<kl> A,fl 

> exp - ~ f ioko t (8) 
<k/> A,~ 

/>exp - /3  ~ ~ 1 7 6  / (9) 
<kt> / A,fl J 

where I-I (1), ~](i) denotes the product and sum over all neighbor pairs < k l )  
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with either k E 7i or l ~ 7i. (8) comes from cosh fi > 1, (9) from Jensen's 
inequality, and (10) from a crude estimate of the number of spins interact- 
ing with 7i. 

3. UPPER BOUNDS FOR SPIN-I /2  

We begin by recalling Fisher's upper bound(4): Let N(~, k) be the 
number of noninteracting random walks of k steps from 0 to a. Then 

(O~Oo) 3 < ~ N(a, k)[ tanh fl]k (t t) 
k 

This follows from the analysis of the last section if we note that 
Z(7)/Z < 1 for any 7 (and if we note that one need not only deal with 
connected graphs but can "factor out" any graph with no boundary; 
actually, below we do not use the nonintersecting property), 

Let 

so that 

n ~EoLi  

L(a, fl) = N(a,n)[tanh fl]" 

We just need to bound N(a,k). Only k's of the form n + 2t have 
nonzero N. One has the trivial bound 

U(a,n + 2/) ~< ( 2 v -  1) "+2' (12) 

coming from counting all random walks without self-intersection whether 
they end at a or not. This bound is fine for large I but for small l it is too 
much bigger than N(a, n). 

Any path, 7, from 0 to a with n + 2l steps has precisely l steps in 
negative coordinate directions. We can associate a unique n-step path to 7 
by removing these l steps and the first l compensating steps. Clearly, a 
given n step path 7' has a limited number of 7's associated to it; we can 
choose the 2l steps removed in ( , ~ l )  ways and each such 2l set has at most 
(2v) t choices of directions, i.e., 

n+2, 2v iN a N(a,n+2l )<(  2, ) (  ) ( , n )  (13) 

Using (12), we have 

~] N ( a , k ) [ t a n h  f i ]k<[ tanh  / 3 ] " ~  (2v -- 1)6'(tanh/3) 2' 
2l >>1 n / 2  l = O  
k = n + 2 1  

< 2L(a ,  /3) (14) 
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so long as 

(2p - l)6(tanh fl)2 < 1/2 

On the other hand, if 2l < n/2, then 
2 1 -  1 (n) 

2l ] 2l n - ~  ~< 32t 
_ 21 

(13) and (16) imply that 
n 

N(a,k)[tanh fl l k< L(a, fl )m~=o ( n )(18p)m/2[ tanh fl]m 
2l < n /2  
k = n + 2 l  

<< L(a, fl)[1 + (18p)l/2(tanh f l ) l  n 

(14) and (17) imply the upper bound (5) whenever fl obeys (15). 

(15) 

(16) 

(17) 

4. EXTENSIONS 

Let d~0 have an arbitrary even probability measure of compact support 
on ( -  ~ ,  ce). Let 

a =fx2d (x) 
One can consider an Ising-like model with nearest-neighbor of aio j 

interaction but with ~ a  i = + 1 replaced by flIidl~(ai). For this model, we 
claim that (1) holds if In fl is replaced by ln(afl). Paes-Leme (5) obtains this 
result when dl~(x)= (2s + 1 ) - J ~ = _ s 6 ( X - j )  [although, for reasons that 
are unclear to me, he introduces two numbers k I and k 0 and writes 
ln(k 1 fi/ko) with k I = a 2, k 0 = a]. 

To see that (1) holds in this modified form, one uses the diagrammatic 
expansion appropriate to such a model. In place of (6), one expands the 
exponential. Now diagrams have an integer n b associated to each bond b; 
for any site a, m s denotes the sum of the n b overbounds containing a and 
the value of a graph is 

The expectation (aoo~)A, ~ is a ratio when the denominator is graphs of 
precisely this type (automatically the graph is zero unless all rn~ are even) 
and the numerator has graphs of this type with exactly one bound from a 0 
to % included. 

The two critical properties (a) and (b) of spin- l /2  graphs also hold 
for these graphs. Since the lower bound really only depended on these 
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properties, we immediately get the lower bound 

(o0%)A,B ~>(eq + . . .  + % ) ! [ c q ! - . .  %!]-lf12~'(a)2~'*~ 

• e x p [ -  fl(2p)llo]12(1 + ~2 ai)] 

where 

IIo[I -- sup{x ~ support o fF )  = lira xZ"dl~(x 
X n -- ' )  ~ 

As for the upper bound, we still have one in terms of general (i.e., not 
necessarily self-avoiding) random walks if we note that any connected 
graph with boundary (0, a} results from some random walk for 0 to a (an 
elementary combinatorial argument). If (2p - 1) is replaced by (2p) in (12), 
the basic combinatorial estimates (12), (13), and (16) still hold. In estimat- 
ing graphs, we ignore the helpful [rib! ]- I factors and use (if m/> 2) 

fxmd (x) < al[o[I " - 2  

to obtain 

so long as 

(%%)A,# < 3L(c~, f l )[1 + Ilall2(12p)'/2tanh fl]2~, 

where now 

L(a ,  fl) = (al + 

11olI4(2p)6B 2 1/2 

�9 " + 

These bounds imply the claimed general form of (1). 
It also should be easy to extend these arguments for general finite 

range pair instructions. 
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