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Absence of Continuous Symmetry Breaking in a 
One-Dimensional n-Z Model 
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For a one-dimensional array of S N -  1 spins (N >/2) with isotropic pair interac- 
tions (and more general systems) with J ( j -  i) obeying sup ,[n- l~ jz lJ ( j ) [  ] 
< oo, we prove that every equilibrium state is invariant under the natural action 
of SO(N). In particular, there is no long-range order of the conventional type. 
Included is the case J(n) = n-2. 
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There has been considerable interest in long-range one-dimensional lattice 
gases, in part because of formal connections with the Kondo problem, and 
in part because of an analogy with higher-dimensional models: continuous 
variation of rate of falloff is somewhat akin to continuous variation of 
dimension. 

For pair-interacting ferromagnetic models with coupling J ( j )  = j - ~ ,  it 
has been known for some time that a = 2 is the borderline. Ruelle (7) 
showed if ~ > 2, neither the Ising or multicomponent models have multiple 
phases; if a < 2, then Dyson (1) proved that the Ising model has multiple 
phases and Frohlieh et al. (3) proved the same thing for the multicomponent 
models. 

Naturally, interest has focused on the borderline case a = 2. Recently, 
Frohlich and Spencer (4) proved the existence of discrete symmetry breaking 
for the Ising model with this value of a. Our main goal here is to prove the 
absence of continuous symmetry breaking in models of the same type. 
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For faltoff near n -  2, Ruelle's method shows no symmetry breaking for 

J ( j )  ~ j -  2(log j )  - ~ (log 2 j )  - • (1) 

if a > 1 or if a = 1, fl > 1; Dyson (2) allows a = 1, fl > 0, and recent results 
of Rogers and Thompson (6) allow a > 0 or a = 0, fl > 1. 

The condition we will need is 

sup n ]J < oo (2) 
n 

For J ' s  obeying (1), our condition is strictly weaker than those in Refs. 2 or 
6, but as we show in an appendix, there are J ' s  which fail to obey (2) but 
which obey the condition of Ref. 6: 

n 

jlJ(j)l = o(log n/log2 n) 
1 

We do emphasize that since Refs. 2 and 6 use correlation inequalities, there 
are restrictions on the model which we don't  need. 

The proof is embarrassingly simple; indeed it should be viewed as a 
postscript on two recent proofs of the absence of continuous symmetry in 
two dimensions which allow long-range interactions in that dimension. <5'8~ 
We will use Pfister's method here because it is technically somewhat 
simpler but we emphasize that the Simon-Sokal method would prove our 
theorems also; indeed their method proves that if ~,TjlJ(j)l = O(n(logn)") 
with a < 1, then finite susceptibility would imply no continuous symmetry 
breaking. This suggests that the borderline for continuous symmetry break- 
ing is n-2(logn) and that at that point there might be a Thouless effect 
(discontinuous magnetization); we recall that it is known ~3~ that there is 
continuous symmetry breaking for n-2(logn)/~ if/3 > 1. 

Lemma 1. Let J obey (2) and let O(j) be the function which is 1 for 
j = l  . . . . .  n; 0 f o r j / > 2 n  or j <  - n + l  and which obeys O ( j ) = 2 -  
(j /n) if n < j < 2n; O(j) = 1 + [ ( -  1 +j)/n] if - n  + 1 < j < 0 (i.e., mid- 
dle region of width n and two linear falloff regions of size n). Then 

[J ( i - j ) l [O( i ) -  0 ( j ) ]  2 (3) 

is bounded independently of n. 

Proof. Call the region where 0 = 1 region I, the region where 0 = 0 
region II, and the intermediate region, region III. As a preliminary, we note 
that in the Appendix we show that (2) implies (indeed is equivalent to) 

sup n IJ(j)l < ~ (4) 
n 
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The contribution to (3) from i ~ I, j E I I  is bounded by a multiple of 

n k IJ(k)] 
k = n  

the n coming from the number of i values and the k > n from the distance 
between regions I and II. The interaction between regions I and III is 
bounded by a multiple of 

n �9 2 o~ oo n 

and a similar bound on the I I - I I I  interaction. Thus (2) and (4) show (3) is 
bounded. [] 

T h e o r e m  1. Consider a model with spins o; in S 1 and pair interac- 
tions J(i - j )  obeying (2). Then every equilibrium state is invariant under 
the action of SO(2). 

Proof. Given any angle +0, any configuration ~ and any n, we can 
form two configurations o' and o" by rotating spin i by angle O(i)q) o and 
0(i)(2~r-  ~o), respectively (0 as in the lemma). The lemma controls the 
second-order energy shift so since the first-order shifts have opposite signs 
either 

- H ( C )  .< H ( o )  + c 

o r  

- H ( o " )  <. H(o) + c 

with c independent of n and a. From this one concludes the result as in 
Pfister's paper. (5) [] 

By the same argument, one proves the following result. 

T h e o r e m  2. Consider a one-dimensional lattice gas with spins s i ~ 
some compact space. Let G be a compact connected Lie group which acts 
on ~ by (g,s)--> rgs. Suppose that for each finite volume A and each 
assignment, t, of spins external to A, we have 

(a) HA(rgS [ rgt) = HA(S ] t) (same g at all sites) 

(b) The map ( gi}iEA ~ HA(t~g,s[ t) is C 2 for each s and t 

(c) J(i)=- sup [~2HA('rgslt)/OgiOgo[ 
/ ~ ,  t , 3  

obeys (2). Then every equilibrium state is G invariant. 
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APPENDIX. 

Theorem A.1. 
tions 

(a) 

(b) 

are equivalent. 

Proof. Let 

CONDITIONS ON Y( j )  

Let J( j ) ,  j = 1,2 . . . .  be given. Then the two condi- 

sup n = a < o o  
n 

sup n J = b < o o  

2n+ I _ 1 

c(n) = 2n ~ I:(J)l 
2 ~ 

We will prove (a) and (b) are each equivalent to 

(c) sup c(n) = c < oo 
n 

Clearly c(n) << a and c(n) < 2b so (a) or (b) implies (c). Conversely, if 
2" < k < 2" + 1, then 

k2lJ(J)l<.2 2" IJ(j)l < < . 2 [ c ( n ) + � 8 9  " ' ' 7  <4c 
k 

and 

k 2 ~ + l -  1 
k-~,j2[j(j)[ < 2-" ~ j2lj(j)[ 

1 1 , 

n r 21+1-1  ] 

n 

~< 4 ~] 2 -"+ ' c ( l )  ~< 8c 
l = 1  

so (c) implies (a) or (b). �9 

Remark.  In Ref. 6, Rogers and Thompson consider the condition 

j [J ( j ) [= o([ logn/ log2n])  
l 

This is as above seen to be equivalent to 

c(n) = o (n / logn)  (A.1) 
1 
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If c is not  too misbehaved, this is stronger than c bounded but there are 
J(j) 's ,  e.g., with c(n) = k if n = 2 k and zero otherwise with (A.1) holding 
but c unbounded.  Thus our condit ion is not  strictly weaker than in Ref. 6. 
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