The Codimension of Degenerate Pencils
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ABSTRACT

Let d, [d,(r)] denote the codimension of the set of pairs of n Xn Hermitian
[really symmetric] matrices (A, B) for which det(AI — A —xB) =p(A, x) is a reduc-
ible polynomial. We prove that d, (r)<n—1,d,<n—1 (n odd), d,<n (n even).
We conjecture that the equality holds in all three inequalities. We prove this
conjecture for n = 2,3.

1. INTRODUCTION

The calculation of the codimension of various varieties of matrices has
been a useful device in understanding various qualitative aspects of eigen-
value perturbation theory. The most famous and the first of these results is the
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theorem of Wigner and von Neumann [4] which states that the codimension
of the variety of n X n Hermitian matrices with a degenerate eigenvalue in
the space of all n X n Hermitian matrices is independent of n and is equal to
three. This implies that “in general,” a one-parameter family of Hermitian
matrices will not contain a matrix with a degenerate eigenvalue. This result is
called in quantum physics “the no-crossing rule”.

Consider a pair of complex square matrices (A, B). We identify this pair
with the pencil A(x)= A + xB, where x belongs to the complex field C. A
pencil A + xB is called nondegenerate if the polynomial

p(A, x)=det(A\I — A —xB)

is irreducible over C[A, x]. If A(x) is a nondegenerate pencil, all eigenvalues
Ay(x),...,A(x) of A(x) can be obtained from a single eigenvalue [for
example A (x)] by all possible analytic continuations in x. A(x) is a degenerate
pencil if p(A, x) is a reducible polynomial. “In general” all the eigenvalues of
a reducible pencil cannot be obtained from one eigenvalue. (More precisely,
all the eigenvalues of a reducible pencil can be generated from a single
eigenvalue if and only if p(A, x)= g(A, x)™, where g(A, x) is irreducible and
m=2. It can be shown that such pencils form a proper subvariety in
reducible pencils. See for example [2].)

Let M, [M,(r)] denote the set of pairs (A, B) of Hermitian [real symmet-
ric] matrices, and let D, [D,(r)] be the set of pairs for which A+ xB is a
degenerate pencil. Since reducibility of p(A, x)=2, ;< .a,;Nx', a,,=1, is
equivalent to a set of polynomial conditions on a;, clearly D, and D,(r) are
varieties in M, and M, (r). Here we view M, and M, (r) as real spaces of
dimension 2n® and n(n +1) respectively. In [1] Avron and Simon gave an
explicit example of a real symmetric nondegenerate pair (A, B). Thus D, and
D, (r) are clearly proper subvarieties, so

d,=codim D, =dim M, —dim D, >0,

d,(r)=codim D,(r)>0.

In order to understand some results in the analytic theory of bands in state
quantum Hamiltonians, Avron and Simon asked for the exact values of d . By
identifying a component of D, they proved d,<2n —2 and conjectured
equality, although they emphasized that the evidence for the equality sign
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was weak. In this paper we will prove that

d,<n-1 (n odd), (1.1a)
d,<n (n even), (1.1b)
d,(r)sn—1 (all n). (L.1c)

Thus, the Avron-Simon conjecture is false if n=3. We believe that the
equality holds for (1.1), in part for reasons explained in [2]. In Section 2 we
show

dy=2, dy(r)=1,

d,=2,  dy(r)=2.

In Section 3 we discuss (1.1) for odd n, and in Section 4 for even n.

We should mention the relevance of (1.1) to the result of Avron and
Simon we are trying to understand. They were interested in a theorem of
Kohn (3], who considered a class of pencils A+ xB, where A and B are
specific differential operators, B is fixed, and A depends on a function V
periodic on (— o0, c0) with period 1. For this particular class, Kohn showed
that if V is not constant, then all eigenvalues of A(x) can be obtained from
any fixed eigenvalue of A(x) by analytic continuation. In a natural n-point
difference-equation approximation, A and B are n X n matrices and V is
replaced by an n Xn diagonal matrix. Thus, the intersection of this n-
dimensional family with D, is one-dimensional “when n =o0,” as can be
understood if d,, = n —1 (the constant function plays a special role in Kohn’s
analysis, so even if d, were strictly larger than n —1, the one dimensional
intersection would not be disturbed). If our conjecture is true, one can
understand Kohn’s result as a specific case of a generic phenomenon.

2. THE CASES n=2,3

In the case that n =2,3, p(A, x)=det(AI — A—xB) is reducible if and
only if p(A,x) is divisible by a linear factor A —a —xb. Let A=A —al,

B = B—bl. Then p(A, x) is divisible by A —a — xb if and only if

det(A +xB)=0. (2.1
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Lemma 2.1, The pair (A, B) belongs to D, [ D,(r)] if and only if A and
B commute.

Proof. Assume first that A and B commute. Then there exists a unitary
matrix U such that A; =U !AU and B, = U 'BU are diagonal. So det(AI —
A—xB)=det(Al — A —xB)=(A—a, —xb, A —a, — xb,). Vice versa,
suppose that det(AI — A — xB) splits to a product of two linear factors. Let A
and B be defined as above. It is enough to show that A and B commute. By
changing basis we can suppose that

- (0 0 - b, ¢
A=(50) =l ).

since det A=0. Then (2.1) becomes b,a =0, b;b, —|c|>=0. If a=0, then
A =0, s0 [A, B]= AB— BA =0 trivially. If a0, then b, =0 and the second
equality implies ¢ =0. That is, B is diagonal and A and B commute. ]

Tueorem 2.2. Let D, [Dy(r)] be pairs of degenerate 2X2 Hermitian
(real symmetric) matrices. Then

dim D, =8, d,=8—6=2
(2.2)
dim D,(r)=5, dy(r)=6-5=1.

Proof. According to Lemma 2.1, A, BE D, [or Dy(r)] and if and only if
[A, B]=0. Either A=al and B is arbitrary, leading to a component of
dimension 5 [or 4], or A is arbitrary and B=b,I + b, A, leading to a
component of dimension 6 [or 5]. ]

REMARKS.

(1) The codimension(2n —2) component found by Avron and Simon
consists of pairs (A, B) with a common invariant subspace. For n =2 all
degenerate pencils have a common invariant subspace, which explains why
they got the correct answer in that case.

(2) Let M, (c) denote the complex space of all (A, B) where A and B are
n X n complex symmetric matrices. Denote by d,(c) the complex codi-
mension of the degenerate pencils. Then

dy(c)=1.
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The extra condition on D, comes from the fact that the single condition
|c|? =0 (which is replaced by ¢* =0 in the complex symmetric case) implies
Re ¢ =0 and Imc¢ =0. This example reveals the extra difficulty in computing
dimensions of polynomial varieties in R" as opposed to C".

Tueorem 2.3. Let D, {Dy(r)] be pairs of degenerate 3X3 Hermitian
(real symmetric) matrices. Then

dim D, =16, d,=18—16=2,
(2.3)
dim Dy(r)=10, d,(r)=12—10=2.

Proof. Let (A, BYE D; [Dy(r)]. As in the case n =2, det(AI — A — xB)
has a linear factor, so (2.1) holds. After a change of basis,

0 0 0 b~11 612 513 B
A=|0 o 07, B= .21 ~zz -23 > b.ii = ~7l
0 0 ~ - -
%2 b3, 52 Dag

Let us assume the generic case, i.e., a; 7 a,, 0,05 70. Then (2.1) becomes
det(B)=0,  aja,b,; =0,
ay(Bribsy = |b131*) + ag(Bribo —|b1|?) =
Since a;a, 70, the equalities reduce to
det B=0, b;;=0, a;|b;|*+ay|b,|2=0. (2.4)

The equations (2.4) give rise to two distinct components. For a;a, >0 the
last equallty in (2.4) implies b13 =b,,=0. In that case (2.4) reduces to
b, =b,, = b,; =0. Taking into account that a; =0 (A has zero eigenvalue),
we see that we have lost 6 real parameters (in the real case we lost 4 real
parameters). By letting A = A + al, B= B + bl we recover two real parame-
ters. If we denote this component of D, [D;(r)] by A5 [A4(r)], then we get

codim A, =4, dim A; =18—4=14,
(2.5)
codim A, =2, dim A;=12—2=10.
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However, if a,a, <0, then the last equation in (2.4) eliminates only one
real parameter. In that case the conditions (2.4) reduce 3 real parameters in
B. If we denote the second component of D, [ Dy(r)] by B; [ Bs(r)], then the
above arguments show

codim B; =2, dim B; =18—2=16,
(2.6)
codim By(r)=2,  dim By(r)=12—-2=10,

It is left to consider the case where A has a multiple eigenvalue. Then by the
Wigner-von Neumann theorem codimW, =3, and one can easily show that
codimW,(r)=2. Clearly

codim(W, N D;)>3,  codim[ Wy(r)N Dy(r)]>2. (2.7)

This establishes the equalities (2.3). [ |

Remark. The A, component is precisely the one found by Avron and
Simon. It has codimension 4=2n —2, as they computed.

3. ODDn

To get lower bounds on dim D, we need only to find a component of D,
with the required dimension. While not every component of D, will have a
linear factor in p(A, x)=det(AI — A — xB) when n >4, according to {2] the
component of D, with the highest dimension is the component for which
p(A, 1) has a linear factor. Motivated by (2.1) and the proof of Theorem 2.3,
we try A with an index [n /2]. By considering the matrices QAQ’, QBQ", we
may assume that

A, =diag(0,1,—-1,1,—1,...,1,~1), (3.1),

where n =2m +1.

ProposiTiON 3.1. Let A= A, as in (3.1). Then the dimension of the set
B of Hermitian matrices B with det(A, + xB)=0 is of dimension n* —n at
least.
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Accepting this result for the moment, let us prove

Tueorem 3.2. Let D, be the set of n X n Hermitian degenerate pairs.
Then

dim D, =2n*—(n—1), d,<n-1
if nis odd.

Proof. Let A be a generic matrix with 2m +1 distinct eigenvalues. Let
A (A)> A (A)> - >N, . (A) be the eigenvalues of A. Then there exists
a unitary matrix U(A) which can be chosen to depend smoothly on A in some
neighborhood of a A,, with distinct eigenvalues, such that

U(AY*AU(A)=diag(A,, . (A), A\ {(A), A i1(A)s AL (A) A1 5(A)).
Define
D(A)=diag(d,(A),....dy, ,1(A)),
d,(A)=1,
dy (A)=[A(A)— A, (A)]2,
dyi (A) =[N (A= Agmia( AV i=1,2,...,m.

Let B be any matrix satisfying det(A, +xB)=0, where A, is given by
(3.1). Put

C=U(A)D(A)BD(A)U(A)*+cl. (3.2)
Then
det{A+xC—[X, 1(A)—cx]I} =det[U(A)D(A)(A, + xB)D(A)U*(A)]
=0
That is, det(A] — A —xC) has a linear factor A — A, ,(A)—cx. A direct

count of the parameters shows that this component of degenerate pencils has
at least the dimension 2n* —(n —1)=n?>+n’>—n+1. [ |
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Let

det(4,+1B)= 3 q (B (3.3)

Thus, the condition det(A + xB)=0 is equivalent to n polynomial equations

g(B)=0, j=1,...n. (3.4)

Therefore over the complex numbers this algebraic variety has codimension n
at most. However, since B is taken to be Hermitian, we have to show
explicitly that the codimension of (3.4) is at most n. It is easy to see that
q(B)=b;. So (3.4) yields that b,; =0. The matrix B is parametrized by
n® —1 real numbers ¢, =Reb,;, n,;=Imb, for i <j and £, =b,; for 1<i.
For simplicity of notation we denote these parameters by y,,...,y,:_;, and
we view the numbers g,(B), g,(B) as the elements of R"~!. Thus the equality
(3.3) (b,; = 0) defines a polynomial map F: R* ! - R""\, F=(F,,...,F,_,).
If we can find y© with F(y©) = 0 such that

oF,
Iy

rank—2 (y®)=n—1,

then by the implicit-function theorem {y|F(y)=0} N(a neighborhood y,) is a
smooth manifold of dimension n® — n. Obviously, it suffices to find n—1

oF
independent parameters z,,...,z,_, such that the square matrix —a—zﬂ(yo) is
B

nonsingular, i.e., the kernel of this matrix is trivial.

Now let P(x) be the polynomial P(x)=(9/0z,)[det(A, + xB)]. Then the
corresponding kernel is trivial if and only if P/(x),...,P,_,(x) are linearly
independent. Thus we seek n Hermitian matrices By, B},...,B,_, (the last
n — 1 matrices linearly independent) such that det(A, + xB,)=0, and

Pi(x,z)Z%det(Ao-FxBoanz,.Bi), i=1,...,n—1, (3.5)

are linearly independent for z =0. To this end we need the following
observation.
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Lemma 3.3. Let C=(c;) be an n X n matrix with ¢; =0 if i =2, j=2,
and i # j. Suppose that c;; #0 for j=>2. Then

detC=—

i

H,‘::]:

( ﬁ cii Yey6, — ) (3.6)

i—a

Proof. Forj=2,...,n, from the first row, subtract the jth row multiplied
by ¢);c;; ~1. The result is a lower triangular matrix with diagonal elements
€1y~ 25— gC;; 1€1iCi1 Cagae € |

nn*

Proof of Proposition 3.1. We will let B, be the Hermitian matrix of
the form given by Lemma 3.3 having the diagonal elements
1,-1,2,—2,...,m, — m and the first row 0,1,...,1. By the above lemma

i - 1 1
.2 SN[ 1 _
det(A, +xBy)) = —x il;ll(l-ﬂx)( 1 1x)[’§l 1+ix+ —l—jx] =0.

Let 32™ z,B; be a real symmetric matrix satisfying the conditions of Lemma
3.3 with the diagonal elements 0, z,,0, z,,...,%,,,0 and the first row
0,2,:1.0, 2, 10:++,39,,0.

By (3.6)

det| At xBy+ S 528, | =0(x.2)| 3 (+z) 1
e x z,B; | = Q(x, - -1,
0 i:lx i Q X,z ) 1+x(7+z1) 1+x1

where

Q(x,z)= —«x? ﬁ(1+x(z+ ))(——l—xi).

i=1

So
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The equality

2m
2 a;P(x,0)=0
i=1
implies
S —ax(1+3) " +2a,,,(1+%) ' =0.

i=1

Multiplying this identity by (1+ x7)* and letting x = —1/j, we deduce
that ;=0 for j=1,...,m. A similar argument implies that a;,, =0, j=
1,...,m. This establishes the linear independence of P\(x,0),...,P,,(x,0) and
completes the proof of the theorem. n

Notice that in the above proof all the matrices involved were real
symmetric. That is, the set of all real symmetric matrices B satisfying
det(A,+xB)=0 is at most of codimension n. Then for any generic real
symmetric matrix A we construct the matrix C given (3.2), where U(A) is a
real orthogonal matrix. As before, we conclude that the codimension of all
pencils A+ xC such that det(A] — A — xC) has a linear factor has at most
codimension n — 1.

THEOREM 3.4. Let D, (r) be the set of n X n real symmetric degenerate
pairs. Then d (r)y<n —1, dim D,(r)=n®+1 if n is odd.

4. EVENn

The results of Section 2 show that for an even n there is a distinction
between the codimension of real symmetric and Hermitian degenerate pencils.
A technical reason for that is that if a singular Hermitian matrix A has the
equal number of positive and negative eigenvalues, then A has at least a
double zero eigenvalue. According to Wigner and von Neumann, the codi-
mension of all such Hermitian matrices is 4. However if we consider all real
symmetric matrices with a double zero eigenvalue, the codimension of this set
is 3.

In order to prove the inequalities (1.1b) and (1.1¢) for an even n we must
give the correct analog to the key result of Section 3—Proposition 3.1. The
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explanation we gave above suggests the “right” form of A, for n =2m +2:

A, =diag(0,0,1,—1,1,—1,....1, - 1). (4.1)

ProposiTioN 4.1.  Let A, be as defined above. Then the dimension of the
set B [ B(r)] of Hermitian | real symmetric] matrices satisfying det(A, + xB)
=0 is of codimension n —1 at most.

Proof. Consider the equality (3.3). Clearly
q:(B)=0, %(B):(“l)m(bnbzz_|b12|2)- (4.2)
Thus if we restrict ourselves to all B=(b,;) such that
buby =|b|?, (4.3)
then

det(A, +xB)= i q;(B)x'. (4.4)

Choose B, to be a Hermitian matrix satisfying the assumptions of Lemma
3.3, with the diagonal elements b{}, b$),1, —1,...,m, —m and the first row
b, b3, 1,1,...,1. Here we assume that b{)b) = |b{))|% > 0.

Again using Lemma 3.3, we easily deduce det(A, + xB,) = 0.

Now let 22™ z,B, be a real symmetric matrix satisfying the conditions of
Lemma 3.3 with the diagonal elements 0,0, z,,0, z,,...,3,,,0 and the first
row 0,0, 2, ,1,...,%5,,,0. The calculations carried out in the previous section
show that the polynomials P(x,0),...,P,,(x,0) are linearly independent.
That is, the set of all Hermitian matrices B=(b,;) satisfying b, :bg?) for
1<i,j<2 and the equality det(A, +xB)=0 is of codimension 4+2m at
most. However, since we allowed to choose b,.(?), 1=<i,{<2, free within the
restriction (4.3), the codimension of B is at most 2m +1. In the real
symmetric case we choose b{} to be real, and we deduce as before that the
codimension of B(r) is at most n — 1. |
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TueoreMm 4.2. Let D, [D (r)] be the set of nXn Hermitian [real
symmetric] degenerate pairs. Then

d,<n, dimDn>2n2~n,
di{rN<sn-—1 dmD(r\=n2+1
n I\ll/ Ly ullll‘—/n\l }/ it L %

if n is even.

Proof. Let A be a Hermitian matrix with a double middle eigenvalue

A(A)> "'>>‘m(A)>a:)‘m+1(A):}\m+2(A)>"'>)\2m+2(A)

(4.5)

The Wigner—-von Neumann result implies that the codimension of such
sets of matrices is 3. Let

U(A)*AU(A)Zdiag(a, a, A\ (A), >‘2m+2(A)w~’)\m(A)’ >‘m+3(A)),
D(A)Zdiag(dl(A),...,d2m+2(A)),

d)(A)=d,(A)=1,
dgisi(A)= [}\i(A)_ 0]1/2,
d2¢‘+2(A):[a—}\2m+3—i(A)]l/2, i=1,...,m,

Let B be any matrix satisfying det(A, + xB)=0. Define C by (3.3). As in the
proof of Theorem 3.2, det(AI — A — xC) has a linear factor. So the codimen-
sion of all pairs (A, C) is at most 3-+(n —1)—1=n+1. Finally we consider
all pencils of the form (A + aC, C), where a is a real parameter and (A, C) is
the pencil described above. Clearly (A + aC, C) is also a degenerate pencil. It
is left to show that the set of all degenerate pencils of the form (A + aC, C) is
not contained in the original set (A, C). To this end it is enough to show that
A + aC has n distinct eigenvalues for some A and a. By the definition of C,
A+ aC —(a + ¢)I is equivalent to the matrix A, + aB, where det(A, + aB)
=0. Choose B = B, as in the proof of Proposition 4.1.

Since bQbY =|bQ|2>0 for a small a#0, A, + «B will have only one
eigenvalue which is equal to zero. Therefore A + aC has pairwise distinct
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eigenvalues. Thus the algebraic set of all degenerate pairs of the form
(A + aC, C) has at least one codimension less than the set (A, C). That is, the
codimension of (A + aC, C) is at most n. In the real case the codimension of
all real symmetric degenerate pairs of the form (A + aC, C) is n — 1, since the
codimension of all real symmetric matrices with a multiple eigenvalue is 2.
The proof of the theorem is completed. ]
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