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Incommensurate perturbations of classical orbits lead to an almost periodic Hill’s
operator whose spectrum, we argue, is a Cantor set, but one with large Lebesgue meas-
ure. Applied to the rings of Saturn, this implies that the complex groove structure in
the rings approximates a Cantor set. We also emphasize the possible relevance of the
sun in producing ““side gaps” which magnify the apparent gap size.
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One of the striking discoveries of Voyager I is
that the structure of the rings of Saturn is exceed-
ingly complex. Prior to this information, one of
the more popular explanations of the structure of
the rings was as an effect of resonances with the
moons of Saturn.! Our goal here is to examine
whether a resonance picture can possibly provide
a structure as complicated as that observed. We
will study the question within a linear stability
analysis which will lead to the spectral analysis
of an almost periodic Hill’s equation. Our con-
clusion is that the structure of such a spectrum
is sufficiently rich so that it may account for the
main features of the ring structure. More defini-
tive conclusions will have to await, among other
things, further study of this spectral analysis
which we hope this note will stimulate.

Linear stability is an approximation and as such
does not have all the deep structure of the fully
nonlinear equations of classical mechanics, as
bornout by the Kolmogorov-Arnold-Moser (KAM)
theory.? However, it has the advantages of being
conceptually simple, relatively easy to estimate
orders of magnitude and the right qualitative fea-
tures. Indeed, one can regard certain aspects of
our analysis as a kind of “poor man’s KAM.”
Moreover, since the basic equation turns out to
be a time-independent Schrodinger equation (see
below), one can use intuition® from that subject in
this analysis even though the analogy is on the
level of the mathematics and not on the basic
physics.

The main features of the theory of the rings of
Saturn which emerges are as follows:

(1) The largest individual gaps are on the order
of 20 km* and such large gaps only occur near the
position of a classical resonance, e.g., at the
Cassini division.

(2) In an idealized model where one considers
point particles running for an infinite time, with
no collisions, the rings have the structure of a
Cantor set (see below), i.e., the gaps are dense.
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(3) Large scale features like the Cassini divi-
sion are aggregates of a large number of gaps
separated by thin ringlets, something consistent
with the Voyager observations. We will argue
that a long period can conspire with a moon reso-
nance to produce resonance “side gaps” and
therefore an aggregate of gaps. One candidate®
for this long period term is the sun.

Let us recall Hill’s basic analysis of linear sta-
bility. Consider a closed orbit, ¥(¢), in the x-y
plane of Newton’s equation V=F[v(¢)]. If we re-
place v(t) by v (¢)+2w(t) and keep first order
terms in w we find Hw =0 with

H=—(d?/dt®)+ V(t), (1)

where V(¢)==-0,F,[v(¢)]. If H has zero in its
(continuous) spectrum w stays bounded; other-
wise, there is a solution which grows exponential-
ly. If the original orbit is not in a plane or if w

is not perpendicular to that plane, H is replaced
by a vector-valued Hill’s operator.

To describe our picture of the spectrum of the
relevant Hill’s operator, we first describe cer-
tain Cantor sets.

A Cantor set is a subset of the real line which
is closed, has no isolated poinfs, and which is
nowhere dense, i.e., whose complement is dense.
The original set constructed by Cantor had the
additional feature of zero-Lebesgue measure. In
contrast we shall concentrate on Cantor sets with
large Lebesgue measure. An example is as fol-
lows: Pick a sequence of odd (positive) integers
n;=2L+1 and expand x=1,+2 %, a,/(n;---n,), a,
=0,...,n;~1. The set of points with no a;=[; is
a Cantor set and its Lebesgue measure in [Z,, [,
+1] is IT;2,(1 ==»,™), which will be close to 1 if
2 n, " is small.

We shall argue that the spectrum of (1) with
V(t) quasiperiodic is a Cantor set with a large
Lebesgue measure. By quasiperiodic we mean
V(E)=f(@ty oy @), (t +myy o, by +m,) = (2,

, t,), m,integers and w; incommensurate. The
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evidence we have for this claim is the following®:

(1) For weak coupling, i.e., ] V(t) gf(t) g
small, take f(#)= > A(i)em BT with f(m) #0, |m|
>m,, and ) |f(m)|<w. First order perturbation
theory” gives gaps of order g|f(m)|#0 centered
at energies Ez=(mm*d)? whose total measure is
small. The E 3 are dense in [0, ).

(2) There is a different class of almost periodic
potentials (limit-periodic®) for which Cantor spec-
trum with large Lebesgue measure has been
proven rigorously by Moser® and independently by
Avron and Simon.'

(3) Azbel'! analyzed yet another class of poten-
tials in the strong coupling limit. He argues that
the spectrum has all the scales of the continued
fraction expansion of the periods, something com-
patible with a Cantor set.

(4) A lattice version of Eq. (1) (a difference
equation) has been analyzed numerically by Hof-
stadter'? in another context and suggests a Cantor
set for the spectrum.

Since Cantor sets have no scale, what appears
to be a wide band on one scale is, in fact, sever-
al bands separated by narrow gaps on a finer
scale. The aggregation of small individual gaps
and bands to form apparent gaps and bands on a
larger scale plays an important role in the sequel.
To see how this may come about consider the
spectrum of the Schrodinger operator

(=a?/dt?) + rcos(27t) + ucos(2rt/n), (2)

with A and p fairly small, and # a large number
so that uz is not too small. We take » an integer
so we can analyze (2) in terms of Floquet theory
although we assume the qualitative features we
find are true even if # is nonintegral. Consider
the gaps near energy 1. If p=0, there is one gap
of size A. If A=0, there are many gaps at energy
approximately [(n - k)/n]? (k an integer near 0)
but the asymptotics of the Mathieu equation'? sug-
gests that the size is O[(ue?)"] which is very
small. If both y and X are nonzero, the lowest
order perturbation theory contribution to the gap
which wants to open at energy [(n-k)/r]?is, for
tixed &, O[ N un)*], the »’s coming from small
energy denominators in perturbation theory. This
argument suggests that when x and p are small
but uz~1, (2) has, in addition to its “main” gap
of size A near energy 1, many other “side gaps.”
Now consider a test particle moving in a Kep-
lerian orbit, v,(¢), in the equatiorial plane of
Saturn in an idealized situation where we initially
ignore the moons and the sun. As is well known
all these orbits are stable. Now study the effect

of the moons with small inclinations.!* One should
apply the linear stability equation to an actual or-
bit, #(t), near y,(¢), but this orbit is obviously
very difficult to compute exactly and indeed it
may not even exist in situations where linear sta-
bility predicts unstable orbits. We therefore
make an approximation: Let F, o(#) and F (7) de-
note the forces on a ring particle due to Saturn
and the moons, respectively, so v = o(v ) Smce
F is small an approximate solutlon is v~ v0+u
W1th

Fo[ V() ]+ F,[Vo(1)]. (3)

VF has eigenvalues [(27/7,), (27/T,)%, ] with
T, the period of the Keplerian orbit and F, =>4,
d, the disturbance function

=v{Gm,[|vy(t) -1,
= [ ()] 72() - Fy(0)]}. (4)
m; are the masses and r, the distance from Sat-
urn of the satellite 7. U(¢) can be calculated by
classical perturbation methods.!®

If we apply linear stability to v,+ p, we find for
the virtual perturbation w

w=(VFo) v(t)Jw+ v, F[

{f:(ﬁ-v)-

uy(t) w
+(Vu VE) [ ut)]w, (5)

where we keep the first variation of the perturba-
tion F, and the first and second variation of F,.
Since V, F,=(2n/T,)? the period, and hence the
radius, correspond to the energy in a Schrodinger
equation. The situation here is somewhat compli-
cated by the fact that the potential V(¢) is a (slow-
ly varying) function of the period. In units of
(27/T,)?, the moon i contributes to the VF, term
in (5) an amplitude of the order (m;/m )|,/
(r=7;)|3 This is of order 10”7 for five moons of
Saturn. The contribution to the (VVF,)u term has
amplitude of order (m;/m )| 7,/(r —7,)|34{n?[(Q
w,)=1]2}"*, where 7 is the driving harmonic.

This is again typically of order 107 unless w, is
near resonance and the curly brackets are small.
Thus the second term dominates near resonances.
A simple perturbation argument for the Hill’s
equation gives an estimate of the width of an in-
dividual gap due to the moon Mimas alone at the
Cassini division to be of order of 20 km, which
agrees with numerical solutions of the three-
body problem.! Consider now the effects of Mim-
as and the sun together. The sun has a long peri-
od of ~10* d. The amplitude in (4 V) F due to

the sun is of order € /w,.'® This gives a situa-
tion like Eq. (2) with pn of order unity providing
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a mechanism for producing side bands. This re-
solves a serious difficulty that the theory of sat-
ellite resonance of Mimas alone had, namely,
that Mimas’ gap is too small, by orders of mag-
nitude, to account for the Cassini division. In
the full problem, apparent gaps can be many or-
ders of magnitude larger than the individual gaps.

Estimating the size of individual gaps (grooves)
inside the large apparent rings is more delicate
(as is the shift of the center of the Cassini divi-
sion). In fact, low orders of perturbation theory
give unphysically small gaps in this region. We
would like to believe that this structure is related
to the interplay of the various periods so that
small demoninators make low orders of perturba-
tion theory suspect. If true, the structure of the
rings away from moon resonances requires an
understanding of the almost periodic Schrodinger
equation beyond what we currently have.

In summary, we feel that a resonance picture
can describe some of the observed qualitative
features of the rings of Saturn although it remains
to be seen whether further study of the almost
periodic Hill operator will verify the intuition
based on perturbation theory and whether, even
if viable, nature choses this mechanism. We
emphasize that linear stability is a single particle
theory and is difficult to reconcile if there are
many collisions. A competing theory to the sat-
ellite resonance of Goldreich and Tremaine'”
posits the gross ring structure as a collective
phenomenon.
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