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Abstract. We discuss the fundamentals of classical particle scattering of a two body
system in forces which are 0 (r~2~ε) at infinity along with their Lipshitz constants. We
prove asymptotic completeness for this two-body case. Of particular interest is the fact
that in the absence of control on Lipshitz constants at oo, two solutions of the interacting
equation may be asymptotic to the same free solution at — oo.

§ 1. Introduction

During the past fifteen years, one of the most studied areas of math-
ematical physics has been the rigorous foundations of scattering theory.
There have been studies of the quantum scattering of two bodies in short
range [1] and long range forces [2], of n-boάy quantum systems [3], of
potential scattering with free dynamics given by relativistic wave
equations [4], of accoustical scattering [5], of scattering in the general
theory of quantum field [6], of scattering of quantized particles in the
presence of unquantized external electromagnetic fields [7], of scattering
in model field theories [8] and of classical field theoretic scattering [9].
Suprisingly there has been very little study of the most classical of
scattering problems: the scattering of classical particles moving in
Newtonian force fields. Hunziker [10] and Cook [11] have briefly
studied classical scattering by taking L2 of phase space and using the
Hubert space techniques developed for quantum particle scattering [1,3].
In this note, we wish to study classical particle scattering directly in
phase space; this approach is in many ways more natural than Hunziker's
construction involving L2 of phase space. As we will discuss in § 7, up
to sets of measure zero, Hunziker's results imply most of ours but the
two methods of proof are very different.

The basic existence theorem we will prove is that given a solution of
the free equation r0(t) = a + bt, there exists a solution, ?(£), of the inter-
acting equation so that lim \f(t) — r0(t}\ + \r(i) — r0(f)\ = 0. We view

ί-> — 00

this as an existence theorem for solutions with boundary conditions at
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t = — oo. There is an interesting analogy between this theory developed in
§3 and the standard existence and uniqueness theorems for ordinary
differential equations (O.D.E.) with initial conditions at some finite
time [12]. Both theories depend on using fixed point theorems and as
in the O.D.E. case we will only have existence and uniqueness when we
have control over the falloff of the forces and Lipshitz constants at
infinity. When we only have control on the forces, we will be able to
prove existence but we will present examples to show uniqueness does
not hold.

Once we have existence and uniqueness of solutions of the interacting
equation asymptotic to α + bt there is a natural map Ω+ : R6^R6 given
by Ω+(a,b) = (r(Q), r(0)). Similarly, a map Ω~ is defined for solutions
asymptotic to a given free solution at t= + 00. Ω+ is analogous to the
wave operator of quantum scattering [13,1]. In both cases Ω+p is that
ί = 0 interacting data which at ί = - oo, is asymptotic to the free solution
with data, p, at t = 0. In quantum mechanical scattering, Ω+ is an isometry
and the analog of this property in classical scattering is that Ω+ is measure
preserving, a fact proven in § 4. Since it is known that except for a set of
interacting data measure0, lim |r(ί)| = ooifandonlyif lim |r(ί)| = oo [14],

ί-* — oo ί-» + oo

(see also [10]) we will be able to prove (in § 5) that RanΏ+ =Ran Ω~ up to
sets of measure 0. The S-matrix (Ω~)~ίΩ+ will then be defined as a
bijection on R6 (up to sets of measure zero).

Let us consider how this picture differs from the more usual picture of
classical central two-body scattering [15] in terms of scattering angle as
a function of impact parameter. In the central case, S: jR6-»JR6 will be
rotationally invariant; thus S: (α,fe)->(<?,£') is determined by knowing
S(α, pe) where e is some fixed reference direction. By conservation of
energy, \b'\ = p. Moreover, since S commutes with the free dynamics
we may assume a is orthogonal to έ. By conservation of angular mo-
mentum, the plane of a' is known once b' is known as is the component
of a' orthogonal to b'. If (m= 1) T = (— 1) component of S parallel to
b'/length of b', we conclude S is given by two functions, the cosine of the
scattering angle έ - e' as a function of p and |α x b\/\b\ and the time delay,
T, as a function of the same scalar variables. In the usual picture of
central scattering, one throws this extra information of time delay away
(we give an explicit formula for it in Appendix 3).

Except for some remarks on rc-body scattering in § 6, we will consider
a two body system in the center of mass, so the equation of motion will be

dt2

where F is a given force.
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We will make some subset of the following assumptions at all times:
(A) F is a Lipshitz function with sup \F(f)\ < oo.

r

(B) For some jR0, α> 2 and A,

\F(r)\^Ar'* if r^R0.

(C) For some Rl9β>2 and B,

\F(x) - F(y)\ ^ Br~β\x - y\ if |x| , \y\ ^ r^ R,

(D) F is conservative, i.e. F= — FFwith F->0 at r = co.
We will always suppose (A) in order to have global existance and

uniqueness of solutions of Newton's equations. We could weaken (A)
to allow some sorts of finite singularities in F. (B) will imply existance
of Ω+ but not uniqueness (see Appendix 1) and (C) will imply uniqueness.
(B) breaks down at the Coulomb force where it is known solutions aren't
asymptotic to free solutions. Appendix 3 shows (C) is a best possible
condition for uniqueness. (D) will be useful for § 4 and § 5 but we expect
it is not essential for § 5.

§ 2. The Integral Equation for Scattering

Throughout this section, we will suppose condition (A) on the forces
holds. We are seeking solutions of r(t) = F(f(ή) where r(ή = a + bt + ύ(t)
where b φ O and lim \u(t)\ + |w(f)| = 0. We can then define the wave

ί-»-oo

operator as Ω+(a, fo) = (r(0), r(0)). To find a solution of the interacting
equation with the right behavior at t = — oo, we use the usual trick of
rewriting a differential equation with boundary condition as an integral
equation:

Lemma 1. Let F obey (A). Suppose u(t) is continuous and satisfies

t s

u(t)= J ds j dτF(a + bτ + u(τ))
— oo — oo

(in the sense that the integral is absolutely convergent). Then u satisfies

r(t) = F(f(t))

with r(t) = u(t) + a + bt. Moreover lim \u(t)\ + |ό(ί)| = 0.
f-» - oo

Proof. Since the forces are continuous and the integral is assumed
absolutely convergent, the result is simple.
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The useful thing about condition (B) is that a strong "converse"
of Lemma 1 holds:

Lemma 2. Suppose r(t) satisfies r(t) = F(r(t)) where F satisfies (A) and
(B) and that \r(t)\^ Ct for some C>0 and all t> T0 for some T0. Then

(a) lim r(t) = b and lim r(t) — bt = a exists
ί->oo ί-» + oo

(b) //u(t) = r(t)-a-bt, then u obeys:

00 °° -> ->
ύ(ή= J ds J dτF(u(τ) + a + bτ)

t s

where the integral is absolutely convergent.

Remark. We have written lemmas 1 and 2 unsymmetrically in f-» — oo
and ί-> + oo, because we tend to think of studying Ω+ and (Ω")"1.

Proof. Since |r(ί)|^Cί, |F(r(ί))| ̂  AC-at~a for t>T1 where
T! = max(Γ0, RQ/C). Since α > 2,

fdί|F(?(ί))|<oo.

As a result:
00

5 = r(71)+ J dtF(f(t))= lim
Γi ^^

exists. Moreover, for any s > T±,

fo=r?(5)+ J dtF(f(t))

s

Since |F(r(ί))| ̂  A C"αrα and α > 2,

JdίF(f(t))
S

SO

= lim r(ί) -
ί->oo

exists. For any T>T1 ?

oo oo

3=r(T)-bT- f d s ] dtF(r(t))
T s

so w given by i?(T) = r(T) — α — S T satisfies the integral equation.
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§ 3. Existence of the Wave Operators

Throughout this section we will suppose (A) and (B) hold. Fix a
and SΦO. For ύ(t) a continuous function on (—00, T) with | |w| | 0 0<l,
we have |r(ί)| > C\t\ for t < T0 where T0 and C are choosen suitably. Thus

J ds J
— co — oo

exists. We thus define
ί

J
— oo — oo

We are seeking fixed points of ̂ . We first note:

Lemma 3. Let a, b φ 0 be given. Suppose F obeys conditions (A) and
(B). Then there exists T so that whenever uε{u\ ύ is continuous ow (— oo, T);
l l t t H ^ ^ l } , =CT then ^usCT. In fact, there exists Cv ana C2 so that

F^E{0||0(ί)-0(S)|^CJί-s|;^

Proof. By taking T negative enough, we can be sure that if u e CΓ,
then r(t) = a + bt + ύ(t) obeys |r(ί)|>Cί; \f(t)\>R0 if t<T. Then using
condition (B)

By taking |T| large enough, we can conclude, \(&u) (ί)| ̂  1 if t < T. Taking
C2 = C"M(α-l)(α-2) and C1 = C~M(α-l)|ΓΓα + 1 we have
The equicontinuity condition \v(t) — 0(s)| ̂  Q \t — s\ follows from

The last part of Lemma 3 allows us to prove:

Theorem 1. I/ F obeys conditions (A) and (B), then for any a, έ>φO,
is a function r(t) solving

with lim \r(t)-a-bt\ + \r(t)-b\ = Q.
ί->- 00

Proof. It is enough to find such a function r on (— oo, T) for some
T and then apply the ordinary global existence and uniqueness theorem
to extend r to (— oo, oo). By Lemma 1, we need only show 2F has a fixed
point in some set, Cτ. By Lemma 3, by taking T sufficiently small, we
can be sure that 3F takes Cτn<ί into itself. But CΓn<ί is convex and is
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compact in the || H^-topology since Cτ is closed and S is compact by
equicontinuity arguments. Moreover, it is non-empty. Thus, by the
Leray-Schauder-Tychonoff theorem ([16] pp. 453-56) 2F has a fixed
point in CΓn S. This proves the existence of a solution.

As the examples in Appendix 1 show, uniqueness of the fixed point
may not hold if only (A) and (B) are true but if (C) also holds the situation
is very different:

Theorem 2. // F obeys (A), (B) and (C), then for any α,&Φθ, there
exists a unique function, r(t\ obeying the conclusions of Theorem 1.

Proof. By the global existance and uniqueness theorem, we need
only prove existence and uniqueness of fixed points of 2F on some Cτ.
But by (C), if u, v e Cτ with T sufficiently negative

so by taking T negative enough, we can be sure that J^ is a contraction
on Cτ. It thus follows from the contraction mapping theorem that J*~
has a unique fixed point.

It is known if Fa is a family of contractions on the unit ball in a Banach
space depending sufficiently smoothly on a real parameter α, then the
fixed point of Fa is a smooth function of a. As an example of how this
theorem (see [17], pp. 229-234 for an exact statement) may be applied
we note:

Theorem 3. // F is C°° with

ffH+n2 + n3p

lim
ϊ^-XX) dxnίdyn2dz"3

for some α > 2 (with n = n^ + n2 + n3), then the wave operators, Ω± given
by Theorem 2 are C00 functions of a and b.

§ 4. Isometric Nature of Ω±

To prove Ω ± are measure preserving, we introduce the maps Ωt defined
as follows. Let St:R

6-^R6 be the map given by r(t) = St(q0, p0) solves
P(t) = F(f(t)); r(0) = q0 r(0) = Po. Let S°t(q0, Po) = q0 + Pot. Define

Not surprisingly:

Lemma 4. Let F obey (A), (B), (C). Let Ω* be defined as above. Then
as t-> — oo

Ωt-*Ω+

uniformly on compacts.
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Proof. Given a compact, D, in phase space, we can find a T so that
the maps J^ >b given by

(&a,bu)(τ)= ds
— oo — oo

are contractions on the set CT introduced in § 3. Let

(ffi*$u) (s) = I ds jdτF(α + bτ + ιι(τ)) .
V V

The J*^ are also contractions on CT and ^b^^α,b uniformly on
Cτ x D. It thus follows that the fixed points u(£b converge in \\ \\ ̂  to
the fixed points uQtb of ̂ αtb. Since

Ω'(α, b) = ST_! «>h(T - 1), ώ«6(Γ - 1)) ,

we conclude the lemma.
By Liouville theorem S_r and S(

t°
} are measure preserving so Ω±

are measure preserving. It follows from Lemma 4 that:

Theorem 4. Let F obey (A)-(D). Then Ω± are measure preserving.
Proof. It is enough to prove

for smooth functions /of compact support. Since Ω* is measure preserving,
this formula holds if Ω± is replaced with Ω*. The desired equality then
follows from Lemma 4.

§ 5. Asymptotic Completeness

Theorem 5. Let F obey (A)-(D). Then ran Ω+ and ran Ω~ differ by
sets of measure 0. Equivalently (since Ω± are isometric by theorem 4),
for almost all a,b<=R6 there is an a*, V e R6 and a solution r(t) ofr(t) = F(r(ή)
so that

lim \r(t)-a-bt\ + \r(t)-b\=Q,
f-»- 00

lim \r(t)-a'-l>'t\ + \r(t)-l>'\ = Q.
ί-* + 00

Proof. By a result of Hunziker and Siegel [10, 14], if r(t) solves the
equation of motion, the sets

{(ί,S)|r(0) = α,r(0) = &, lim \r(t)\ = <x>} = N*
t-+ +00
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are equal up to a set of measure zero (see Appendix 2 for an example
where J V _ Φ J V + ) . If we can show that when lim |r(ί)| = oo then r(0),

t->-oo

r(0)eranΩ+, we will be finished. We will prove this result when the
energy is positive which is sufficient. By Lemma 2, it is enough to prove

lim J^>0if lim |r(f)| = oo.
f-> + oo t ί-*-oo

Let W(t) = r(t)2 be the moment of inertia. Then W(t) = 2rr
W(f) = 2r2 + 2rr = 2E + 2r F(r) - 2 F(r) where E = r2 + V> 0, is a
constant of the motion. By (B), we can find R0 so 2E + 2r F — 27 >0
if r>#0. Since lim |r(ί)| = oo, we can find ί0 so |r(ί0)|>R0; r(ί0)>0.

Then W(t0)>R% and ^ί0)^0. It follows that W>0 for all t>t0 and
that r(ί) ̂  r(ί0) so that r(ί) > |r(ί0)| \t\ for ί > ί0.

§ 6. N-Body Results

We wish to note that some of our simplest results extend to the
JV-Body case without any work:

Suppose^, B eR3N and that B is such that if B = (b^...,bχ\ then
bi — b7 φO for all ij. Then using the methods of Theorems 1 and 2
let us prove:

Theorem 6. Let Ftj(l^i<j^N) be given obeying (A) and (B). Let
A, BeR3N with bt Φ bj for all ij. Then, there exists a solution of

(where Fίj=—Fίj if j>i) with |rf(ί) — αf — &iί|->0 as ί-> — oo
I^W ~^ίl"^0 V moreover the forces obey (C), this solution is unique.

We have not yet attempted to construct wave operators for channels
other than the one where the particles are asymptotically free.

§ 7. Connection with Hunziker's Approach

Hunziker's approach involves forming L2 of phase space and unitary
maps eu and eLQt given by (eLtιp)(z) = ψ(S_tz); (eLotψ) = ψ(S(l\z) where
S_ ί? S

(l\ are defined in § 4. He proves the existance of the

lim e+Lte~Lot = Ωfi

as a Hubert space operator.
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When (A)-(C) holds, we proved in § 4, that

lim S_tS
(

t°
) = Ω±

f-> + oo

in the sense of convergence on uniform convergence on compacts. It
follows that the maps Ω± we have discussed when (A)-(C) hold are
related to Hunziker's Ω# by (Ω^ψ) (z) = ψ(Ω± z). Thus some of Hunziker's
long range results (§ 5 of Hunziker's paper) follow from our theorem.

On the other hand, if one plays fast and loose with sets of measure
zero, Hunziker's results imply ours. For let M be a measurable set and
let χM be its characteristic function. Then

\~ O (' 'M \\ (IV\ 1ΪTΠ ί' 'M \ (^\ CΛ") ι\ΐ\ llTVI V (^ CΛ") "ι/\
\aύτj l / M " / I \/L) — 11111 \/(.'M[) \*^ t t /L) — 11111 Λ.M\ i f /C/

Thus Ω£ (χM) = χω+(M) f°Γ some set function ω+ which preserves measure.
In some sense ω+ is comes from a point map. Thus, in some sense,
Hunziker's theorem suggest that when only (A) and (B) hold, one has
uniqueness for almost all initial data at oo. This seems like a good
conjecture: i.e. under conditions (A) and (B) for almost all (a,b)eR6,
there is a unique solution of r(ί) = F(r(ί)) asymptotic to a + bt at t = - oo.

Appendix 1

Non Uniqueness in the Absence of Lipshitz Conditions

We want to construct two examples of conservative systems where
there are non-unique solutions of r = F(r) asymptotic to bt where
\b\ = 1. Throughout, ψ will represent a function which is C°° on R with:

We use cylindrical coordinates, (ρ, Φ, z).

Example 1.

_ ._ ί>3.

All the functions rg(t) are asymptotic to the same free solution at t = — oo.
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Example 2.

F(ρ, Φ, z) = - (1 - χ(ρ)) -y- z<2«+2)/"χ(zρ")

rθo(t) = (t, Θ0,t~
n) and (ί, 00,0) ί>3.

These two solutions are asymptotic to the same free solution as ί-» — oo.
Notice this example shows our 0(r~2~ε) conditions are best possible for
uniqueness.

Appendix 2

An Example of Capture

We will show here that capture, i.e. solutions of r = F(r(ή) with
lim \f(t)\ = oo while lim |r(ί)| < oo, is not a terribly pathological

f-» — oo ί-»oo

phenomena. For let Fbe a smooth function going to 0 at oo as r~ 2~ ε of
|r| with F(r0)=F0>0, F(r)<F0 for r>r 0; F(r0) = 0; K"(rβ)Φθ. Then
the solution of energy F0 and angular momentum 0 exhibits capture.
For near r09 r

2 ~]/E — F0^ C(r — r0)
2. Thus, if r(£)-» — oo as ί^ —oo;

as ί->oo,(r —r0)^β~ ί.
For a general central potential, one can easily show that if capture

takes place for energy, E0 and angular momentum /0, then

I2 dV
V (r) = F(r) + —V, Vl (rn) = E0: —^(rj = 0

o 2rz ° or

for some r0. It then follows by Sard's theorem that this is a set of measure
zero. It is amusing to notice that the Hunziker-Siegel result in this case
follows from Sard's theorem!

Appendix 3

The Time Delay Formula

The usual mechanics books e.g. [15], give a simple formula for the
scattering angle at a function of energy and impact parameter (or what is
equivalent, angular momentum), viz:

where r is given by
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We note here that there is a similar formula for the time delay which is an
essential piece of the S-matrix. It is easy to derive and says:

00 Λγ

T - 2 J — {[2E-r-2/2r1/2-[2E-2F-r-2/2r1/2

R Γ

R R

r0(,E) IIΫ2E

where R ̂  max(r0, //J/2E).
Notice as long as 7->0 at oo, the integral for θ exists but for the

00

integral for T to exist, one needs more or less that J dr V(r) exists.
R

This breaks down precisely at the Coulomb force as is well-known.

Acknowledgement. It is a pleasure to thank E. Nelson and M. Reed for valuable
discussion.
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