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We present a proof that in an arbitrary lattice gauge theory, the expectation value of aWilsonloop decays at least as fast as 
the exponential of the perimeter. 

The well-known Wilson criterion for confinement 
is via a transition from perimeter law decay of  Wilson 
loop expectations to area law decay. I t  is therefore of 
some interest that one can prove in great generality 
that such expectations are always bounded from be- 
low by a bound with area decay and from above by a 
bound with perimeter decay. The lower bound is a 
result of Seller [1 ] ; our goal here is a p roof  of  the up- 
per bound. Some time ago, [,fischer [2] presented a 
rather involved proof  of  the upper bound for hamilto- 
nian lattice theories which he apparently never publish- 
ed. We decided to publish our proof  because of the 
naturalness of the question and the simplicity of  our 
proof.  Nevertheless, we emphasize that the upper 
bound has much less physical significance than Seiler's 
lower bound (which yields a linear upper bound on the 
the static quark confining potential) .  

The crux of our p roof  will involve deriving a bound 
on the ratio between the largest gauge invariant and 
non-gauge invariant eigenvalues of  the transfer matrix.  
The simple argument needed to prove this bound may 
be of  interest in other contexts and will be presented 
first as a separate lemma. 

Let G be a compact  group with normalized invari- 
ant measure, dg. Let ~2 be a set of  "configurations" 
with a normalized measure d/a(x). Suppose there is an 
action of G on ~2, i.e. a (measurable) assignment gx 
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E ~2 to each g E G, x E ~2 so that g(g'x) = (gg')x and 
suppose that for each fixed g, the map x -+ gx pre- 
serves the measure d~. Under these assumptions, the 
basic Hilbert space ~ = L2(~2, d~t) supports a unitary 
representation of G given by 

( , ,  (g)jO(x) = f ( g -  i x ) ,  (1) 

Suppose that K is a bounded self-adjoint operator 
on ~ with integral kernel obeying 

K (gx, g-y) = K (x, y )  , (2) 

for a l l g E  G, x, y ~ g2. Then e, (g)K t¢ (g) -1  = K, so 
the eigenspaces of  K are left invariant by c~ and thus 
can be associated with one or more irreducible repre- 
sentations of  G which enter in the decomposit ion of  
¢~ restricted to the eigenspace. Moreover, suppose 
that for some constant c > 0 and a l l g E  G , x , y ' E  ~: 

l ( (gx , y )  > c K ( x , y )  > 0 (3) 

(obviously c ~< 1). The second inequality in (3) im- 
plies that the maximum modulus eigenvalue, X+, of  K 
has a positive function in its eigenspace and thus, X+ 
its associated to the trivial representation. 

Lemma. Let  ?, be any eigenvalue of K associated to 
a non-trivial representation of G. Then 

IXl ~<(1 - c)X+.  (4) 

Proof. Let P f =  f [ ,~ (g)f]  dg. so that P is the projec 
tion onto all vectors invariant under the action of G. 
By a direct calculation, PK has integral kernel 
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(PK) (x,y) = f K(g Ix, y) dg. 

so by (3) (PK) (x, y) <~e- lK(x ,y )  and thus 

[(1 - cP)K] (x ,y)  >10. (5) 

Therefore, as above, the maximum modulus eigenvalue 
of  (1 - cP)K is associated to the trivial representation 
and is thus (1 - c)X+. But since X is associated to a 
non-trivial representation, X is also an eigenvalue of  
(1 - cP)K, so (4) is proven. 

We apply this to the lattice gauge theory as follows: 
As usual, the action of  the lattice gauge theory is 

taken to be 

S = t3 ~ Re ,v  (gap) ,  (6) 
P 

and the Wilson loop around a contour C is given by 

W C =,v (gc)"  (7) 

a~ is the character of a non-trivial representation ¢~, so 
that 

~, (gh-  1) = ~ ,: is(g),~is(h ) ' (8) 
t,I 

and gc  denotes the usual product of  bond variables 
around a contour C. For notational simplicity, we as- 
sume that the characters defining the action (6) and 
the Wilson loop (7) are identical, however this plays 
no essential role. (All results may be immediately ex- 
tended to the case where the action per plaquette is an 
arbitrary finite linear combination of  different char- 
acters.) We will explicitly discuss only rectangular 
Wilson loops, although one can also bound more gen- 
eral loops. We make one technical assumption, namely 
that the same infinite volume state is obtained by tak- 
ing the different sides o f  the box defining the finite 
volume state to infinity in any order. 

Consider the theory defined in a box of  size L v -  1 
× T with periodic boundary conditions in all direc- 
tions. Using the standard transfer matrix formalism, 
we may re-express the theory as follows. Using gauge 
invariance, we need only integrate over configurations 
where all vertical bonds equal the identity except for 
the bonds linking the top and bot tom of  the box. Let 
H be the gauge group and ~2 = H vL v-  1 the space of  
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configurations of a spatial hyperplane. Thus x E ~2 is 
a set of  spatial bond variables x~. Let S(Xc, ) denote the 
action due to interactions in a single spatial hyperplane, 
and define the transfer matrix, 

K ( x , y ) = e x p @  ~_l~ ,v ( x ~ l y ~ ) )  

1 1 X exp [~ s(x) + ~ soy)] . (9) 

Note that K(x , y )  > 0 and K(gx, gy) = K(x,y)  for any 
gauge transformation g. The partition function may 
then be expressed as 

ZL X T = tr(FKT) 

where P is the projection onto invariant vectors for the 
full planar gauge group, and is present because of  the 
periodic boundary conditions. Using (8), the expecta- 
tion of  a rectangular Wilson loop of size l X t may be 
expressed as 

(WlXt )L× 7" = .~, t r (pKT- t~ ' (s l )KtFf f ) ) l t r (pKT)  , 
1,] 

Fi} l) denotes a multiplication operator by where 
tti](xl), and x l is the product of  bond variables along 
the spatial side of  the loop of length l. Taking T to oo 
with L fixed, we find that 

<%× t)ex = = ~ (~, ;.q)(KX+, 1)tF.!0 ¢ ) , ,  , (10) 

where ~ is the unique gauge-invariant eigenvector of  
the transfer matrix with the maximum eigenvalue X+ 
(i.e. K~  = X+~ a n d P ~  = ~). Consider the subgroup of  
gauge transformations, G, which only act at the site 
at the end of  the chain x l. Then, since ~ is invariant 
under G, and F.q ) transforms under 1 ® et, which tl 
is non-trivial, we see that 

FJ)(KX; 1;G}%) 
<~ ()t/)t+)t- 1(¢,  ~l ) (K) t  + 1) F~l)t~) , (11) 

where X is the maximum eigenvalue associated to 
eigenvectors transforming under 1 ® re. Since (a) g 
only transforms one site, (b) g leaves s(x) invariant, 
(c) each site is involved in 2 @ -  1) vertical plaquettes, 
and (d) the maximum change in ,v. is 2 dim ee, we see 
that 
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K(gx,y) /K(x ,y)  ~> e x P [ ~ ( u  - 1)[3 dim c~ ] - c .  
(12) 

Thus, by  (4),  (10)  and (1 1) we find tha t  

(WIx t)Lx ~ <~ (1 - c)(t-1)(Wlx 1)LX ~ , 

where c is given by  (12) .  Taking L to o% 

(Wlxt)<~(1 - c )  (t 1)(WIx1 ) .  (13)  

Now use s y m m e t r y  in l and t (here we need the assump- 
t ion tha t  the infini te  volume state ( ) is the same no 
mat te r  which order  we take the sides to ~ )  and we ob- 
tain (since (W 1 x 1 ) ~ dim c~ ) 

(Wlx t ) <~ (d im t~ ) (1 - c) (t+l- 2) , (14)  

which is the required upper  bound.  
We remark  that ,  f rom (10) ,  one easily finds the 

lower  bound  (d  - dim ,e. ) 

d - l ( W l X t ) L X o o )  [d I(WIXl)LX~] t 

by wri t ing out  an e igenfunct ion expans ion  for  KX+ 1 
and using Holder ' s  inequal i ty  (Nan x t )  ~> (Na n Xn) t 
if  Za n -- 1. F r o m  this and symmet ry ,  the Seiler lower 
bound  

(WIx t ) ~ d (d -  1( W1 x 1 ))It 

follows.  
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