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SHORTER NOTES

The purpose of this department is to publish very short papers of unusually
elegant and polished character, for which there is no other outlet.

SCHRODINGER OPERATOR METHODS
IN THE STUDY OF A CERTAIN NONLINEAR P.D.E.

E. M. HARRELL' AND B. SIMON?

ABSTRACT. We prove that Au + hu® = 0 has no positive solutions for certain h, a by
studying the linearized equation (A + hu® ')y = ey.

In this note we show that some of the work of Gidas and Spruck [2] on the
absence of positive solutions of

(1) Au(x) + h(x)u*(x) =0
can be recovered with simple arguments about the number of eigenvalues of linear
operators.

THEOREM. Let D be the domain {| x |> ry} of R", n = 3, and h a locally L* positive
function satisfying h(x) = const|x|°, 6 > -2. If 1 <a <(n+ 0)/(n — 2), then no
positive C? function u satisfies (1).

PROOF. It has been shown by Allegretto [1] and Piepenbrink [3] (see also §C8 of
[6]) that the existence of positive solutions of an equation (-A + g(x))u = 0 (con-
ventionally with a different sign from (1)) on an exterior domain implies that
dimP_, (A +¢(x)) < oo, where P__, (-4 + g(x)) is the spectral projection for
the open interval (-00,0) associated with any selfadjoint realization of -A + ¢. In
other words, there are only a finite number of negative bound states. On the other
hand, suppose that u is a positive solution of (1) on D. Then, since Au <0, the
subharmonic comparison argument of [4] shows that u(x) > cgg(x) for some
constant ¢ and r, <| x|< R, where gp(x) is the Green function for Ag, = -8(x) on
{| x |< R} with Dirichlet B.C. at | x|= R. The constant c is such that u(x) > cgg(x)
when | x | = r,. Since gg(x) increases monotonically to 1/w,|x|" 2 as R 1 c on D,
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it follows that u(x) = const | x |"~?. Therefore

~h(x)u*" ' < —const | x |7~ < _const | x |2,

where ¢ > 0. But any potential g(x) < —const|x|?*¢ gives rise to an infinite

number of negative bound states by the min-max principle [5], so there is a
contradiction when we identify g(x) = ~hu*~!. O

REMARKS. 1. A may be replaced with a more general elliptic operator 9,a,,(x)9,
such thata, € C 2 and positive definite for each x and satisfying a growth condition
(3]

2. h need only be locally L? with p > n/2. Also one only needs a weak solution
with hu*~' € LY .
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