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We consider a number of simple quantum Hamiltonians H(-iV, x) with the following 
property: H(-rV, x) has discrete spectrum even though {(p, q) 1 H(p, q) < E} has infinite 
volume. 

1. INTRODUCTION 

A standard rule of thumb about whether a quantum Hamiltonian H = -A + V(x) 
has purely discrete spectrum or some continuous spectrum is the following. Look at 
the volume {(p, q) Ip* + V(q) <E} in R*“. If this volume is finite for all E, the 
standard wisdom is that H has only discrete spectrum. This standard wisdom also 
says that if this volume is infinite for some E < oo, then the spectrum is not purely 
discrete. There are theorems which validate the first half of this intuition. Indeed, if 
v > 3, it is a consequence of the Cwickel-Lieb-Rosenbljum bound (see, e.g., [6] for 
references) 

NE) Q c, I{(P, 411 P* + v(q) Q Ek 

where ]. ] = volume (Lebesgue measure) of . and N(E) is the number of eigenvalues 
(counting multiplicity) of H smaller than E. 

Moreover, in any dimension, one has the Golden-Thompson inequality (see [6] 
again for details) 

Z,(t) z Tr(e-“‘) < Z,,(t) = (2~)~” 1 d”pdvqe-t(P2t y(q)) 

and of course, if Z,(t) < co for any t, then H has purely discrete spectrum. 
There are some indications that the other sides of the intuition, namely, Z,, = co 

implies Z, = co, is correct. For example, in many cases [6], Z,,(t)/Z,(t) --P 1 as t 1 0 
so that one is tempted to believe this in general. The point of this article is to discuss 
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a number of simple examples where Z,(t) < co even though ]{(p, x) ]p* + V(x) Q E}] 
is infinite. 

The simplest example of this genre is the two dimensional Hamiltonian 

H, =-2.&z+x*y’; 
8Y2 

indeed, my interest in these problems was first aroused when J. Goldstone and R. 
Jackiw asked me if H, had discrete spectrum. Closely related to this is the operator 

H, = -A,” with zero boundary conditions on {(x, y) ] ]xy ] Q 1 }. (2) 

Here the quantum/classical intuition and the consequence of Z,,/Zp --t 1 as t + co go 
back to a celebrated 70-year-old paper of Weyl. Since 

H2>HH,- 1 

any proof that H, has discrete spectrum will automatically imply that H, has discrete 
spectrum. 

Both H, and H, have discrete spectrum with infinite classical phase space volumes. 
We will give five (!) proofs that H, has discrete spectrum; three work directly for H, 
also and the other two may well extend. Our reasons for giving so many proofs are 
several: Since the phenomenon is somewhat surprising it is worthwhile to give several 
proofs which provide distinct insights. More importantly, the proofs have distinct 
virtues: While the first is undoubtedly the “simplest,” it gives a very bad bound on 
the high energy behavior of the eigenvalue distribution. For example, it shows 
Tr(eefH1) < Ctp3 for c small, while the exact behavior is O(tp3’* In t). 

In Section 2, we present the simple proof whose main ingredient is the zero point 
energy of the harmonic oscillator. Our second proof, in Section 3, uses boundary 
condition bracketing [5] and provides in an explicit way an explanation of the basic 
phenomena. The path integral proof of Section 4 is intermediate between that of 
Sctions 3 and 5. The proof in Section 5 depends on a new inequality whose proof we 
give elsewhere [7]. Its virtue is that it gives the exact leading behavior (including 
constants) as we explain in [7]. Section 6 deduces the required result from a general 
theorem of Fefferman and Phong [2], who became interested in similar problems 
because of some applications to PDEs. Since this proof is unpublished (although the 
ideas are almost identical to their proof in [l] of a bound on ground state energies) 
and since one can use Temple’s inequality to simplify their proof, we give a proof of 
this result in an appendix. Their method gets the precise leading powers of divergence 
of Tr(eerH) as t 1 0 but not the correct constant. 

There is a sixth proof, whose details we spare the reader, but which we mention 
because it is connected with a precedent for these results. In two dimensions, let x, y 
be the variables and p, q the conjugate momentum. Let x be the characteristic 
function of a compact region in x-y space. Several years ago, Yajima [9] proved 
and used the fact that x(p’ + q + i)-’ (note: q not q*) is compact. He noted, but did 
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not publish, that the same ideas show that x(p’ - q2 + i)-’ is compact. This 
somewhat surprising fact is clearly connected to the fact that (H, f 1))’ is compact 
and, indeed, one can prove the latter compactness from the former. 

The biggest advantage of the Fefferman-Phong proof is that it extends quite simply 
to higher dimension (and provides necessary and sufficient conditions for -A + V to 
have discrete spectrum when V is a polynomial). In the last two sections we describe 
two more interesting situations where their theorem is applicable. One is the model 
that motivated the question of Goldstone and Jackiw [3]. Let a be a semisimple Lie 
algebra in compact form (i.e., the Killing form is strictly negative definite) and let -A 
be the Laplacian in the inner product given by the negative of the Killing form. Let 
v > 2 and let a” be v-tuples (A i ,..., A,) of elements of u. Let H be the operator on 
L*(a”) 

H=--xAAi- x Tr([A,,A,j*). 
i Ll<K 

(3) 

In Section 7, we will show this has purely discrete spectrum. This Hamiltonian has 
been proposed as a model of zero momentum Yang-Mills fields [3], but one that 
seems to be currently out of favor. In the last section, we consider three particles in 
three dimensions with their center of mass motion removed. The potential of the three 
particles is taken to be the area of the triangle formed by the three particles. 
Explicitly, if the particles have mass 1 and we use coordinates x = r2 - r,, 
y = r3 - $(r, + r2), then on L2(R6) 

H=-A,-;A,+Ixxyl. (4) 

We will show in Section 8 that this operator (and others like it) have purely discrete 
spectrum. 

Notice. that operators (I), (3), (4) h ave a similar structure in common: Their 
potentials fail to go to infinity at infinity but only on very thin sets. This is the key to 
the breakdown of the classical intuition. 

2. FIRST PROOF: ZERO POINT OSCILLATOR MOTION 

It is, of course, well known that 

Thus, treating y as c-number, 

595/146/l-15 
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Using symmetry in x and y and adding, we see that 

1 -- 2 A 

+A+Ixl+l~l)=H,. (5) 

Since 23, has discrete spectrum, so does Hr. By the usual classical result [6], as t 1 0 

Tr(eetH3)= [I +o(1)](2n)-2(exp(-tp’-f]x(-t(y])dxdyd2~=ct-3[1 +0(l)] 

so (5) only yields 

while the true behavior [7] is O(t- 3’2 In t), so (5) is not good at high energies (which 
is equivalent to small time): Explicitly, for H,, N(E) grows like E3’2 In E while for 
H, it grows like E3. 

3. SECOND PROOF: BOUNDARY CONDITION BRACKETING 

We want to consider an array of rectangles as shown in Fig. 1, where dotted lines 
indicated Neumann (N) lines, and solid lines are Dirichlet (D): Explicitly, the set has 
four-fold symmetry and the rectangles that intersect the positive x axis are a square, 
S,, with vertices at (+z 1, f 1) and N-sides, and rectangles R,,+Cxt with vertices (2”-], 
&2-“+l), (2”, *2-“+l) and horizontal D-sides and vertical N-sides. Let H, denote 
the Laplacian in this sum of squares, and we claim 

H,>HH,. (6) 

For we go from H, to H, in two steps exploiting the properties of D -N bracketing 
(e.g., [4,5]): F’ t lrs we let H, be the Hamiltonian.in the union of rectangles with DBC 
on all lines on the boundary of the union. 

Then, as the region has been increased, H, > H,. Since adding N lines or changing 
D to N lines always decreases H, H, > H,, so (6) is proven. 

By D -N decoupling, H, is the direct sum of Laplacians in each rectangle. S, 
yields an operator with eigenvalues (f7~)~ [m: + m:] (mi = 0, l,...) and the four 
rectangles R,.,; yield eigenvalue z2[4(“-‘)k2 + 4-(n-1)~2] with m = 0, l,... and 
k = 1, 2,...; since k > 1, one sees that H, has discrete spectrum (it has only finitely 
many eigenvalues smaller than a fixed E) and so, therefore, does H,. 

This proof yields the correct power small t dependence of Tr(ewtH2) but not the 
correct constant. 
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FIGURE 1 

4. THIRD PROOF: PATH INTEGRALS 

This proof is intermediate between that in the last section and the one in the next. 
Indeed, the proof of the exact leading asymptotics we will give in [7] uses both ideas 
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from this section and the next. We will prove Tr(eefH2) < co, which implies H, has 
discrete spectrum. By the Feynman-Kac formula (see, e.g., [6]), 

Tr(e- 1’2tH2) = j,x,, (, F(7) d*r, (74 

m = ~F,,,OlF@))(27T l, Vb) 

where Ei,i,, is Brownian motion expectation for all paths starting at ? and conditioned 
to return to T: at time t, and where xi(b) is the characteristic function of all paths 
which stay in the region jxy I< 1. Let r = (x, y) with x > y and, say, x > 2 and 
IXYI < 1. If Ib,(s)b,(s)l< 1 f or all s, then either lb, I <x/2 for some s or else 
]&(s)] < 2/x for all s. By standard estimates (see [6]), the probability of the first 
event is bounded for large x as O(e-Dx2”) and by simple Dirichlet arguments, the 
second probability is O(e-D’xzt). Thus F(ir) behaves for r’large as O[exp(-Cr*)] and 
thus Tr(e-lH2) < co. 

This proof easily yields the correct leading behavior as t 1 0. By replacing 
1 b, I & x/2 by ] b, - x] Q 1 and doing the second estimate more carefully, one can even 
get the correct constants [7]. 

5. FOURTH PROOF: SLICED BREAD 

In [7], we will prove a general form of the following: 

THEOREM 1 (“Sliced bread inequalities”). Let V(x, y) be a function of two 
variables and let H = -ACX,Y, + V. Let h, = -(d2/dy2) + V(x, y) as an operator on 
Z$ = L2(R, dy). Let Ed be the eigenvalues of h, ordered by E, < cz < ..a. Then 

. ill (8) 

This result is easy to apply to see that H, has discrete spectrum. In that case, 
E/(X) = (2j + 1) 1x1. Next, by scaling, ((-d/dx2) + a Ix]) is unitarily equivalent to 
ph2;((-d’/dx*) + 1x1). Th us, if F(s) = Tr(exp[-s((-d2/dx2) + v)]), then (8) implies 

Tr(emtH1) Q f F((2j + 1)2’3 t). 
i=O 

(9) 

Since F(s) decays exponentially as s + co, the sum is finite and so Tr(e-‘“) < co. 
The small s divergence of F is determined by classical phase space [6] and from 

that one can read off the small t divergence of the right side of (9). It has the same 
leading behavior, both power and constant as Tr(ePtHI) as can be seen by suitable 
lower bounds (see [7]). 
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6. FIFTH PROOF: THE FEFFERMAN-PHONG THEOREM 

Fefferman and Phong [2] have prove the following beautiful theorem: 

THEOREM 2. Let A; (,I > 0, j E 2”) be the cube of side L-l” centered at the 
point A -‘I?. Given V > 0 on R “, let fi(d) be the number of cubes A: with 

maxxcAj I V(x) < 1. Let N(A) be the dimension of the spectral projection for -A + V on 
the interval (0, A). Then, if V is a polynomial of degree d on R”, 

for all 1 and suitable constants a, b, where b only depends on v and a depends on v 
and the degree d. 

Remarks. 1. While this theorem is unpublished, a very similar result appears for 
the ground state energy in [I]. The same proof extends to get this theorem. For the 
reader’s convenience and because our proof of the crucial upper bound is partly alter- 
native, we describe the proof in an appendix. 

2. The lower bound is not very surprising. Indeed, it holds for any V> 0. The 
upper bound is much subtler. By taking V to be a sum of narrower and higher spikes 
centered at the points j2-” we can construct a V with R(L) < co for all 1, but with 
o(H) = [0, co) so N(k) 3 co! 

3. As the example in 2 shows, one needs some regularity of V to get the upper 
bound. Polynomial is not critical; rather, a glance at the proof shows that one needs 
the following: Given a function on R” not vanishing on any open set, let G(f) be the 
function on the unit cube equal to f (x)/l/ f I/co, where 1) f [Ia, = supXEA 1 f (x)1. Given V, 
and ,uiR+, a E R” let V,,,(x) = V&(x-a)). Then the critical property is that 
(G(V,,,) I ,L > 0, a E R”} has compact closure in )I . /Ia. If V is a polynomial of degree 
d so is VW,, and thus (G( V,,,)} is the unit sphere in a finite dimensional space. 
Another case which is important in Section 8 is when V is a (fractional) power of a 
polynomial. We use this extension without further comment. 

4. The upper bound is also the more significant, since it says that N(L) < co; 
i.e., H has purely discrete spectrum if N’(n) < 03 for all 1. (Indeed, H(J) < co for all 1 
is equivalent to discreteness by the lower bound.) If m(J) (or N(A)) has pure power 
(or power times logs) leader behavior, then N(1) must have the same leading behavior 
as R(L) although the constants will not be right. In practical situations, it may be 
easier to prove 8 < co than to compute its asymptotics. 

5. It is a reasonable conjecture that if V is a positive polynomial, then 
#(A) < co unless V is independent of some variable (in which case g(L) is co for all 
A > 0). 

6. L-“2 cubes enter since their kinetic energies are of order ,L 
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It is easy to see that when V(x, y) = x*y*, then It(L) < co. Indeed, if j = (j, &) 

max V(x) = A-‘(lj,] + 4)’ (lj,l + 4)’ 

so, without any effort, onysees that this maximum is larger than al-*max(lj, 1, lj,\)* 
so Is(J) & 1). An only slightly more careful analysis yields the correct (up to 
constant), N(L) < cA3’* In 1. 

7. A LIE ALGEBRA MODEL 

In this section, we apply the Fefferman-Phong theorem to a special class of 
polynomials which will include the potential of Eq. (3). 

THEOREM 3. Let Q,,..., Q, be real-valued, homogeneous polynomials of degree 2 
on R” with 

,z.., (2) * > O (11) 
” 

U=l,....U 

when x # 0. Then the fi associated to 

f’$Qj (12) 
1 

is finite for all 1. 

Remarks 1. The example I= 1, Q(x, y) = xy shows that P can have zeros going 
out to infinity. 

2. The fact that deg Qj = 2 or even that all Qj have the same degree is 
irrelevant as is easy to see with slightly more argument, but the homogeneity is 
critical. 

Proof. By scaling, it suffices to prove A@ = 1) < co. Obviously 
S(x) = maxj,= laQ,/~‘?x,) > 0 if (11) holds. Since S(Jx) = AS(x) (by homogeneity of 
Q), we see that 

,$zR S(x) = CR. 

Thus, for any box A, we have that for some j, u, I aQj/ax, ) > ck at the center of A,. 
Since max, 

if 
,j la’Q,/ax, axsI = d < co, IaQ,/ax,I > ck - (d/2) fi in A,. Thus, if 

k > ;dc-’ V, and x, x’ are suitable points in A, (“opposite” in the ath direction), 
1 Q,(x) - Q,(x’)l > ck - (d/2) fi. Thus, if ck : (d/2) \/; > 2, max,, I Qjl > 1 and thus 
maxA, P > 1. Such a cube does not count in N( 1). Thus if Ij( is sufficiently large, Aj 
doesn’t count in R(l) and so m(l) < co. 1 
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COROLLARY 4. The operator of (3) has purely discrete spectrum. 

ProoJ The potential, P, is a polynomial, so by the Fefferman-Phong theorem, we 
need only check that R(J) < co. P has the form of the last theorem, so we need only 
check that (11) holds. There is presumably a lengthy but elegant coordinate-less 
proof, but we settle for a direct calculation in coordinates. Pick a basis for the Lie 
algebra with Tr(E,Ej) = -6, (recall the elements of the algebra are skew-symmetric). 
This basis may not be Killing orthonormal, but if (11) holds in any linear basis, it is 
easy to see it holds in all linear bases, so we can check in this basis. 

As a preliminary, we write commutators in terms of structure constants: 

[Ei, Ej] =x c;E,. 
k 

Obvious cb is antisymmetric under interchanges of i and j, and since cb = 
-Tr([Ei, Ej] Ek) it is also seen to be antisymmetric under other interchanges. If 
A = JJ aiEi, then in Ei basis 

(AdA),r=xa’ck, 

is antisymmetric by the above remark, and thus the strict negative definiteness of the 
Killing form becomes 

C aicza’ct > 0. 
i,l.kj 

(13) 

Now write A,, = C aI Ej so {a:} are the basic coordinates of the problem. The 
potential P has the form (since -Tr(E,, Ei) = S,) 

P=- 1 aLa’,akaFTr([Ei,Ej][E,,E,]) 
I1<K 

i,j,f,m 

where 

Q:,,(a) = 2 af,aicb. 
i.j 

For any {A”} # {0}, pick ,u with A” # 0 and any IC. Then (13) says that 
Ck,j (aQ:,,/L?ai)’ > 0 and thus (11) holds. 1 

Remark. The proof works for any faithful representation of a by skew-symmetric 
matrices. 
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8. A MODEL OF FEYNMAN 

The Hamiltonian (4) was proposed by Feynman as 
regards it as obvious that the spectrum is discrete, but 

a pedagogical problem. He 
it is perhaps worth giving a 

rigorous proof of what Feynman regards as obvious! To handle higher dimension 
than 3 (or dimension 2), we let ,u > 2 and v = 2,~. We write a point in R” as (x, y) 
with x, y E R” and let 

[ 1 
112 

H=-A,-A,+c 1 (xiyj-xjyi)2 ) 
i<j 

(14) 

where c > 0. By scaling (4) is a special case of (14). 

THEOREM 5. The operator of (14) has purely discrete spectrum. 

Proof: By the Fefferman-Phong theorem (in the extended form mentioned in 
Remark 3 of Section ), we only need show #(A) < co. The proof of Theorem 3 is seen 
to extend to y = (2 QT)“‘, so we let Q,(x, y) = xi yj -xjyi. It suffices that 

x not vanish away from zero. But by an ~~~~~~~~~~la~~~Qviayr)' E G( ) 

G(x) = 2(u- l)[x* + y’] 

and the result follows. 1 

Remark. By a simple extension of the argument, if k + 1 particles living in 
dimension p> k interact by a potential which is equal to the k-form “volume” 
spanned by the k - 1 particles, then the spectrum is purely discrete. 

APPENDIX: PROOF OF THE FEFFERMAN-PHONG THEOREM 

Our goal here is to prove Theorem 2 in a series of lemmas. The two inequalities 
appear as Lemmas A.1 and AS. As a preliminary, we exploit Dirichlet-Neuman 
bracketing which assures us that 

ND@> < W) <NAG), (A.1) 

where N,(A) is the dimension of the spectral projection on [0, A] for the operator 
H,(1), with X-boundary conditions on all boxes {dfjjcZ,.. 

LEMMA A. 1. N(( 1 + vx2)A) 2 N(d). 

Proof. If A: is a A-box with maxdj v< A, then Ht + V has lowest eigenvalue at 
most &r2 + 1, so there are at least N(J) eigenvalues of H&) of size at most 
(1 + v7r2)A. I 
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The following standard result of Temple [8] is provided for the reader’s con- 
venience: 

LEMMA A.2 (Temple’s inequality). Let A be a serfadjoint operator whose two 
lowest eigenvalues are ,u, ( ,u,. Suppose that q is a unit trial vector in D(A) and p: a 
number with 

(v,Arp) c/G+ <<iuz. 64.2) 

Then 

PI> (eAv)- L@ - h441- NM*+ bW*b (A-3) 

ProoJ: (A - ,@)(A -p,) > 0 since (A -PI;“) is only non-positive on the p, 
eigenspace and (A -p,) kills that space. Thus (p, (A -pT)(A -p,)o) > 0. This and 
(A.2) yield (A.3). I 

LEMMA A.3. Fix v, d. Then there is a constant c(v, d) so that for all polynomials 
P on Rv of degree at most d and all cubes, A in R”, we have that 

flA IP( dx > c my W>l. 64.4) 

Proof (essential idea in [ 11). By scaling and translating x and scaling P, we can 
suppose that A is the unit cube centered about 0 and that (] PII, = max, (P(x)1 = 1. 
The set of P is clearly compact since it is a unit sphere in a finite dimensional vector 
space and jd /P(x)1 dx is a non-vanishing continuous function on that set, so the 
minimum value, c, is strictly positive. I 

LEMMA A.4. Let A, be the unit cube in R”. Let V be a positive polynomial of 
degree at most d and let H = HO,N + V, where H,,, is the Neuman Laplacian on A,, . 
Suppose that max4, V(x) > 1. Then 

(A.5) 

where c is given by (A.4). 

ProoJ By decreasing V which only decreases H, we can suppose maxA, V= 1. 
Let ,u, , ,u2 be the two lowest eigenvalues of H. Since H > HO,N, which has 0 and x2 as 
its lowest eigenvalues, we see that ,u, >,uu,* = rr*. Let v, be the vector which is iden- 
tically 1. Then (o, Hq) = (9, VP) = I, V(x) dx ,< 1 < ,@. Moreover, (cp, H*p) - 
(o, HP)* < (p, H’q) = (p, V2v) < (q, VP) since max V= 1. Thus, by Temple’s ine- 
quality 

PI 2 (6 Vv)ll - CUT - 1)-‘I 

> c(7r2 - 2)/(X2 - 1). I 
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LEMMA AS. If g is given by (AS), then N(g1) Q N(l). 

ProofI Note that since c < 1, we have that g < 1. Any 1 box has a second eigen- 
value at least ln2 > g1, so we get an upper bound on N,(gJ) by counting boxes for 
which Iv’~,~ + V has its lowest eigenvalues smaller than gJ. By scaling and 
Lemma A.4, if max,? V(X) > I, this box does not contribute so N,(gA) Q N(l). 1 
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