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Abstract. We consider the two-electron Hamiltonian H=-A; A, —r7' —r3" +Ars at
precisely that critical value of A where the ground state energy has just hit the continuum.
For that A, it is proven that H has a square integrable eigenfunction at the bottom of
the continuum.

1. Introduction

The class of Hamiltonians
H(A)=~A—As—ri =13  +Arps (1)

on LA(R%, dx; dx2), x1, x2€ R®, r1 = |x1], r2 = |x2}, 112 =|x1— x|, enters naturally in the
study of the 1/Z expansion for two-electron ions. Since the work of Stillinger (1966)
there has been particular interest in the critical value of A (call it Ay) (see e.g.
Stillinger and Stillinger 1974) as follows. For any A >0, H has continuous spectrum
[- ). At A=0, H has a ground state at energy E(0) = —1 and as A is increased,
the ground state energy E(A) increases until Ag, E(Ag) = —3. For simplicity, we have
chosen here —A; — A, for the kinetic energy, which poses no problem, since by scaling
2H is unitarily equivalent to the usual Hamiltonian —A;/2—A,/2—1/r1—1/rs+ A/r15.
It can be proven (see e.g. Thirring 1979, Leinfelder and Simon 1982) that Ay <00,
and since it is well known that the hydrogenicion has a bound state, Ao > 1. Numerically
(Stillinger 1966), Ay~ 1.1,

Our main goal in this paper is to prove that at A = A, there is a ground state,
¢ >0,y e L*(R® with Hy = —iw, i.e. there is a normalisable eigenfunction at threshold.
Since short-range potentials in three dimensions do not produce normalisable groynd
states at thresholds (see e.g. Klaus and Simon 1980), this phenomenon is due to the
long-range repulsion of r1;. We mention that Klaus and Simon (1982) noted that for
the three-dimensional model problem, H = -A+V +ar~! where V is spherically
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symmetric, negative, short range with inf o (—A+ V') <0, one has a threshold eigenvec-
tor at the critical coupling. For this reason, our result is to be expected.

In § 2, we prove that Hy = —4 has a bounded solution and in § 3 that the solution
is L*. In § 4 we discuss some further aspects. Critical to our considerations are various
subharmonic comparison arguments as found e.g. in (Simon 1975, Hoffmann-Ostenhof
1980) and other results on properties of eigenfunctions as reviewed by Simon (1982).

One common theme of the analysis in §§ 2 and 3 will be to take a bounded solution
¢ of H(A)Y = E(A)y for some A with ¢(ry, ra, r12) = ¢ (ra, rq, r12) and form

Fir = [ 8020, x2) d @)
where ¢ is the ground state of h = —A,—r;"'. We will need:

Proposition 1.1. Let
Gir)=A j & (ra)r 120 (x1, x2) dsa. 3)

Then under the above assumptions F is a C? function away from r; = 0 obeying
(~A—ri' —-E-y)F =-G. (4)

Proof. Since ¢ is bounded by assumption and ¢ decays, both F and G are bounded.
Indeed, since ¢ is uniformly Lipschitz by estimates of Kato (1957), G is also Lipschitz.
Thus, if we prove (4) in the distributional sense, standard elliptic estimates (see e.g.
Gilbarg and Trudinger 1977, Simon 1982) imply that F is C? and (4) holds in the
classical sense in (0, o0). In the distributional sense

[(—Ai=ri'—E-}F](r)= J’¢<r2)[(H —E)—(h+35)—Ari2J¢(x1, x2) dx, = =G (5)

if we integrate by parts.

2. Existence of a bounded solution
In this section we will prove

Theorem 2.1. There exists a positive bounded function ¢, symmetric in x;, x», which
is a distributional solution of H (A )y = —4.

We begin by noting that, by definition of A,, we can find EnT—% and ¢, >0,
wn = (//n(rla ra, rlZ) = d/n(rZ, T, r12) SO thatH(An)wn = En(//n WlthAn = AO— l/n- We WiH
normalise ¢, by requiring

sup Ua(x)=1.

xeR

By the compactness of the unit ball in L™ in the weak-* topology (see e.g. Reed and
Simon 1972, theorem IV.21), we can by passing to a subsequence find ¢ in L™ so that

If(x)wn(x)dxejf(x)w(x)dx forn » o for allfeLl(RG).
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¥ is easily seen to be a distributional solution of H(Ag)y = —30. The key fact is to
show that ¢ is not identically zero, i.e. that ¢, does not run away to ©. Once we
show that ¢ is not identically zero, it is somewhere non-negative, and then by Harnack’s
inequality (see e.g. Aizenman and Simon 1982} it is everywhere positive.

Lemma 2.2. Let F,(r)= jzb(rz)wn (x1, x2) dx; as in (2). Suppose that for some R <
and & >0, sup,,<r F.(r1) = ¢ for all large n; then ¢ is not identically zero.

Proof. By Harnack's inequality there exists a constant C, so that for all n, ¢, (x1, x2) =
Ca(x}, x2) if |x1 —x1|=<1. Thus, if F,(r})=¢, we have that F,(r;) = Ce if |x] —x;|<1;
s0 if sup,, =g F,.{r1) = ¢, we have that

J’ Fn(rl)drIB%ﬂCe.
ri=R+1
Thus, since ¢ € Ll,

J. & ()¢ (x1, x2)dx1 dx2 =3meC, so ¢ #0.

Ixy|<R+1
Lemma 2.3. For some ¢ >0, sup, F,(r)=¢ for all n.

Proof. Let K be the region where r;>8, r,>8. Then, on K, —Ay¢,=
(E,—Auris +r1' +r3 W, <0 for n large. So ¢, is subharmonic on K and thus, since

¢, = O at infinity (Simon 1982), we know that ¢, takes its maximum value (which is

1) on the complement of K. Since ¢, is symmetric in x, x» we can find x{*’ and x4’

with |x5”|<8, so that ¢, (x{",x5”)=1. By Harnack’s inequality, for som: eq,

Un(x, x2) = g0 if r, <1. (Note that e, does not depend on n.) Thus, with

s=€oj ¢ (r2) dx>
[x2,=1
we see that F,,(r{")=¢.

The next lemma will be needed again in the next section. We remark that it only
uses SUpP,cps Yn(x) <1,

Lemma 2.4. For any & >0, there is a function Hs(r;) obeying

Hs(r)<Ce™™n (6)
for some C, D >0so that forallri=1

Gulr) = (Ao=)(1-8)ri ' Fa(r) ~ Hs(r1) (7)

with G, =(A; +r7' + E, —4)F,. (Note. We empbhasise that C, D are independent of #.)

Proof. Let b =8(1—-8)"". Then, since ri,<r, +rs,

Gn(fl)?AnJ (71+f2)71d>l/!ndx2314n(1'*'b)_lri_lJ oY, dx;

x2i=bry |x9,=bry

=A,(1-8)ri'F,(r))— Hs(ry)
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where

Hs(r)=Aori"! J @ (rz) dx,

[xa|=bry

which is easily seen to obey (6) since ¢ decreases exponentially.

Proof of theorem 2.1. Due to lemmas 2.2 and 2.3 it suffices to show that for some
R >0, sup, F,(r) =sup,<r F.(r) for n =N, N large. Choose r, such that F,(r,)=
sup, F,(r) and pick § and N so that (A,—1/N)(1-6)=1+4§, which is possible since
Ap>1. Suppose r, becomes arbitrarily large for n » c0; then by proposition 1.1 and
lemma 2.4

(AF)(rn) = Golrn) = (1/r)Fo(ra) 2 8F,(r)/r, —C e P™
with C, D given in (6). This together with lemma 2.3 implies
(AF)(ry)=r (686 = Cr, e P)>0.

But this is impossible if F, is maximised at r, and thus r, < R. Lemma 2.2 is therefore
applicable and theorem 2.1 follows.

3. Existence of an L? solution
In this section we will prove

Theorem 3.1. The solution ¢/(xq, x2) of theorem 2.1 obeys
(e, x| S Cn(1+r7 +73)™" (8)

for any m >0 and in particular, ¢ el?
We want first to reduce the theorem to the study of the function F of (2).

Lemma 3.2. 1f
Fir)<Ca(l+r)™m (9)
then (8) follows.

Proof. Since ¢ is bounded away from zero on r, <17, we see that if (9) holds and
r, <16, then

j W) A% <Chl (A +ri+r3) "
x'—x|=1

and so by subsolution estimates (Simon 1982), if r, <16 (or by symmetry if r; <16),
then (8) holds. In the region where r; >16 and r, > 16 we have that

Ay =iy

On the other hand, if ¢_=(@i+r3+1)"™ and ¢, =(ri +r3+1)", then (with r=
ri+r)V?

Ay =+ 1) W [dm(m + D)} + 1) = 12m],
A, =+ D)7 [dmm - Dr*r+ 1) +12m).
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Thus, in the region r; =16, r, =16, r =R,
Alcy_+eu.) <ilcy-+eys)

for all ¢, e >0 and with suitable R, (depending on m). Let R, be given with R; > R,.
By the foregoing considerations there is some ¢ >0 such that ¢ <c¢_ for ry; =16 or
ro=16 or r=R, Further, since ¢ is bounded ¢ <ey, for r=R;, with ¢=
sup z///(R% +1)". Hence ¢ <cy_+ey. on the boundary of the region Q=
{(x1,x2) € R6|r1 =16,r,=16, Ro<r<R,}. Using a standard comparison argument for
differential inequalities (see e.g. Simon 1975), we get ¢ <c¢_+ey, in ). As can be
seen from above, ¢ is independent of R, and £ >0 as R; > . Hence we recover (8)
for r=R,. If r <Ry, (8) is trivial.

To prove theorem 3.1 we shall further need the following lemmas.

Lemma 3.3. Let v(r)=0 obey
—v"+m(m+1)r <0

on [R, ), R>0. Then either v grows at least as fast as rmr1at infinity or decreases

m

at least as fastasr .

Proof. If v'v " '<—mr™" on [R, ), then obviously for some C>0, v<Cr™™, so it
suffices to show that if v'(ro) > —mrg v(ro) for some ro> R, then v grows at least like
r™*!. The functions

m

ule,r)y=r""+er”

with ¢ e[—r%"‘”, 00) are positive on [rg, o) and obey —u" +m(m +10r %u=0. Asc

runs through that interval, u'(ro)/u(ro) runs from +0o to —mrg ! so we can find such
a u with u'(ro)/u(ro) <v'(ro)/v(ro) and thus a multiple of u (call it &) with v'(ro) > i'(ro)
and i (ro) = v{ry). We claim that v(r)>i(r) for all r >ro, proving the desired result.
For if r; is the smallest r >r, where v(r) =1 (r), then

OZJ [ (=0"+m(m +1)r~20) —v(=d"+m(m + r-2@)] dr

= pl(vd’ —dv") = v (r) @' (r1) = v'(r)) + v (ro)(=d'(r0) + v'(r0)) > 0

which is a contradiction.

Lemma 3.4. Let g(r)=Cr e " and let v(r) =0 obey

—v"+mm+1)r s g(r)

+

on [R,., ), R,,>0. Then either v grows at least as fast as r™ at infinity or decays

at least as fast as r™ ™.

Proof. Define for r=R,,

= 1 m-¢-1J‘a0 —-m ~mJ.r m+1 )
n(r)—2m+1(r ’ x Tgx)dx +r Rmx g(x)dx]).

Then —n"+m(m + 1)r %y =g and since ]:mxm+l g(x)dx <oo, n(r)=dr™™ for some
0<d<o. Letd=v+dr ™ —n;thend =0and obeys —6"+m(m +1)d <0on[R,,, ).
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But by the foregoing lemma ¢ grows at least like r™*! or decays at least as fast as
r~ ™, and according to the definition of 4, v has the same properties.

Proof of theorem 3.1. Due to lemma 3.2 it suffices to verify inequality (9) by proposition
1.1 and lemma 2.4 we know that for r >1

AF -8 'F=-Ce™
and so, for r =R,,, where R,, >m{(m +1)/8,
AF-mm+1)r*F=-Ce™™.

The fact that F is spherically symmetric and bounded (since ¢ is bounded) together
with lemma 3.4 implies that F' decays at least as fast as ™, finishing the proof of
the theorem.

4. Remarks

(1) As explained in (Simon 1977), the fact that the ground state is L? at A,
immediately implies that for A< Ay, E(A)<E(Ay)+d(A—-Ay) with d>0 so that
E(A) cannot turn into an antibound state at A,. We agree with Reinhardt’s analysis
(Reinhardt 1977) that it probably turns into a resonance pair.

(2) Following the ‘Schrodinger inequality’ methods (Hoffmann-Ostenhof and
Hoffmann-Ostenhof 1977, Ahlrichs er al 1981), it can be shown that at A, the
one-particle density p obeys

— = 318 ’ !
Vo(r) _ Cald)(r+1)"* exp{—[4(Ao— 1)r]'}.
(3) The Coulomb nature of the potential was unimportant. What was critical was
that at the critical coupling the electron about to be unbound sees a potential which
is repulsive at infinity with a slower decay than r2,
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