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Abstract. We consider the two-electron Hamiltonian H = - A 1 - A 2 - r ~ '  - r T 1  +Ar;i at 
precisely that critical value of A where the ground state energy has just hit the continuum. 
For that A ,  it is proven that H has a square integrable eigenfunction at the bottom of 
the continuum. 

1. Introduction 

The class of Hamiltonians 

H ( A ) =  - A l - A 2 - r T 1  - r i l  +Ar;i 

on L2(R6, dxl dxz), XI, x 2  E R3, r l  = lxll, r 2  = 1x21, r 1 2  = lxl - X Z ~ ,  enters naturally in the 
study of the 1/Z expansion for two-electron ions. Since the work of Stillinger (1966) 
there has been particular interest in the critical value of A (call it A,)  (see e.g. 
Stillinger and Stillinger 1974) as follows. For any A > 0, H has continuous spectrum 
[-$, CO). At A =0, H has a ground state at energy E(0)  = -& and as A is increased, 
the ground state energy E(A)  increases until Ao,  E(Ao) = -$. For simplicity, we have 
chosen here -Al - A2 for the kinetic energy, which poses no problem, since by scaling 
2H is unitarily equivalent to the usual Hamiltonian -A1/2 - A2/2 - l / r l  - 1 / r 2  +A/r12 .  
It can be proven (see e.g. Thirring 1979, Leinfelder and Simon 1982) that A .  < 00, 

and since it is well known that the hydrogenic ion has a bound state, A .  > 1. Numerically 
(Stillinger 1966), A o -  1.1. 

Our main goal in this paper is to prove that at A = A o  there is a ground state, 
(1, > O,* E L2(R6) with H4 = -$$, i.e. there is a normalisable eigenfunction at threshold. 
Since short-range potentials in three dimensions do not produce normalisable groynd 
states at thresholds (see e.g. Klaus and Simon 1980), this phenomenon is due to the 
long-range repulsion of r;;. We mention that Klaus and Simon (1982) noted that for 
the threedimensional model problem, H = -A + V + ar-' where V is spherically 

/I Supported by 'Fonds zur Forderung der wissenschaftlichen Forschung in Osterreich', Project no. 4240. 
4 Research partially supported by USNSF under Grant MCS-81-20833. 

@ 1983 The Institute of Physics 1125 



1126 MHofmann-Ostenhof, T Hofmann-Ostenhof and B Simon 

symmetric, negative, short range with inf u ( - A +  V )  < 0, one has a threshold eigenvec- 
tor at the critical coupling. For this reason, our result is to be expected. 

In § 2, we prove that H$ = -$$ has a bounded solution and in S 3 that the solution 
is L2.  In 0 4 we discuss some further aspects. Critical to our considerations are various 
subharmonic comparison arguments as found e.g. in (Simon 1975, Hoffmann-Ostenhof 
1980) and other results on properties of eigenfunctions as reviewed by Simon (1982). 

One common theme of the analysis in 00 2 and 3 will be to take a bounded solution 
4 of H ( A ) G  = E ( A ) 4  for some A with 4(r l ,  r2 ,  r 1 2 )  = t,h(r2, r l ,  r 1 2 )  and form 

F(rd = 4 ( r z ) W 1 ,  x2) dx2 

where 4 is the ground state of h = -Az - rS' .  We will need: 

Then under the above assumptions F is a C 2  function away from r l  = 0 obeying 

( - A l - r T 1  - E - a ) F = - G .  (4) 

Proof. Since JI is bounded by assumption and 4 decays, both F and G are bounded. 
Indeed, since 9 is uniformly Lipschitz by estimates of Kat0 (1957), G is also Lipschitz. 
Thus, if we prove (4) in the distributional sense, standard elliptic estimates (see e.g. 
Gilbarg and Trudinger 1977, Simon 1982) imply that F is C 2  and (4) holds in the 
classical sense in (0 ,  00). In the distributional sense 

[ ( - A l - r T 1  - E - $ ) F ] ( r l ) = I 4 i r ~ ) [ ( H - E ) - ( h  + $ ) - A T ~ z ] ~ ( x ~ , x z ) ~ x z = - G  ( 5 )  

if we integrate by parts. 

2. Existence of a bounded solution 

In this section we will prove 

Theorem 2.1. There exists a positive bounded function 4, symmetric in xl ,  x2, which 
is a distributional solution of H ( A &  = -a$. 1 

We begin by noting that, by definition of Ao, we can find E,,? -$  and 4, > 0, 
4,, = & ( r l ,  r2 ,  r12) = 4,,(r2, r l ,  r 1 2 )  so that H(A, , )$ ,  =E,& with A,, = A o -  l / n .  We will 
normalise 4" by requiring 

sup = 1. 
X.R6 

By the compactness of the unit ball in L" in the weak-* topology (see e.g. Reed and 
Simon 1972, theorem IV.211, we can by passing to a subsequence find CC, in L" so that 
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$ is easily seen to be a distributional solution of H(Ao)$ = -&+. The key fact is to 
show that II, is not identically zero, i.e. that $,, does not run away to CO. Once we 
show that $ is not identically zero, it is somewhere non-negative, and then by Harnack's 
inequality (see e.g. Aizenman and Simon 1982) it is everywhere positive. 

Lemma 2.2. Let F,(rl)  = j4(r2)4, ,(x1, x 2 )  dx2 as in ( 2 ) .  Suppose that for some R < CO 

and E >0,  SUP,,^^ F,,(rl) 3 E for all large n ; then 4 is not identically zero. 

Proof. By Harnack's inequality there exists a constant C, so that for all n, 4 , ( x l ,  .r2) 3 
C$,(x i, x 2 )  if / x l  - x i  1 s 1. Thus, if F,,(r{ ) 3 E ,  we have that F,,(rl)  3 CE i f  Ix; -x i1  s 1; 
so if S U P ~ ~ ~ R  F, ( r l )  3 E ,  we have that 

Thus, since 4 E L ' ,  

Lemma 2.3. For some c > 0, sup,F,(r) 3~ for all n.  

Proof. Let K be the region where r l > 8 ,  r2>8.  Then, on K,  -A$,, = 
(E,  -A,rTi fr; '  +rZ1)$,,  G 0 for n large. So $,, is subharmonic on K and thus, since 
$, + 0 at infinity (Simon 1982), we know that 4, takes its maximum value (which is 
1 )  on the complement of K. Since $,, is symmetric in X I ,  x 2  we can find x ? )  and x p )  
with Ix:"' ls8,  so that I , $ , , ( x p ) , x Y ) ) =  1 .  By Harnack's inequality, for somi: E ~ ,  

I ,$ , , (xy) ,  x 2 )  3 E O  if r2 s 1 .  (Note that E O  does not depend on n.) Thus, with 

we see that F,,(rY))  3 E .  

The next lemma will be needed again in the next section. We remark that it only 
uses s ~ p , , ~ 6 4 , , ( x ) ~  1 .  

Lemma 2.4. For any S >O, there is a function H6(r l )  obeying 

H6(r l )  s c ( 6 )  

for some C, D > 0 so that for all r l 3  1 

G n ( r 1 ) 3 ( A o - & l  -8 ) rY1Fn(rd -H6(rd  (7) 

with G ,  = ( A l  +rY1 +E, -4)F,. (Note. We emphasise that C, D are independent of n.)  

Proof. Let b = S ( l - S ) - ' .  Then, since r 1 2 s r l + r 2 ,  

G,(rl) ZA, ,  ( r l  + r z ) F 1 4 $ , , d x Z ~ A , ( 1  + h ) - ' r i l  d s 4 n  ~ X Z  
x2 c_ b r l  x 2  - h r j  

~ A , ( I  - 6 ) r I  IF,,  ( r l )  - H , ( r l )  
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where 

&(rd = Aor;' I 4 (r2) dx2 
xzl s br l  

which is easily seen to obey (6) since 4 decreases exponzntially. 

Proof of theorem 2.1. Due to lemmas 2.2 and 2.3 it suffices to show that for some 
R >0, sup,F,(r) =suprsRF,(r)  for n s N ,  N large. Choose r, such that F,(r,) = 
sup,F,,(r) and pick S and N so that (A, - l / N ) ( l - S )  2 1 +S, which is possible since 
A o >  1. Suppose r, becomes arbitrarily large for n -P CO; then by proposition 1.1 and 
lemma 2.4 

(AFn)(rn) 2Gn(rn) - - (1 / r f l )Ff l ( r f l )  sSFn(rn)/rn -C 
with C, D given in (6). This together with lemma 2.3 implies 

(AF,)(r,) 3 r, ( E S  - Cr, > 0.  -1 

But this is impossible if F, is maximised at r, and thus r, G R. Lemma 2.2 is therefore 
applicable and theorem 2.1 follows. 

3. Existence of an L2 solution 

In this section we will prove 

Theorem 3.1. The solution $(xl,  x2) of theorem 2.1 obeys 

I * ( x 1 , x 2 ) / ~ c m ( l + r :  +r;)-" 

for any m > 0 and in particular, 4 E L2.  

We want first to reduce the theorem to the study of the function F of (2). 

Lemma 3.2. If 

F(r l )sC, , , ( l  tr:)-" 

then (8) follows. 
(9)  

Proof. Since 4 is bounded away from zero on r2< 17, we see that if (9) holds and 
r2 < 16, then I $ ( x ' ) d 6 x k C ~ ' ( 1 + r : + r : ) - "  

x ' - x l = 1  

and so by subsolution estimates (Simon 1982), if r2 < 16 (or by symmetry if rl < 16), 
then (8) holds. In the region where rl > 16 and r2 > 16 we have that 

A $ >  &. 
On the other hand, if $- = (r: +r ;  + l)-" and $+ = ( r :  +r;  + l )m,  then (with r = 
(r:+r2) 2 1/2 

A$- = ( r2+  1)-'$-[4m(m + l ) r2(r  + l)-' - 12m], 

A 4 +  = ( r2+  1)-'$+[4m(m - l ) r2(r  + l ) - '+  12ml. 
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Thus, in the region r l  3 16, r2 2 16, r a Ro, 

A(c9- + E $ + )  S i(c$- + E $ + )  

for all c, E > O  and with suitable Ro (depending on m ) .  Let R1 be given with R I  >Ro. 
By the foregoing considerations there is some c > O  such that $ S C $ -  for r l  = 16 or 
r2= 16 or r=Ro. Further, since CL is bounded $ S E $ +  for r = R 1  with e 3 
sup$/(R:+l)“ .  Hence $ S C + - + E $ +  on the boundary of the region a= 
{(xl, x2) E R61rl 3 16, r2 3 16, Ro S r S RI}.  Using a standard comparison argument for 
differential inequalities (see e.g. Simon 1975), we get 9 G C $ _ + S $ +  in Cl. As can be 
seen from above, c is independent of R 1  and E + 0 as R1 + CO. Hence we recover (8) 
for r3Ro. If r < Ro, ( 8 )  is trivial. 

To prove theorem 3.1 we shall further need the following lemmas. 

Lemma 3.3. Let u ( r )  3 0 obey 

-u“+m(m +I)r -2v  S O  

on [R, CO) ,  R>O. Then either u grows at least as fast as rmc l  at infinity or decreases 
at least as fast as r-,. 

Proof. If u l u - l  s -mr-’ on [R, CO), then obviously for some C>O, v sCrYm, so it 
suffices to show that if u’(ro) > -mr;’v(ro) for some ro > R, then u grows at least like 
rm+l .  The functions 

~ ( c ,  r )=rm+l+cr-m 

with c E [-rim+’, CO) are positive on [ro, CO) and obey -U”+ m ( m  + l)r-’u = 0. As c 
runs through that interval, u’(ro)/u(ro) runs from +CO to -mi*, so we can find such 
a U with u’(ro)/u ( r o )  s v’(ro)/v(ro) and thus a multiple of U (call it U ’ )  with v’(ro) > U’’(r0) 

and C ( r O )  =u(ro) .  We claim that Z t ( r ) > C ( r )  for all r >ro ,  proving the desired result. 
For if r l  is the smallest r > ro where v ( r )  = C ( r ) ,  then 

o 2 Jr, [C (- u ’’ + m ( m  + 1 ) r  -2v - v (-U’” + m (m + 1)r -’U’)] dr 
‘1 

= F;l(v~7’-Cu’) = u ( r l ) ( C ’ ( r l ) - v ’ ( r l ) ) + u ( r o ) ( - ~ ’ ( r o ) + v ’ ( r o ) ) ~ O  

which is a contradiction. 

Lemma 3.4. Let g ( r )  = Cr e-Dr and let v ( r )  2 0  obey 

-U”+ m (m + l )r-2v s g ( r )  

on [R,, CO) ,  Rm>O. Then either U grows at least as fast as rm+’ at infinity or decays 
at least as fast as r-m. 

Proof. Define for r 3 R, 
m 1 

T ( r ) = - - - - ( r m + ’  2 m + 1  x-“g(x) dx + r - ,  JRm X m + ’ g ( X )  dx). 

Then - q ” + m ( m + l ) r - 2 q  = g  and since J r m x m c 1 g ( x ) d x < ~ ,  q ( r ) s d F m  for some 
0 < d  <CO. Let v’=v +dr-” -q ; then v’ 2 0  and obeys -v’”+m(m + 1); s 0 on [R,, CO).  
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But by the foregoing lemma 3 grows at least like r m t *  or decays at least as fast as 
r-,, and according to the definition of 3, U has the same properties. 

Proof of theorem 3.1. Due to lemma 3.2 it suffices to verify inequality (9) by proposition 
1.1 and lemma 2.4 we know that for r > 1 

A F - & - ' F z - C  e-D' 

and so, for r 3 R,, where R, > m ( m  + l)/& 

AF - m ( m  + l)r-*F z= -C e-D'. 

The fact that F is spherically symmetric and bounded (since 4 is bounded) together 
with lemma 3.4 implies that F decays at least as fast as r-,, finishing the proof of 
the theorem. 

4. Remarks 

(1) As explained in (Simon 1977), the fact that the ground state is L2 at A. 
immediately implies that for A sAO, E(A)sEE(Ao)+d(A -Ao)  with d>O so that 
E(A)  cannot turn into an antibound state at Ao. We agree with Reinhardt's analysis 
(Reinhardt 1977) that it probably turns into a resonance pair. 

(2) Following the 'Schrodinger inequality' methods (Hoffmann-Ostenhof and 
Hoffmann-Ostenhof 1977, Ahlrichs et al 1981), it can be shown that at Ao, the 
one-particle density p obeys 

Jp(r) C,(S)(r -t l)-a*8 exp{ - [4(Ao - l)r]'}. 
2 

(3) The Coulomb nature of the potential was unimportant. What was critical was 
that at the critical coupling the electron about to be unbound sees a potential which 
is repulsive at infinity with a slower decay than r -2 .  
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