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Semiclassical analysis of low lying 
eigenvalues, 11. Tunneling* 

Abstract 

We discuss the leading asymptotics of eigenvalue splittings of - & A  + X2V 
in the limit as X + oo, and where V is a non-negative potential with several 
zeros. For example, if Eo(A), El(X) are the two lowest eigenvalues in .a situation 
where V has precisely two zeros, a and b, related by a symmetry, then 
lim,,, - (A)-'ln[E,(X) - Eo(h)] is given as the distance from a to b in a 
certain Riemann metric. 

1. Introduction 

From the earliest days of quantum mechanics, it has been clear that a basic 
difference from classical mechanics concerns the ability of particles to tunnel 
between two regions separated by a classically forbidden region. Quantitative 
estimates of this phenomenon first became important in work on lifetimes for 
cudecays and for widths of Stark lines. Mathematical analysis of these ideas has 
always been made difficult by the fact that a precise definition of lifetime is not 
easy, and indeed, there is no very good reconciliation of the fact that pure 
exponential decay rates are observed to incredible accuracy in nuclear decays 
while mathematically pure exponential decay is forbidden in systems whose 
energy is bounded below. The modem theory of complex scaling [4], [9], [44] 
(see [40], [41] for reviews) has provided a precise meaning to lifetimes which can 
then be mathematically analyzed, although the fact that this definition is not a 
time dependent one has led to some controversy about whether the results of this 
analysis are really mathematical justifications of tunneling calculations. Not all 
complex scaling results concern conventional tunneling, but Herbst's extension of 
complex scaling to Stark problems [32] does allow one to analyze some conven- 
tional tunneling situations. 

*Research partially supported by USNSF grant MCS-81-20833 
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Another situation where tunneling is relevant, and which is in many ways 
cleaner than lifetime calculations, concerns multiwell problems. To describe this 
class of problems, consider the very simplest example: 

D(P) has purely discrete spectrum for P > 0. Because of the symmetry of the 
potential 

under the map x * p-l - x of reflection in pP1/2, we have two identical wells 
about x = 0 and x = p-'. Classically, if /3 is small and we look at the behavior 
of the system for energies near 1, the two wells are completely decoupled. In the 
quantum systems, the two wells are coupled by tunneling and the degeneracy of 
the lowest eigenvalues in each well is removed by this coupling. The size of the 
gap, for P large, is exponentially small, and the various constants in the 
asymptotics are determined by tunneling considerations. Since the splitting of 
eigenvalues is such a simple object, it is susceptible to precise analysis. Moreover, 
there is a direct link with time dependent phenomena: If Go,Ql are the two 
lowest eigenvectors suitably normalized, then Q0 + 52, fresp 52, - Q1) are 
concentrated primarily in the well at x = 0 (resp at x = B-'). Thus, since 

we see that n/(E, - E,) is precisely the time needed to evolve from a state 
concentrated primarily in one well into one primarily in the other. 

Our main goal in this paper will be the determination of the leading 
asymptotics of quantities like El - E, as P -, 0, especially in muItidimensional 
analogs of (1.1). Rigorous asymptotics of tunneling parameters have a relatively 
brief history. The pioneering work of Titchmarsh [53] on decay, and Kac- 
Thompson [34] on double wells, established primarily exponentially small upper 
bounds without attention to precise constants. With two exceptions to be noted 
below, the more recent results on precise rigorous asymptotics is restricted to one 
dimensional problems, often relying on ODE techniques. It was for eigenvalue 
splitting probIems that these results were first obtained for successively more 
complex problems by Harrell in a series of papers [28], [29], [30]. More recently, 
Combes, Duclos and Seiler [17] and Jona-Lasinio, Martinelli and Scoppola [33] 
have obtained interesting further results in this direction, and Davies [19], [20], 
[21], [22] has considered an abstract framework for some of the related phenom- 
ena. For decay problems, the first results were obtained by Harrell-Simon [31] 
(who considered the Stark problem for hydrogen, which, while 3-dimensional, 
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was studied by separating in a suitable coordinate system to essentially one 
dimensional systems), with recent results by Ashbaugh-Harrell [7], Ashbaugh-
Sundberg [8] and Corngold et al. [18]. It happens that large order asymptotics of 
divergent perturbation series are related to tunneling (see Bender-Wu [lo] or the 
review by Simon [48]), and for the so-called anharmonic oscillator series, leading 
asymptotics were obtained by Harrell-Simon [31] using tunneling ideas and ODE 
methods. For our purposes here, a more useful approach to this problem uses 
path integrals and was developed by Simon [50], Spencer [52] and Breen [ l l ]  in 
successively more detail. In principle, these works using path integral methods 
are not restricted to one dimension. 

I know of two previous works involving multidimensional tunneling. There 
is one paper by Harrell [30] on double wells, but his results are "essentially one 
dimensional" in that in our language below, his problems are chosen so that the 
minimizing geodesic is a straight line. As noted above, the path integral approach 
to large order is capable of working in higher dimensions and, indeed, Breen [12] 
has a result in infinitely many variables (a spatially cutoff quantum field theory). 

Our technique in this paper has some elements in common with that of 
Breen [12]. We use path integrals, specifically the method of large deviations. It 
is fortunate that just before I began thinking about these problems, I heard some 
beautiful lectures by Varadhan [%I on large deviations. 

Let us describe a simple situation we want to analyze here. Our analysis of 
this problem will appear in Sections 2-4, extensions in Sections 5-7; a sketch of 
the arguments appeared in [47]. 

Let V be a function on R" obeying (a fourth hypothesis appears later): 
(1) V is C" and non-negative; 
(2) V is strictly positive at oo; i.e., for some R, E > 0, V(X)> E if 1 X I  2 R; 
(3) V vanishes at exactly two points a ,  b and d2V/ax, dxJ(x) is a non- 

singular matrix for x = a ,  b. 
As we will see later, the smoothness of V and the nondegeneracy of the 

minima are not really important. Positivity near oo is critical as well as the fact 
that zeros can be divided into two or more disjoint sets. We are interested in 
studying the operator 

for X large. Parenthetically, we note that while (1.1) does not have this form, it is 
related to a suitable H( A) where V(x) = x2 - 2x3 + x4 and A = pF2.  For if U 
is the unitary operator with 
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then 

We are interested in very fine asymptotics of eigenvalue differences for this 
problem. Crude asymptotics on individual eigenvalues will be important. These 
latter asymptotic results are well-known folk theorems in the physics literature: 
Surprisingly, only recently have rigorous proofs been written down. See [46] for 
the results we state below; we note that these theorems can also be proved using 
the methods of Davies [23]; we should also mention the work of Combes [15], 
Combes et al. [16] and Reed-Simon [40] on the one dimensional case. 

Let { wia)}r=l and { ~ i ~ ) } r = ~be positive numbers so that i[w!#)l2 are the 
eigenvalues of $( d2V/8xi dx j)(#) for # = a ,  b. Consider the union of the two 
"sets with multiplicities," C;_,(n, + $)d#)where ni = 0,1,2,. :, and let eo I 
el I e, I . be a listing of these sets labeled in increasing order. Then: 

THEOREM1.1(proven in [46]). Let H( A) be given by (1.2) where V obeys 
(1)-(3). Then for each n, when A is sufficiently large, H( A) has a t  least n + 1 
eigenvalues, Eo(A), . . . ,E,(A), . . . and 

lim Ej(A)/A = ej. 
j-co 

Intuitively, this result comes from the following: When A is large for 
eigenvalues not to be 0(A2), the corresponding eigenvectors must live very near 
either a or b. Near a ,  H(A) looks like a sum of harmonic oscillators of 
frequencies Awia) and similarly at b. The "union7' of the two sets of oscillators 
has eigenvalue precisely Aej. 

In [46], one finds asymptotic series to all orders (in A - l  and A-'I2 
respectively) for the E j  and for the corresponding eigenvectors Qj(A). One 
consequence of these series is the following: Let j,, j, be functions supported in 
very small neighborhoods of a and b. Then either there is a rapid eigenvalue 
degeneracy or the eigenfunctions live in a single well in the following sense (Cor. 
5.4 of [46]): 

THEOREM1.2. Let H( A) be given by (1.2) where V obeys (1)-(3), and 
suppose j is such that Ej(A) is nondegenerate for all large A (although perhaps 
not a t  A = co, i.e., ej may be degenerate). Then one of the following holds: 

(a) 1 1  jaQj(A)ll = O(APN) for all Nor 
(b) 1 1  jbQj(A)II = O(APN) for all Nor 
(c) There is another eigenvalue Er(A) with IEr(A) - E(A)I = O(APN) for 

all N.  
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One of our goals here will be to prove the following (strengthening of Thm. 
1.2) in Sections 2,3: 

THEOREM1.3. There is a C > 0 so that under the hypotheses of Theorem 
1.2, one of the following holds: 

1
(a) G[- Xlnll j a~ j (h ) l l ]  > c or 

(b) G[- ~ l n l l j a ~ j ( ~ ) I I ]> C or 
1

(c) There is another eigenvalue E' with lim -- -In\ Ef(X) - E(X) I > C.h 

This result, since no value of C is involved, will not be very hard to prove. 
More interesting and subtle are results which evaluate the constant in I E' - E 1 .  
In the rest of this section, we discuss the ground state (lowest e i g e d u e )  where 
we will get upper and lower bounds on the difference and determine the exact 
asymptotics; in Section 6, we discuss excited states. We will suppose that the 
ground state has a piece in both wells so that the second eigenvalue is exponen- 
tially close to the lowest, i.e., we assume: 

(4) (Iljas20(X)ll Iljbs20(A)ll) > o. 
X t m  

Actually, if the product is bounded from below by A P k  for any k, that 
would suffice for our considerations. There is one case where (4) always holds: 
For suppose that R is a Euclidean map from Rv to itself and let (Uq)(x) = q(Rx). 
Suppose that V(Rx) = V(x) for some R with Ra = b. Then UH(X)UP1 = H(X) 
and so (UQ,) = Go which implies that lim(( jaQo ( 1  = lim(1 jbO0l( = 4.In this case 
with symmetry, (4) is thus automatic. In case R is a reflection such as occurs in 
the double well, (1.1), the geodesic geometry below is simplified; e.g., the 
geodesic bisector is a plane. But if R is a rotation, e.g., V(x, y) = (x -
(x + 112+ (xy - R(x, y) = ( - x, - y), then the geodesic bisector is not a 
hyperplane. 

To state our main result for this basic situation we need to introduce a 
metric discussed initially by Agmon [l], [2] in a related context (see below); it is 
very close to a metric used by Jacobi in his studies of classical mechanics. 

Definition. Given a function V(x) obeying ( l a ) ,  we define the Agmon 
metric, p, by 

the geodesic distance in the Riemann metric 2V(x) dx2 conformal to the Euclidean 
metric. 
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When the Agmon metric appears in the proof in Section 3, it will not be in 
the form (1.4) but in an equivalent form found by Carmona-Simon [13]: 

PROPOSITION1.4 ([13]). Let p be given by (1.4). Then 

where we minimize over T also. 

Sketch of proof. Let ,5 denote the right side of (1.5). Since ab r i ( a 2  + b2), 
we can take a = I/-; b = IL(s)l and see that p I ,5 (we use the fact 
that arc length is invariant under parameterization). Conversely, given any trial 
path y for p, we reparametrize it so that = y'2Vo) (see below) and use 
this new path as a trial function for ,5 and so that 5 r p. 

At points where V vanishes, one may not be able to reparametrize y so that 
the above holds and still arrange that T be finite. Thus, before reparametrizing, 
we shift the path with a small change of arc length so that zeros of V are 
avoided. If a zero of V is an endpoint, we neglect to reparametrize in a very 
small neighborhood of that end point. These considerations of zeros have an 
important aspect: The minimum problem (1.4) always has a minimizing path. If 
x and y are zeros of V, then (1.5) may not possess a minimizing path if T < oo is 
required. If both endpoints are zeros, there is a path parameterized by ( - oo, oo) 
so that lirn,, - ,y(s) = x, lirn,, ,y(s) = y. This minimizing path for (1.5) with 
x = a, y = b (run from - oo to + oo) is called an instanton; we will discuss 
this further below. 

We remark that the quantity (1.5) is just the classical mechanical action, for 
a particle moving in a potential - V (note change of sign). The above remarks 
about infinite times are a reflection of the well known fact that a particle rolling 
uphill to stop at an unstable equilibrium takes infinitely long to get there. 

Our main result is 

THEOREM1.5. Let V be a function on R" obeying (1)-(4). Let H(A) 
= - 4 A  + A2V(x) and let E,(A), E,(A) be the two lowest eigenvalues of H(A). 
Then 

lim - A-'ln[~,(X) - E,(A)] = p(a,  b )  
A - + a 2  

where p(a, b) is the distance from a to b in the Agmon metric. 

If v = 1, the Agmon geodesic is a straight line from a to b, so that 
p(a, b) = l , b \ i m d x ,  the "WKB" answer. (1.6) is then (at least for the 
Hamiltonian (1.1) and related models) a result of Harrell [28], [29]. We em-
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phasize that Harrell obtains more than just the leading behavior; his methods are 
mainly ODE methods and restricted to one dimension. 

As already mentioned, the function minimizing (1.5) for x = a ,  y = b (and 
parameterized to run from - CQ to w) is called an instanton, p(a, b) is its 
"action" and our main theorem says that "tunneIing is determined by the action 
of the instanton." This fact is a standard piece of wisdom from the physics 
literature (see e.g. [14], [25], [39j); our result is a rigorous justification of these 
ideas from the physical literature. 

Agmon introduced the "Agmon metric" in his study of the decay of L2 
solutions of ( - A + V)u = 0 at infinity (for V 's relevant to us here, this metric 
actually appears first in a paper of Lithner [36]). Its appearance here suggests 
that the asyrnptotics of E ,  - E, will be connected to exponential decay of 
eigenfunctions of H(A), an idea due to Harrell[28], [30]. In fact, in Section 2 we 
reduce the proofs of Theorems 1.3and 1.5 to results on decay of eige*functions. 
We then give two independent proofs of this decay: In Section 3, we use path 
integral techniques which was our original proof. In Section 4, we pander to 
those who dislike path integrals and provide a PDE proof patterned after 
Agmon's proofs for the large distance problem. 

Further results including some on eigenvalue pairs other than the lowest 
occur in Sections 5-7. 

It is a pleasure to thank S. Agmon, E. Davies, C. Fefferman, I. Sigal and S. 
Varadhan for useful discussions; H. Dym and I. Sigal for the hospitality of the 
Weizmann Institute, where part of this work was done. 

2. Reduction to decay of eigenfunctions 

In this section, we reduce the proofs of our two new results, Theorems 1.3 
(for the ground state) and 1.5 to results on the decay of the ground state of H(h), 
i.e., to the normalized-L2 vector Q,(A; x) obeying 

(2.1) H(X)Q,(A; x )  = E,(X)Q,(X; x). 

The decay results are proved by two distinct methods in the next two sections. 
Theorem 1.5 requires a rather refined decay estimate; Theorem 1.3 only needs 
the following rather crude estimate: 

THEOREM2.1. Let hypotheses (I), (2), (3) hold. Then: 
(a) For any E > 0, there is a C, > 0 so that for all sufficiently large A, if 

Jx- a1 > e and Ix - bl > E, then 
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(b) For s m  R, and D, if 1x1 > R, and A is sufficiently large, then 

(2.3) lQo(A;x)( 5 e-D"xI. 

We prove this in the next section. We also use the following basic equality 
whose relevance to this type of problem was emphasized by Kac-Thompson [34]: 

PROPOSITION2.2. For any C1 unifmly bounded finction f: 

Proof: We note that 

[fY[ f ,  (H(A) - ~ o ( A ) ) l l= [ f ,  [ f ,  - + A ] ]  

and take expectations of this equality in the vector Q,. 
(2.4) says that H - E, is a "Dirichlet form" and this has been used in a 

variety of aspects of mathematical quantum mechanics; see e.g. Gross [27], Rosen 
[42], Albeverio et al. [5], [6] or Glimm-Jaffe [26]. We give the proof of Theorem 
1.3 in the ground state case here, and the general proof in Section 6. 

Proof of Theorem 1.3 (for E = E,) (given Thm. 2.1). Pick a function 
g E Cm SO that (g (I 1and g is 1(resp. - 1) in a neighborhood of a (resp. b) 
and so that v g  is uniformly bounded. Let (g )  ,= /gQ; dx and let f = g - (g)  A 

(A dependent). Since 

(fl0,QO) = 0 

by construction, we have, by (2.4), that 

(2.5a) El@] - E 0 0 )  2 i((vf)Qo,(vf)Qo)/(fsto,fsto). 
Moreover, by Theorem 2.1, it is easy to see that 

for some C and A large. There are now two cases to consider: 

1
Case 1. h- -ln(fQ,, fl,) I C. In this case, (2.5a) and (2.5b) im-A 

1
mediately imply that -lim - -In 1 E ,  - E, ( 2 C.A 

Case 2. For some sequence A, + oo, 

(2-6) (fst,, f ~ , )5 e-6"". 
Suppose that for infinitely many A,, ( g )  A 2 0. Then Ifl 2 1near b and so (2.6) 
implies 1 1  jb00/(25 e-kc", i.e., lim-- (l /A)ln((jbQo((> O. ~f (g ) ,  I 0, we get 
information on I(j,&, ( 1  instead. 
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To get the finer result, Theorem 1.5, we need more information on QO. In 
the next section, we will prove 

THEOREM2.3. (a) If hypotheses (1)-(3) hold, then for any x 

the limit being u n i f m  on compact subsets of x. 
(b) 	If hypotheses (1)-(4) hold, then for any x, 


1

lim-lnlQo(A, x)l 2 - min(p(x, a ) ,  p(x, b ) ) .  -A 

We will prove Theorem 1.5 by obtaining upper and lower bounds on 
El - Eo. 

Proof of Theorem 1.5(upper bound) (given Thms. 2.1 and 2.3). Let 

4 x 1  = [ p(x, a )  - p(x, b) l /p(a ,  b) 

and given 6, let d,(x) be a smooth function with ( d  - d,l I6, obtained for 
example by convolutions of d .  Pick a > 0 and let h be a Cm function on 
( - GO,GO)which is - 1on ( - G O ,- a ) and 1on (a ,  GO). Let g(x) = H(d,(x)). 
Thus g is a smooth function so that ~g is supported in a small neighborhood of 
the geodesic bisector of a ,  b, i.e., in a small neighborhood of {x(d(x)  = 0) = 

{ xl p(x, a )  = p(x, b)) - B. By taking 6, a small, we can arrange that the 
neighborhood is an arbitrarily small neighborhood. In particular, since 

min{min(p(x, a ) ,  p(x, b))lx E B )  = +p(a ,  b )  

we can, given E, find a ,  6 so that 

min{min(p(x, a ) ,  p(x, b))lx E S U P P V ~ )2 i p ( a ,  b )  - E. 

As in the last proof, let f = g - (gx) .  Then 

El(A) - EO(A) 5 i ( ( v f ) Q o ,  (vf)Qo)/(fQo, fQ0) .  

As in that proof, if lim(l/A) ln(fQo, fQO) < 0, either 1 1  jaQO1l or 1 1  jbQOll becomes 
small, so that hypothesis (4) implies 

Moreover, by the bound (2.3) (to control large 1x1) and Theorem 2.3, we have 
that 
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Since E is arbitrary, we find that 

1lim -ln(E,(A) - E,(A)( I - p(a,  b )  
X+w h 

as required. 

For the lower bound, we let Q, be the second lowest eigenfunction 
normalized so that Q,(a) > 0 and gh(x) = Ql(x)/QO(x).As a preliminary, we 
need to know that for h large, there is C so that gh(x)2 C for x very near a 
and gh(x) I - C very near b. To prove that, we need: 

LEMMA2.4. Suppose that W,(x) -+ W,(x) as A + oo where the con-
vergence is uniform on compacts for W,, and all its derivatives. Suppose 
( - g A  + WX)cph= Ehcph, ( - 8 A  + W,)(p, = Em% (in diferential equation 
sense; cpw may not be globally L ~ ) ,E,, + Em, and cp, + qw in Lyoc. Then 
cp, + cpw locally uniformly. 

Proof: Let + E Cw, 11 E CF, both real valued. Then 

so that 

This equality then shows that if +, A+ E Lyoc, so is V+ and if +, A+ -+ 0 in 
Lyoc,then V+ + 0 in Ly,,,. By hypotheses on W, Acp,, + Acp, in LyOcso that 
v ( q h  - %) + 0 in Lyoc.By an inductive argument using the derivatives of the 
eigenfunction equation, one sees that DavA+ Dacp, in Lyocand so by Sobolev 
estimates in LC,. 

LEMMA2.5. Under hypotheses (1)-(4), there exists a C > 0 and A, so 
that for h > A,, and lx - a (  5 A - 4 ,  gA(x)> C and for (x- b (  I A - 4 ,  
g,(x) < - c. 

Proof: We require some of the machinery of [46] on the form of $2, and Q, 
as A -+ oo. Let {,(A, x), {,(A, x) be the normalized ground states for the 
Hamiltonians obtained from H(h) by replacing V by the quadratic Taylor 
approximation about a and b; so 

[,(A, X )  = x"/~K,(A!(x- a ) )  

for a suitable Gaussian K ,  and a similar formula for lb. 
The results of [46] say that if P, is the projection onto the span of laand lb ,  

then ( ( (1- P,)Qj((+ 0 for j = 0 , l .  Thus, there exist positive a(h), P(h) with 
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a2+ P2 = 1so that 

IlQ, - a (h ) l ,  - P(h)lhll2 -) 0-

Since Q, is orthogonal to Q,, we have 

IIQl - P(h)la + a(h)lb112 -) o-
Hypothesis (4) implies that a(h)P(h) is bounded below as h + m, so that we 
can obtain upper and lower bounds on a ,  P. Let 

q~,(x)= h-v/2a(h)-1Q,(h-k(~+ a ) ) ,  

@,(x) = h - v / 2 ~ ( h ) - 1 Q l ( h ~ ( x+ a ) ) .  

Then both q ~ ,  and @, approach K, in Lye, as h + oo and they solve suitable 
Schrodinger equations for which we can use the last lemma; so q ~ ,+ K, 

uniformly on compacts and so Ig,(x) - a(h)/P(h) ( + 0 uniformly on 
{XIIx - a \  I A-1/2) and similarly Ig,(x) + a(h)/P(h)J + 0 uniformly on 
{ x 1 I x - b 1 I h ). Since a,  p are uniformly bounded away from 0 and co, 
the desired result holds. 

We are now able to complete the proof of Theorem 1.5: 

Proof of Theorem 1.5 (lower bound) (given Thm. 2.3). Let y(t)  be the 
geodesic from a and b. Then, by definition of p: 

(and occurs at the point where y intersects the geodesic bisector of a ,  b). In 
particular, for any E ,  we can find 6 small and a smooth non-intersecting curve 7 
from a to b so that 

max{min(p(x, a ) ,  p(x, b))ldist(x,7 )  5 6 )  5 kp(a, b) + E 

and so, by Theorem 2.3, we can be sure that for all h large we have 

(2.8) 1 ~ , ( ~ ) \ 22 e - ~ [ ~ ( a , b ) + 3 ~ ~  

for all x E T, where 

T, = {x(dist(x,7 )  5 6 ) .  

By shrinking T, slightly if necessary, we can find smooth coordinates y = (y,, y ,) 
on a'neighborhood of T,, so that T, = {yl (y.1 5 11, y c { y ( y L =0) and 
a = (0, O), b = (1,O). Since these coordinates are smooth and y runs from a to 
b, we can find C so that for A large, 
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Let T(') = { y 1 1 y 1 I CA- 'I2). Then, by (2.4) and the definition of g,, 

Now for A large, we can use the lower bound (2.8) on QO, and change 
coordinates from x to y, bounding a Jacobian from below by a constant J. 
Moreover, we can bound vg,  E ag,/ax by dg,/d y since I dg,/d y 1 5 
I (  ax/ay 1 1  ( ag,/axl and ( I  ax/ayll-' is bounded by a constant H. The result is 

Next, we note that 

by the Schwarz inequality. By Lemma 2.5, the left side of (2.11) is bounded from 
below by ( 4 Q 2  for a suitable constant, so that (2.10) yields 

lE,(A) - Eo(A)(2 (const)~-("~)/~e-"(~(",b)+3'); 

so lim - (l/A)lnlEl - EoI 2 - (p(a,  b) + 3 ~ )yielding the required lower 
bound. 

If one looks at our proofs of the upper and lower bounds, one sees that the 
right side of (2.9) is dominated by the contribution of the integral to a very small 
neighborhood of the point where the geodesic crosses the geodesic bisector of 
( a ,  b). Presumably, higher order asymptotics on El  - Eo will require assump-
tions on the number of geodesics from a to b and an analysis near these special 
points where p(x, a )  = p(x, b) = i p ( a ,  b). 

3. Large deviations and semigroup bounds on eigenfunctions 

In this section, we prove Theorems 2.1 and 2.3 and thereby complete the 
proofs of Theorems 1.3 and 1.5. We will use Brownian motion methods; in the 
next section we give PDE proofs. We begin with Theorem 2.1 which is 
elementary. Since Brownian motion most naturally controls the kernel of the 
semigroup e-tH, we must begin with a bound on eigenfunctions in terms of that 
kernel. 
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PROPOSITION3.1. Let H = - 4 A  + V with V bounded below and continu-
ous. Let H J ,  = EoJ, with llJ,llLz= 1. Then, fm any s: 

Proof: In [49], a "local spectral density," dL(x, E), is introduced, so that 
(i) dL is a positive measure, 

( 4  d u x ,  {El) )  = Zlst(x)12dx, 
the sum being over a basis of L2 eigenfunctions for HJ, = El+. El is any 
fixed E. 

(iii) ! ~ ( x ) ~ ( E )dL(x, E) = Tr(f(x)g(H)) for all continuous functions f, g 
vanishing sufficiently rapidly at infinity. 

In particular, choosing g ( E )  = e-", f a positive continuous function and 
using the fact that eP"(x, y) is continuous (see [Sl]), we have 

r / f ( ~ ) e ~ ~ o e - ~ ~ d ~ ( x ,E)  (by (i)) 

Since e-"(x, x) and 1J,(x)l 2  are continuous [49], (3.1) follows. 

Remarks 1. Since the above proof is somewhat abstract, it is worth giving 
the simpler proof for the case where ( H  + i)-' is compact (as happens if 
V(x) + m at infinity which is usual for many cases of interest in Thms. 1.3, 1.5). 
In that case, H has a complete set of eigenfunctions J,,(x) and 

If E, = Enoand J, = Jln0then (3.1) just makes the obvious assertion that 

From this special case and a limiting argument, one can obtain the result if 
E ,  < inf(ess spec(H)). 

2. In the notation of [49], only V- E K , ,  V+E Kp are needed. 
The other result that we will need is the Feynman-Kacformula for e- tH(x,y). 

For a proof and background, see [SO]. Let Ex,,; ,(.) denote expectation value for 
the Process { b ( s ) ) o , , ~ t  where y(s) = b(s) - t-lsy - (1 - t-ls)x are 
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Gaussian random variables of mean 0 and covariance 

Ex,,; ,(y(s1)y(s2)) = s l ( l  - tp1s2) if O I s, 5 s, 5 t 

(Brownian motion starting at x and conditioned to have b(t)  = y). Let 
ePtHo(x, y) = (2~t ) - ' /~exp(-  (X - y),/2t) be the integral kernel of etA/2 and 
let H = - ;A + V (with say V 2 0 and continuous). Then the Feynman-Kac 
formula says that 

Later we will use a measure ex,,;, defined on functions from [O,l] to A" by 
letting Qs) = b(st), 0 I s 5 1, and using the measure Ex . By scaling, the , 

process for e,,,;,is just the process for 2,,,;,multiplied by 3: 
The proof of Theorem 2.1 requires an elementary fact about Brownian 

paths; let P,, ,;, denote probabilities relative to the above process. Then 

x , x t (  SUP / b ( s )  - x/ 2 R )  5 c1exp(- R2/c2t) 
O s s s t  

for some C,, C2. 

Proof: Without loss of generality, one can take x = 0. If sup,. , 1 b(s) 1 2 
R, then for some choice of i = 1,2,. . . , v and & , we must have that sup, ., 
f b,(s) 2 R/ 6,so that 

0 o t (  SUP lb(s)l 2 R )  I ~ V P , , , ; , (  SUP b1(s) 2 R/J;).
O s s s t  O.sst 

But, by the connection of restricted Brownian motion to Dirichlet Hamiltonians 
and the method of images [50], one has 

With these preliminaries, we have 

Proof of Theorem 2.1. Fix x, A, t and R,. Then, by (3.1) and (3.2) 

-< e t E ~ ( A )( t ) v 2 [ ~ x , x t (sup lb(s) - X I  2 R )  
O s s s t  

+exp(- A2tinf{V(y)l ly - xl 5 R ) ) ] ,  

where the first term comes from those paths which go a distance at least R from 
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x (and we use V 2 0) and the second from paths that stay near x. Choosing 
t = T/h and using the last proposition, we obtain 

where m(x; R) = inf{V(y)( (y - x( IR).  Let 6 > 0 and R, be chosen so that 
V(y) 2 6 if lyl > R ,  and let R, = 2R1. If 1x1 2 R,, we choose R = (so 
that m(x, R) 2 6) and T = R and find (2.3) using the fact that E,(A)/h is 
bounded as X + co. To get (2.2), choose R = ~ / 2(so if Ix - a1 2 E and 
Jx- bJ  2 E, then m(x, R) 2 6 for some 6 > 0 independent of which x) and 
T =  1. 

The proof of Theorem 2.3 is more subtle, requiring "the method of large 
deviations." For a detailed presentation of these ideas and their development, see 
the notes of Varadhan [56]. The basic idea in our context is to note that as t 10, 
the measures &,, ,;, on function space approach a point mass at the line from x 
to y. If A is a set disjoint from this line, i,,,,(A) should go to zero exponentially 
in t-' and modulo technicalities (upper bounds hold for open sets, lower bounds 
for closed sets and the continuity of V handles that below), 

From this one obtains, using (3.2): 

THEOREM3.3. Let V obey hypotheses (1)-(3). Then for each fixed x, y; T: 

where 

and the limit in (3.4) is uniform in x, y, T as they run through compact subsets of 
Rv x Rv x (0, a). 

This is a direct consequence of Theorem 5.1 in Varadhan [56]; actually, it 
only needs the old results of Pincus [38] and Schilder [43]. To aid the reader, we 
describe a simple formal argument which suggests why (3.4) is true. Formally, 
one can think of G,(x, y; t)E,,,;,(+) as 

"/"dwbexp(- /d?b(s) ds)6(b(0) - x)d(b(t) - y).  
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In terms of this formal notation, 

x exp - 1 'b(s12 ds - h2j tv(b(s ) )ds .i 2 4  0 1 
Take t = T/h and y(s)  = b(s/X). Then a change of variables, when % = A-'b, 
yields 

exp(- H(A)T/A)(x,y))  =" /"drn~6(y(0)  - * ) ~ ( Y ( T )- Y )  

x exp - x 1 t 2 ( u )du + J ~ V ~ Y ( U ) )d ~ ]1i [ 2 / o  0 

which formally suggests (3.4), (3.5). 
To get the upper bound in Theorem 2.3, we need 

LEMMA3.4. lim,, ,a(x, x; T)  = 2 min(p(x, a) ,  p(x, b)) and the limit is 
uniform as x runs through compact sets. 

ProoJ The main idea is that as T + a,the minimizing path for (3.5) must 
spend most of its time at a or b to avoid / l v (y ( - ) )  ds becoming too large. For 
T large, the minimizing path is essentially a minimum action path from x to a 
(or b) run for time T/2 and then its reverse. The details are straightforward and 
not even too tedious. 

Proof of Theorem 2.3 (upper bound). Given E and a compact K c R", first 
pick T so that a(x, x; T) 2 2 min(p(x, a), p(x, b)) - E for all x E K and then A 
and ccso that exp(- TH(h)/h)(x, x) 5 cEexp(- h[a(x, x; T) - E]) if h > A. 
Let C, = [eEsupA2Aexp(TEo(X)/h)]'I2.Thus, by Proposition 3.1, Theorem 3.3 
and Lemma 3.4: 

IQ,(x)l IcEexp[- X(min(p(x,a),~ ( x ,b))  - E)] 

as required. 

As a preliminary to a proof of the lower bound, we need 

PROPOSITION3.5. Under hypotheses (1)-(4), 

for all h large. The estimate is u n i f m  in x and s. 
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Proof. The proof of Lemma 2.5 shows that in the region 1 y - a 1 IAP1l2, 
we have 52,(y; A) 2 Since 52, 2 0 and 

we obtain (3.6) by using E, > 0, and taking the contribution to the integral from 
the region 1 y - a /  I AP1l2.  

Proof of Theorem 2.3 (lower bound). By symmetry in a ,  b and a compact-
ness argument, it suffices to find for each z and E,a neighborhood N of z and D, 
so that for x E N, 

First find s, so that a(z, a ;  s )  5 p(z, a )  + +E. This is possible since p(x, y) = 

inf,a(x, y; s). Since p and a are continuous in their arguments, we can find N, a 
neighborhood of z, and 6, so that for x E N, and ly - a1 < 6: 

(3.8) a (x ,  y; s )  5 p(x, a )  + $E. 

By Theorem 3.3, for some A, and fie: 

(3.9) exp(- SH(A)/A)(X,y )  r fi,exp(- [a (x ,  y; s )  - $E]  A )  

so long as A > a,, x E N and ly - a J  < 6. Now (3.6), (3.8) and (3.9) yield the 
desired bound (3.7). 

4. Bounds on the eigenfunctions by Agmon's methods 

In this section we give an alternate proof of Theorems 2.1 and 2.3. We do 
this partly for the benefit of readers unfamiliar with Brownian motion, since the 
proof here uses only "standard methods" of PDE's and partly because, in some 
situations (see Section 7), this method may be easily applicable while the 
probabilistic method requires added work. 

Our methods closely parallel those that Agmon used to control the decay of 
Schrodinger N-body wave functions at large 1x1; the upper bounds follow [I], [2]; 
the lower bounds follow some as yet unpublished work [3]. One can also get the 
lower bound a la Carmona-Simon [13] using only Jensen's inequality in function 
space (which is also how one gets the lower bound in Thm. 3.3). 

We illustrate the upper bound methods by proving that part of Theorem 2.1 
which is not contained in Theorem 2.3: 

THEOREM4.1. Under hypotheses (1)-(3), there exist Ro, C and d > 0 so 
that for A large and 1x1 > R,, 
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Proof: Pick R, and 6 so that V(x) 2 S2 if 1x1 > fR,. Let cp be a function 
obeying for some R,: 

(a) cp is Lm; 
(b) ~ ( x )= x if 1x1 I R1, 0 I cp'(s) I 1; 
(c) (~ ' (x)= 0 if 1x1 2 2R1; 

and let p(x) = 6cp(l XI) so that I v p  l 2  I and p is bounded and C" away from 
I xl = 0. Let J ,  be real-valued and supported away from I xl = 0. Then 

(4.1) 

(ebJ,, ( ~ ( h )  - E,(X))e-"J,) = ( J , ,  I- :(v - hvp12 + X2V - E0(h)]J , )  

so long as J ,  is supported in the region { xl I xl > fR, ) and so long as X is so 
large that X2(ia2) - EO(h)2 1.In the first inequality above one uses - A 2 0 
and the fact that ( J , ,[ ~ ( v p )+ (vP)v]J,) = 0 since it is both real and imagin- 
a1-Y-

Now let 7 be a function with 1 - 7 E CF, 7 = 0 if 1x1 < aRO, 7 = 1 if 
) xl > iR, and choose J ,  = eXpvQ0.Then the left side of (4.1) becomes: 

This quantity is bounded independently of R, so we can take R, -, oo and 
replace p by 6 1 x 1 .  Moreover, since 1 1  52, 1 1  = 1and 1 1  vQ, 1 1 ,  only grows linearly 
in 6,(4.1) implies 

e26XJxllQ012I~ e " ~ o X41. ;Ro 

for h large. Thus 

esx~xllQo(X,x)12 dVx I CX. 
J x , > R o  

Since Q, is subharmonic in 1x1 > R,, we can b o d  Qo by its average over a unit 
ball and find that for X large 

as required. 

The same idea yields: 

Second proof of Theorem 2.3 (upper bound). We sketch the idea, since the 
technical details are so close to those above. Let 
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Then 

so that convolutions of + will have gradients very close to being bounded by 
{ev(x).As a result, given S and R, one can find E and g, (by convolution and 
cutoff from +) so that for 1x1 < R 

(4.2) (1 - S)+(x) 5 g,(x) 5 (1 + S)+(x),  

g, is bounded and 

(4.3) l(vg,)(x)l 5 (1 - d i m  
for all x. As in the last proof, one finds that using (4.3): 

and so for any K > 0, we can find A > 0, so that for h > A 

so long as $(x) = 0 if Ix - a1 < K or Ix - bl < K. Given K,we can find K, 

much smaller so that Ix - a1 2 K, I X  - bl 2 K,and ly - a1 I K~ or Iy - bl I 
K~ implies g,( y) < Sg,(x). As in the last proof, (4.4) then yields 

lQO(h,x>l 5 Cexp(- (1 - S)g,(x)) 

so long as 1x1 < R, Ix - a1 > K, I X  - bl > K.  This is the desired bound. 
Agmon's lower bound technique [3] relies on an elementary lemma (Lemma 

4.3 below) which in turn relies on a simple application of the maximum principle. 

LEMMA4.2 (e.g. Simon [45]). Let $(x) r 0, D(x) 2 0 on a neighborhood 
of a region D so that on this neighbmhood, $, fi are continuous, obeying 

in distributional sense and 0 I W(x) I U(x). If D 2 $ on aD, then fi 2 $ on 
aU of D. 

Proof: Let q = D - $ and Do = {xIq(x) < 0).  Notice that since q 2 0 on 
aD, we have that q = 0 on aDO.Now, on Do: 

since q I 0 on DO and W - U I 0. Thus q is superhamonic on Do and in 
particular, min, ,D ~ ( ~ )occurs on aD0, so that q 2 0 on Do and Do is empty. 
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The following is basic to Agmon's lower bound technique [3]: 

LEMMA4.3. Let 77 be the lowest eigenfunction of - $A with Dirichlet 
boundary conditions on the unit ball in v - 1 dimensions, normalized so that 
1 1  77 1 1  = 1, and let eo be the corresponding eigenvalue. Let d = min,,, 1,277( y) 
> 0. Let Do be the cylinder in Rv 

D o =  { x = ( x l , x l ) l O ~ x , ~ a ( l + S ) ;1x.l I R ) .  

Let O obey $AO = W(x)Q on D, with W 2 0 and O 2 0 there. Dejine a by 

Then 

min{O(x)lx, = a ,  Ix. 1 Ii R )  

2 dePaa(l- e-2Baa)min{O(x)lxl= 0, Ixll I R ) *  

Proof: Without loss of generality, we can normalize O so that 

(4.6) 
Let 

+(XI= q ( x , / ~ ) [ e - a x l  - e-2aa(1+B) a x l  e I .  
Then + vanishes on the sides of the cylinder and on the face x, = a ( l  + 6); so 
by (4.6), + I O on 8D. Moreover 

and, by (4.5), W I [ - (E,/R2) + $a2] on Do. Thus Lemma 4.3 is applicable 
and yields the desired result. 

Second proof of Theorem 2.3 (lower bound). We prove the necessary bound 
at a fixed x; the uniformity for points near x is a simple consequence of adding 
one more linear segment to the argument below. Given E,find first a piecewise 
linear path, y, from a to x with / b l ~ ( s )1 l/eV(y(s))ds 5 p(x, a ) ( l  + 0/3). 
Then by further subdividing the linear paths into small segments, one can find 
xo = x, x,, x2, . . . ,x, = a ,  S and R, small so that if Di is the cylinder of radius 
R, orthogonal to the segment from xi-, to xi, with axis this segment increased 
in size by (1 + 26), and if vi = sup,,,,V(x), then 

We already know that within a distance Ch-ll2 of a ,  O,(X, x) 2 1for X large 
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(see the proof of Lemma 2.5). We can find points this far from a outside the 
region where h2V(x)- E,(X) I0 (this region also shrinks as h-'I2) and then 
apply Lemma 4.3 in a sequence of cylinders. We start out with R ,  = so 
that we know &,(A, x) r 1on the first cylinder's base. Then R j  = 2-jh-'/2 and 
so R 2 2-"X-'I2 for all j and R a R, for all j if h is sufficiently large. If 
cxj(h) is defined by 

(4.8) 
2ia,(X) = 2"eOh+ vjhZ, 

then Lemma 4.3 yields: 

Choose A so large that 

exp(- 2 8 j m )  a 2. 
Then for h 2 A and large enough for R j  IR and Qo 2 1on the first cylinder 
base, we have that 

Qo(h,X )  2 e-Ca~lxl-xl-ll(~d)n. 

By (4.7) and (4.8), it is easy to see that for h large 

Qo(h,x) 2 exp(- hp(x, a ) ( l  + e ) ) .  

A similar argument with b replacing a yields the desired lower bound. 

5. Extensions (a): Manifolds 

Molchanov [37] (following in part Varadhan [54], [55]) has discussed large 
deviations for Brownian motion on a complete Riemannian manifold, M. Using 
his results one can treat eigenvalue degeneracy for operators of the form: 

(5.1) H(h )  = +L + h2v. 

Here L is the Laplace Beltrami operator. For simplicity (see below), we suppose 
M is compact. V is then supposed C" with V 2 0, V(x) = 0 only at x = a ,  b 
and these minima are nondegenerate. The Agmon metric is then JSV(X)g 
where g is the original metric on M. Note that p(a, b) is the distance from a to 
b in the Agmon metric. Using the method of Sections 2 ,3  with [37] replacing 
Schider [43], one obtains: 

THEOREM5.1. Let M be a compact Riemannian manifold and let V obey 
the above hypotheses. Suppose that -lim 1 1  j,Qo 1 1  1 1  jbQo1 1  > 0. Then 

lim -
A+m 

the distance in the Agmon metric ( + original metric). 
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Compactness can be replaced by suitable restrictions on the behavior at 
infinity: One needs to know vol{ xld(x, a )  < R )  grows less than exponentially in 
R and enough information to get the analog of Theorem 2.1. 

6. Extensions (b):Complicated zeros, degenerate minima, excited states 

In this section, we describe a number of extensions in a series of remarks. 
Except for (I), (3), we only pay attention to upper bounds on eigenvalue 
splittings; lower bounds may be false for general excited states, and in any event, 
seem to be very difficult to prove. 

(1) - g A  + A2V+ AW. Suppose that W is a C" function which is bounded 
(actually, only W( V + 1)-' need be bounded) and let 

(6.1) H(A) = - + A  + A2v+ AW. 

In the asymptotics for e -TH(h) /X(~,  y), it is easy to see that the W term at most 
affects the path integral by a multiplicative constant between e-TIIWIIm and 
eTllwllm, so that the leading asymptotics of e -TH(h) /h (~ ,  y) are unchanged, i.e., 
are determined by the action with V alone (and W doesn't matter). From there 
the arguments of Sections 2 ,3  imply that Theorem 1.5 extends with p the 
V-Agmon metric. 

This extension is important because there are many examples of the form 
(6.1) where hypothesis (4) holds (i.e., where the ground state asymptotically lives 
in both wells) even though H(A) has no symmetry: Let V be any function 
obeying hypotheses (1)-(3) and W any bounded C" function with W(a) j 
W(b). We claim (following an idea of Davies [22]) that one can find a(A) so that 
a(A)/A -, c,, a computable constant and so that the ground state a, for 

obeys hypothesis (4). For, by [46], if a(A)/A + c, the ground state energy, 
E,( A) of (6.2) obeys 

and similarly for b. In (6.3) we mean the trace of the square root of the positive 
matrix d2V/dxi dxj(a). Moreover, by [46], if e, < eb,O, is asymptotically 
concentrated in well a .  If c is adjusted to a value c, so that e, = eb, then for A 
large and a(A)/A near c,, the ground state shifts from being concentrated in a 
to being concentrated in b as a(A) varies; and since one can show it is uniformly 
concentrated in the union of wells, one sees by continuity that a(A) can be 
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adjusted so that a(h)/h -+ c,, and so that hypothesis (4) holds. As explained by 
Davies [22], what happens here is that the asymptotic levels e,(c) and e,(c) 
cross and since the vacuum is nondegenerate, there must be an avoided crossing, 
but one that is exponentially close. The Agmon metric shows how close. 

The next example of this genre shows the complications that can occur 
when there are multiple minima. One might think that if V has multiple minima 
but that asymptotically 8, is concentrated only in the two wells, a ,  b, then the 
eigenvalue splitting is determined by p(a, b). As our proof of the lower bound in 
Theorem 1.5 shows, this always provided a lower bound on the splitting (i.e., an 
upper bound on lim - (l/h)lnlE, - E,I) but it may not give the answer. We 
consider the following construction suggested by Witten [57]. Let f be a C" 
function on Rv so that (i) If(x) 1 2 C lnlxl for large x, (ii) A f is bounded, 
(iii) f 2 0, (iv) f has exactly two zeros at x = a ,  b which are nondegenerate 
minima, (v) 1 vf 1 is bounded away from zero near infinity. Let 

Then 8, = C(h)ePv with C(h) a normalizing constant. Of course, V = :( vf )2 
has zeros at all critical points but a, is only concentrated at those which are 
absolute minima (in accordance with Witten's work on operators of the form 
(6.4)). Since 8, is explicitly known, using the ideas in Section 2 one can often 
compute the eigenvalue-splitting asymptotics. If 

a = min {max(f(y(s)))l~(o) = a ,  ~ ( 1 )= b ) ,  
Y 


/3 = max (min (f(x) )  S is a smooth surface separating a and b ), 
S x € S  

and if a = p (this may well be true always), then lim - (l/h)lnIE, - E,I = 2a. 
In one dimension a = /3 always, and 2a is exactly the Agmon distance from a to 
b if f has a unique local maximum in [a ,  b], but if f has a (non-zero) local 
minimum in ( a ,  b), then 2 a  (=  2 r n a ~ , , , , ~  f(x)) is strictly smaller than the 
distance in the Agmon metric! This example shows that while 

1
lirn -a (x ,  x; T )  = min(p(x, y)l V(Y) = 0)

T + a ,  2 

is always the lower bound on lim,, ,(l/X)ln Q,(x, A), it may not be optimal. 

(2) Degenerate minima. For the upper bounds we only used E(X)/X 
bounded above and this is true even if the minima are degenerate, in which case 
E(h)  may go to zero faster than linearly. Under enough hypotheses on the form 
of V at the degenerate minima, it should be possible to get lower bounds also. 



112 BARRY SIMON 

(3) Multiple wells. If V ( x )obeys the basic hypotheses but has nondegen- 
erate minima at points a,, . . . ,a,, and if Go has components in at least two 
wells, say in wells a j, j E S, then our proof of the upper bound works to prove 

where a = maxj,,(miniijp(aj, ai)). For if 1 E S and a = miniilp(ai, a,) ,  we 
go through the proof of the upper bound using an f with ~f concentrated near 
the geodesic sphere about a ,  of radius i a .  One difficulty in general for multiple 
wells, illustrated by the last example in (1) above, is that we only know: 

- 1
lim -lnO,(h, x)  I- min(p(x, ai)lall i ) ,

hA+ w 


1
xlnGO(h, x)  > - min(p(x, ai)li E S). 

X+co 


Another is that the geometry may be complicated so that the geodesic bisector 
between two a's goes near a third. 

One multiple minima situation where we can completely analyze splitting to 
the ground state is where the minima are related by a symmetry. For simplicity, 
we suppose that the symmetry group is a cyclic group of order n; i.e., for a 
rotation, R, of order n ,  V is left invariant and there are exactly n minima 
a ,,. . . ,a, cyclically permuted by the rotation. Then LZ(R") breaks up into n 
invariant subspaces Xj (j = 0,1, . . . ,n - 1) with f(Rx) = eZTijlnf(x). Let 
Ehj)(h) denote the lowest eigenvalue of H(h) r Xi. Then, we claim that for 
j i0, 

1
lirn - X~EK)(X)- Ep(A)l = minp(ai ,  a , )  
X+w i j l  

We do not make any statement about lower bounds on the splitting Ekj' - E(k'.0 7 

indeed, Ebj' = Er;"-j), by reality of H(X). Note that (6.4)' follows from our 
general methods: We get the lower bound picking an f which is e2""/" near 
Ria, and with ~f concentrated near the geodesic spheres about the a ,  of radius 
imin p(ai, a j) and the lower bounds by following a geodesic between two points 
with p(ak, a , )  = minp(a,, a j ) .  

The above provides another warning about multiple minima. As an example, 
consider a potential V on R2 with minima at the four points ( k  1, f1) and 
symmetric under rotations about 0 of angle j7~/2 and reflections in the lines 
x = k y. The symmetry group C,, has six elements and then irreducible 
representations of dimensions 2,1,1. In terms of the above analysis, 3Ca, and X3 
are combined in one space, X,, since they are linked by the reflections. This 
space, X, ,  has a basis of functions which are even under one reflection and odd 
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under the other, and so a basis of functions which vanish on either x = y or 
x = - y. Because of these zeros, one might naively think that what is relevant for 
the splitting of ~6') and E g )  is then the distance in the Agmon metric from 
(1, - 1) to ( - 1, I), but in fact it is the distance from (1, - 1) to (1,l) that counts. 

(4) Manifokls of minima. For upper bounds on the splitting, it does not 

even matter that the set of zeros of V is a finite set. Our upper bound proof 

immediately implies: 


THEOREM6.1. Let V be a m o t h  function obeying hypotheses (1) and (2). 
Suppose that 


{xlV(x) = 0) = S1 u S, 


where S,, S, are disjoint sets. Let j, be a smooth function which is 1near S, and 

0 near S,, and let j, be 1near S, and 0 near S,. Suppose lim -11 j,Q, 1 1  1 1  jzQo1 1  > 0. 

Then 


(5) Excited states. For excited states, one can only hope to get upper 
bounds on gaps. It is certainly possible in higher dimensions to construct 
examples using the construction of Davies (i.e., with X2V replaced by h2V + 
a(h)W) where two eigenvalues, one in each well, are degenerate at all X with 
one eigenvector living in each well so that a suitable combination lives in both 
wells. For the ground state this could not happen since level crossing is not 
allowed (the ground state is simple). For excited states, one can arrange things so 
that symmetry allows crossing; e.g. in two dimensions, one can have V(x, - y )  
= V(x, y), two minima at (+_1,O) and so that a state odd under y -+ - y living 
in the well at ( - 1,0) is degenerate with a state even under y -+ - y in the well 
at (1,O). 

One should expect upper bounds with p(a, b), but since we no longer have 
the variational formula in the simple form, ( m , ,  a,) = 0 implies (El - E,) I
(so,(H - E,)fil,)/(fl,, s o ) ;  we have to use an alternate method which 
loses a factor of 2. That is, we are only able to prove: 

-THEOREM6.2. Let V obey hypotheses (1)-(3), and let IV(x)l I CeAIxI for 
s m e  C, A. Let Q,(h, x) be an excited state eigenvector with 

(4') limlljaQnIIllj,Qnll> 0. 

Then there is another eigenvalue E'(h) so that 


-1

lim-lnlE'(h) - E(h)l I - i p ( a ,  b) .  X 
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Note. In the symmetric case, hypothesis (4') is automatic for all n. Thus all 
the low lying (i.e., fixed n )  states are nearly doubly degenerate. 

Proof: We first claim it suffices to find f so that 

(fl,, a,) = 0 and 1 1  ( H  - E,)fl,ll/llfl,~~ = ~ ( e - f ~ ( ~ - " ) ~ ( " ~ ~ ) ) .  

For this first equation implies 

(this is essentially a version of "Temple's inequality" [35]).We can, as in the 
ground state case, find f, with vf, A independent and concentrated near the 
geodesic bisector and (fa, ,  a , )  = 0, Ilfl,1 1  = O(1). Now, by Leibniz rule: 

By the support properties of 

o f ,  Il(Af)fi,ll = o(exp(- i A ( l  - & ) f ( a ,b))) .  

BY(2.71, 

Since Ail,  = [A2V(x)- E(A)]Q, and V(x) does not grow too fast, we see that 
Il(vf)vCl,ll is also O(exp[- iA(l - ~ ) p ( a ,b)]). 

7. Extensions (c):Highly excited states 

In this section we want to consider a sequence of eigenstates +(A,; x) with 

(7.1) H(A)+(A,; x )  = E(A,)+(A,; x) 

By picking a sequence, we are not varying E continuously, which tends to force 
E to grow only linearly in A (and so be "low lying" on the A2 scale). Instead, we 
want to pick E(A,) so that 

(7.2) E(A,)/A2, + e,; A, + oo. 

We shall control decay of the eigenfunctions +,(A, x) under certain circum-
stances and if there is symmetry, we shall obtain small splittings. 

Given a number e,, we let 

A(e0) = {xlV(x) < e,), 

and for any x, we define 

f,(4= inf jJol$[~(y(s))  - %I li. (811 ~ ( 0 )= X. u ( l )  ~ ( e , ) ) .  
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THEOREM7.1. Suppose that (I), (2) hold and that A(e,) is compact (i.e., 
V(x) > e, near infinity). Let (7. l ) ,  (7.2) hold. Then 

(i) I+(A,; x)I I Cexp(- 61x1An) for some 6 > 0 and all large x. 
(ii) For any R and E, there is a C(R, e) so that for all n and all x with 

IAl < R, 

Before sketching the proof, let us get an eigenvalue splitting result from this. 
For simplicity, we suppose 

and that V has a barrier, i.e., 

b = inf V(x) > 0. 
x , = o  

If e, < b, the sets A'(e,) = A(e,) n { kx, > 0) are a finite distance from 
one another. Set 

= 2 inf ( peo(x)lq = 0 ) .  

Then Theorem 7.1 and the argument in the last section (subsection ( S ) ) ,  
prove: 

THEOREM7.2. Let V obey hypotheses (I), (2) and equation (7.3). Suppose 
that A(%) is compact, and e, < b. Then there is a sequence of states $(A,, x) 
of the opposite symmetry to +, so that for any E > 0 there is a D(e) with 

As remarked in the last section, we believe that the 4 in (7.4) is an artifact of 
the proof and can be replaced by 1. 

We conclude with: 

Proofs of Theorem 7.1. One can easily apply Agmon's method, since a 
smoothed out (and cut off near I (V -m) p will obey h ( ~ ~ ) ~  e,)(l + e). 
~ l te rna t ive l~ ,one can probably use path integrals as follows: (a) First, noting 
that (H + 1)- N+ I (H,  + 1)-N+,  one sees that 1 1  + 1 1  grows at most as a power 
of A. (b) Running Brownian motion from x to the stopping time r = inf{ s 1 b(s) 
E A(eo)) and this power bound, one finds 
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Since the integrated V(b(s)) - e, is positive if s < 7, we can replace r by 
T A (T/X) for any h e d  T/X ( a  A b = inf(a, b)). Thus 

I\C/(x)lr CXmFA(x,T) 
where 

It should be true (but I have not tried to write down a proof since Agmon's proof 
works), that large deviations imply that 

1 1 To T
lim - -1n &(x, T)  = infj3 /, b(s12d~ + 1[ v ( ~ ( s ) )- eo]dsI 

~ - + m  0 

y(0) = x, y(s) @ A(e,) for all Vi 
It is easy to see that as T + GO, this last expression converges to p,Jx). 

Tunneling results in one dimension "part way up the barrier" are discussed 
in Froman [24]. 

Notes added in proof. 

(1) Subsequent to this work, considerable further progress has been made on 
the problems treated here by B. Helffer and J. Sjostrand: Multiple wells in the 
semiclassical limit, Commun. in PDE, to appear, and in some additional works. 
In particular, they do not lose the factor of 2 as we did in Theorem 6.2. They 
have gone beyond leading order under suitable hypotheses, and they have a 
much greater understanding of multiple wells than we found and stated in 
Chap. 6. 

(2) We have now written two additional papers in this series. Paper I11 
(Width of the ground state band in strongly coupled solids; Ann. Phys., to 
appear) deals with the multidimensional analog of the problem studied in [29]. 
Paper IV (The flea on the elephant; to be submitted to Commun. Math. Phys.) 
deals with the multidimensional analog of the problem studied in [33]. 
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