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Abstract. We consider the integrated density of states, k(E)9 of a general
operator on /2(ZV) of the form h = hQ + v, where (h0u)(n) = Σ u(n + 0 ancl

l ϋ = ι
(vu)(n) = υ(n)u(n\ where v is a general bounded ergodic stationary process on Zv.
We show that \k(E) - k(E'}\ g C[- log(|£ - E'\Yl when \E ~ £'| ̂ i The key
is a "Thouless formula for the strip."

1. Introduction

In this paper, we discuss general multidimensional stochastic Jacobi matrices.
Explicitly, let (Ω, μ, Σ) be a probability measure space on which Zv acts, that is, v
commuting measure preserving invertible transformations, T1?...,TV are given.
If/7 — (w l v.. 9H v)eZ v, we let Tn = T"1...T"V. We suppose that the action is ergodic. Fix
a measurable real valued function f on Ω and let vω(n) = f(Tn

ω). On /2(^v) ̂ et ^o ̂ e

the finite difference Laplacian given by

(h0u)(n)= £ u(n + δ), (1.1)
| ό | = l

where the sum is over the 2v nearest neighbors of n. Let vω be the diagonal operator
(vωu)(n) = uω(π)Mω(w). We consider the operators

Aα> = Λo + »ω (1-2)

In the bulk of this paper, we assume that the function/(ω) is bounded. In fact our
main theorem extends, with minor modifications of the proof, to the case that
In (I/I + 1) is in L1; these modifications are sketched in Sect. 3.

Examples of interest include the following cases: (a) The periodic case where Ω is
finite and each Tf is periodic, (b) The almost periodic case where Ω is a compact
metric space and the T's are isometries (see e.g. [3]). (c) The random case where the
process vω(n) is a set of independent, identically distributed random variables.
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A basic quantity of interest is the integrated density of states, defined as follows
(see Benderskii-Pastur [5]): Let g be a continuous function on (— 00,00) and let
g(hω)(ij) be the matrix elements of the operator g(hω) defined by the functional
calculus. By the ergodic theorem, for a.e. ω,

lΓv £ g(hω)(n,n)
tf^°o \nt\£R

exists and is independent of ω. Moreover, the a.e. constant value obeys

(0,0)X (1.3)

where E means expectation over the underlying probability measure on Ω and M(iJ)
denotes a matrix element of the operator M. In the periodic and almost periodic
cases, one can replace a.e. ω by all ω (see [3]). It is not hard to see that £ defines a
positive linear functional; therefore there is a measure, dk, called the density of states
measure, with

(1.4)

The ergodic theorem implies that in the limit defining the density of states, we
R

can replace (2R + 1) ~ 1 £ by R ~ l £ without changing dfc.
\m\ZR m = l

The integrated density of states, k(E\ is the measure that άk assigns to the open
interval ( — oo,E). Our main concern here is the continuity of k in £; equivalently,
the fact that άk has no pure points. This is somewhat connected with eigenvalues of

*„••
Proposition 1.1. k(E) is continuous at E = E0 if and only if the probability that E0 is an
eigenvalue ofhω is 0.

Proof. By taking limits in (1.3) (see e.g. [4]), one sees that

k(E0 + 0) - k(E0) = E(P{£o}(/zJ(0,0)), (1.5)

where P{£o} is the projection onto the eigenspace of hω for eigenvalue E0. From (7.5),
we see that if P{£o} = 0 for a.e. ω, then k is continuous. Conversely, since P is positive, if
k is continuous, then P{£o}(λω)(0,0) = 0 for a.e. ω. By stationarity, P(Eo}(hω)(n, n) = 0
for all n and thus Tr (P{Eo](h(ω)) = 0 a.e., which implies that P{Eo}(hω) = 0 a.e. D

This result shows that the continuity of k(E) is not a simple question in
dimension v > 1, even in the periodic case. In that case, it is a theorem of Thomas
[16] that hω has no eigenvalues, but the proof is quite subtle. Our continuity result
below implies Thomas' result (in the Zv case; he also has a Schrόdinger operator
result) since in the periodic case, all hω are unitarily equivalent, so E0 is an eigenvalue
of one hω if and only if it is an eigenvalue of all hω.

We make the following useful definition.

Definition. A functional k on (— oo, oo) is -called log Holder continuous if, for all R,
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there exists CR with

so long as \E\ <R and \E — E'\ <^.
Our main result in this note is the following:

Theorem 1.2. Consider an operator of the form (7.2) whose potential vω is generated by
a bounded function f. Then the associated integrated density of states k(E) is log
Holder continuous.

As already mentioned, with minor modifications, our proof extends to the case
where ln(|/| + 1) is in ίλ As we will see shortly, the theorem can be false if/ is
allowed to be infinite on a set of positive measure. Let us mention some examples
which show that our theorem cannot be significantly strengthened:

Example I. In [6], Craig constructed weakly almost periodic potentials (and
Poschel [1 1] allows limit periodic potentials in a similar construction) where k is not
Holder continuous of order Θ for any #e(0, 1). Indeed, for any δ there are examples
where k(E) obeys

sup
\E-E'\=ε

for ε small. This shows that our log Holder continuity can't be much improved (if at
all) and also that the Russman estimates required in [6,11] cannot be much
weakened. Of course, for special classes of potentials, one can hope to improve our
results, and such results would be very interesting (see, e.g. Avron et al. [1]).

Example 2. One case where our theorem can be improved is in the random case
where the distribution, dy, of y(O) has the form g(λ)dλ. In that case, Wegner [18]
proved that k is Lipschitz. However, in the general random case, it is likely our result
is close to optimal. There is much evidence ([12, 8, 15]) that if dγ(λ) = φδ(λ — λ0)
+ (1 — φ)δ(λ — λj), then for any Θ, there are suitable φ, λQ9λl9 so that k is only Holder
continuous of order θ.

Example 3. ([2]). In v = 1, if υ is random, with the values either 0 with probability
p < 1 or oo with probability, 1 — p, it is easy to compute k and see that άk has only
pure points. This shows that some finiteness condition on v is required for continuity
of/c.

Theorem 1.2 has the following corollaries (using Proposition 1.1 and our
discussion above of Thomas' theorem);

Corollary 1.3. Under the hypotheses of Theorem 7.2, for any E, the probability that E
is an eigenvalue ofhω is 0,

Corollary 1.4. // V is a bounded periodic Zv- sequence, then hω has no eigenvalues.

The special case of Theorem 1 .2 where v = 1 was proven by us in [7] it is worth
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recalling that proof since it will motivate us here. We begin with a lemma whose
proof we repeat because it is so basic and elementary :

Lemma 1.5.([7]). Let άμ be a positive measure on(— 00,00) of compact support so
that for any complex E with ImE ^= 0, we have

c(E) = f i n |E - E'\άμ(E') ^ 0. (1.6)

Then μ(— oo,E) is log Holder continuous in E.

Proof. Let £0 ̂  Eί <; £0 + 2 τhen

0 ̂  c(E0 + is) = J ln|£0 - E' + iε\dμ(E')

J ln|£0-£/ + iε|dμ(£')+ f ln|E0 - £' + iε|dμ(E')
E 0 <£'<Eι~

4- J ]n\EQ-E' + iε\dμ(E').

Letting ε -> 0, and estimating In |E0 — E'| ̂  In |£0 — E1 \ in the first integral, we obtain

£1])+ J ln|E0-E'|dμ. (1.7)

If μ is supported in (— c,c), the last integral is dominated by ln( |c | + \E0\ + 1) x
μ((— oo, oo)) = d. Thus

which is the advertised result. Π

In [7], we noticed that the Thouless formula says that the c(E) associated to the
one dimensional d/c is the Lyaponov exponent, y(E\ which is of necessity non-
negative, so the lemma implies log Holder continuity. In this paper, we will prove log
Holder continuity of k by proving that its Hubert transform (given by (1.6)) is
positive when ImE ̂  0. Thus, we want to find an object γ(E), so that y(E) ^ 0 and so
that

y(E)= j In |E - E'\dk(E'\ (1.8)

It is not clear how to directly describe y in the Zv case. However, dfc is a suitable limit
of densities of states associated to strips, i.e. for fixed L, look at an operator on sites n
with — o o < r c 1 < o o and |n2 |,...,|«v |;g L. This operator has 2(2L + l)v-1 Ξ2α
Lyaponov exponents γ1 ί> y2 ^ ...^ y α Ξ g O Ξ > γΛ + 1 ̂  ... ̂  y2a (as we shall see in
Sect. 2), and we will prove (in Sect. 3) that
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(which is clearly positive) obeys (1.8), where d/c is the density of states for the strip.
Taking limits, we will see that the lemma is applicable and thereby prove our basic
theorem.

In [7], we also proved log Holder continuity of the density of states for suitable
one dimensional stochastic Schrodinger operators by exploiting the Thouless
formula for that case. Independently, Kotani [9] demonstrates a similar one
dimensional result. We are currently studying the extension of our result here to
v-dimensional Schrodinger operators, which involves some subtle "renormaliza-
tion" questions.

2. The Growth Index and Reduction to the Strip

As explained in the introduction, we will prove Theorem 1.2 by studying Jacobi
matrices in strips, i.e. operators which are infinite in only one dimension.
Accordingly, we begin by studying such operators. Since there is no loss in using
greater generality, we do not restrict ourselves to operators which are finite
difference in the transverse directions. Explicitly, suppose we have m sites in the
transverse direction, so our underlying space is /2( — 00,00 ;Cm), i.e. a "wave
function" is a sequence u(n) of vectors in Cm. Let < , ) denote the usual sesquilinear
product on Cm, so e.g.

(note the ~ on M). We begin by noting the analog of the constancy of Wronskian.

Lemma 2.1. Let u,v solve the equation

φ(n+ \) + φ(n- A(n)φ(n) = 0, (2.1)

where A(n) is, for each n, a symmetric m x m matrix (perhaps complex and non-
selfadjoint). Then

= W(n)

is constant.

Proof. We note that _W(n) -W(n-l) = ( ΰ(n + 1) + ΰ(n - 1), φ) > - < ΰ(n\
v(n + 1) + v(n— 1)> = — (Au(n\v(n)y + (ΰ(n),Aυ(n)y = 0 by the complex symmetry

(At = A*=A). Π

This lemma can be rephrased in terms of "transfer matrices." Let Φ(n) be the 2m
component vector (u(n+\), u(n}\ so that (2.1) is equivalent to Φ ( π + l ) —
Q(n + l)Φ(π), where Q(n) is the 2m x 2m block matrix:

-A(n)

Let Γ be the Block matrix
V-1

, so that W(n) = (Φ(n),ΓΨ(n)y, where Ψ is
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built out of v and < , > is now used for the obvious inner product on C2m. Then
Lemma 2.1 is equivalent to

β(n)Tβ(n) = Γ, (2.2)

that is, that Q(n) is a symplectic transformation. Since products of such transfor-
mations obey B*ΓB = Γ also, the transfer matrix T(n) = Q(n). . .β(l) is symplectic.

Lemma 2.2. The singular values s1,...,s2m of a symplectic transformation obey
Sj = S2m~j+l

Proof. If B is symplectic, i.e. B*ΓB = Γ, then

, (2.3)

since Γ~ 1 = Γ* = — Γ. Taking transposes, we see that B1 is symplectic and so B* is
symplectic since Γ = Γ. Thus B*B is symplectic. Equation (2.3) shows that the square
root of a positive symplectic transformation is symplectic. Thus \B\ is symplectic.
But I B I and \B\* have the same eigenvalues, so by (2.3) for \B\, \ B\~l and \B\ have the
same eigenvalues. Thus s1^...^s2 w ι is just a relabeling of s^1...^1, i.e.
Sj = S2m-j+ί Π

Now suppose that A(l),...,A(n)9... are such that for any k (with
Λ = antisymmetric product)

lim-ln| |Λ kΓ(w)| | (2.4)
n— »• oo ̂

exists. The Lyaponov exponents are then defined recursively by setting the limit (2.4)
to be y^ + + yk. Lemma (2.2) immediately implies y^ + γ2m_j+ 1 — 0, i.e.

Theorem 2.3. The Lyaponov exponents yί , . . . ,y2m associated to solving (2.1) with a
symmetric A, obey

γί^γ2'"^γn^0^ym + 1=-γm^'"^γ2m=-γ1. (2.5)

We define the growth index, y, by

ι m

y = - Σ y p (2 6)m j = ι

the average of the positive y's. Equivalently

my- lim-ln| |Λ"T(n)| |. (2.7)
«-> 00 ^

We note that by (2.5), this limit is the largest among the limits (2.4).
Now, suppose that A(n) = W(n) — £1, where W(ή) is real and symmetric but E

might be complex. Consider the operators hM on /2( — M,M;Cm)

(hMu)(j) = u(j + 1 ) + u(j - 1 ) + W(j)u(j) (2.8)
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with the boundary conditions u( ±(M + 1)) = 0. If

lim -Lττ(f(hM))

exists for all /eC0(IR), we say the density of states exists; we define the measure dk(m)

by setting the limit to J /(£)dfc(m)(£). In the next section we will prove that for
bounded matrices W\

Theorem 2.4. // the density of states exists, then so does y(E) =

l i m ( l / m w ) l n | | Λ m(TE(n))\\ whenever ImE^O. For such E:

y(£)= Jln|£-£'|dfc(M)(£).

Assuming this result for the moment, let us prove Theorem 1.2.

Proof of Theorem 1.2 Fix L and look at the operator on {α| — oo < aί < GO
α2 ^L,...|αv ^L}. It has the form (2.8) with m = (2L+l) v ~ 1 . Moreover, by

the ergodic theorem, for a.e. ω, the limit dfc^ exists (but it may be ω de-
pendent if Tl is not ergodic by itself). Thus, since γ(E) is trivially non-negative:
J ln|£ — E'\dk™m)(E) g: 0, if ImE £0. By the ergodic theorem again, dk™m} converges
weakly a.e. ω as L-> oo, to the density of states d/c for the infinite Zv problem (and
now there is independence, since we assume ergodicity of (T/.}j=1). Thus, since
ln|£ — E'\ is a continuous function for Im£^0 and the dfe^(£) have a
common bounded support, we have Jln|£ —£'|dfc(£)^0. By Lemma 1.5, k is
log-Holder continuous. Π

We end this section with some remarks about Lyaponov indices in the strip:
(1) By the argument in [7], the quantities y^E) + + yk(E) = Γk(E) (which exist

for E fixed for a.e. ω by the subadditive ergodic theorem) are subharmonic. It would
be interesting to know if they are harmonic for E non-real. For k = m,we of course
prove harmonicity. If Γk(E)= Jln|£-£Ίdμk(£') for some μk, what is the in-
terpretation of μk Ί

(2) By the argument of Pastur [10], if γm(E) > 0 for E in some subset A of (R then
there is no a.e. spectrum on A for the strip operator. For the one dimensional case,
there is a converse due to Kotani [9] (see [13] for the discrete case). Does this
extend? Specifically, is σac the essential closure of (E\ym(E) = 0,£ real}? Note from
this point of view, it is ym and not the growth index y which is most important.

3. The Thouless Formula for the Strip

Our goal in this section is to prove Theorem 2.4 and thereby complete the proof of
Theorem 1.2. The proof is patterned after the one Thouless gave in case m=\ [17]
but there is an extra complication: In the case m = 1, ImE ± 0, one can show that
each and every matrix element of TE(ή) grows at the same exponential rate. For
m ̂  1, it is no longer true that every matrix element of ί\mTE(n) grows at the same
rate:
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Example. Take m = 4 and

A(n) =

where the V(n) are independent identically distributed random variables. The A(n)
arise precisely from a Jacobi matrix in the strip with periodic boundary conditions
on the strip edge. Since the diagonal matrix elements are all equal, by a standard
plane wave analysis, the transfer matrix breaks up in a direct sum of 4 distinct 2 x 2
blocks with corresponding Lyaponov exponents, ±γί9 ±y 2 » ±^3* ±)V Ήere
y1 > 0 and y2 = y3 corresponding to the fact that the plane wave (1, i, — 1, — i)
and (1, — i, — 1, i) yield equivalent transfer matrices. If we start out with initial
data of the form w(0) = (a, 0, - a, 0), u(\) = (6, 0, - b, 0), then u(n) = (φ), 0, - φ),0)
for all n. It follows that the space given by (w(0),w(l)) = (<21?0,α2,0; bl9Q,b2,0) =
aίe1.+ a2e3 + b1dί + b2d3 has two eigenvectors for the transfer matrix with
eigenvalues acting as e±y2, and thus the rate of growth of a matrix element ofΛ4T of
the form (eί Λ e3 Λ d1 Λ d3, Λ4T(w)(e1 Λ e 3 Λdί Λd 3 )) is at most ena, where
α = max(y/ + y3) < γ = y1 + y2 + y3 + y4. While this phenomenon of slower growth
of certain matrix elements is not typical, the fact that it occurs shows that the proof
must have an extra element beyond that of Thouless.

Let e1 , . . . ,em,d1 , . . . ,dm denote the standard basis of the space on which T(n) acts.
Thus T(n)(£(xiei + βjdj) represents (u(n -f l\u(ri)} for the solution of (2.1) with
u(0) = α, u(l) = β. We begin by identifying the zeros of

(Cil Λ - Λ e.α Λ djV- Λ d.m_α, Am(T£(n))(e/l Λ -efc Λ dfcι Λ - Λ d f c m_b). (3.1)

If P, Q are the projections onto the span of e[V...,d jV.. and e A , . . . ,d f c l . . . , then the
above quantity is precisely det(PΛm(T)Q), viewed as an operator fromQ[R 2 m to
P(R2m. This is zero if and only if there exists ΦeRanQwith PΛ m (T)Φ=0. We
therefore see that

Proposition 3.1. (3.1) is zero if and only if (2.1) has a solution obeying u^(0) = 0 if
tφt19...Jbl uk(l) = 0 k£kl9...9km_b'9 Mί(n) = 0 if i = il9...9ia; Uj(n + l) = Q

tfj=Jl, Jn-a

This proposition is particularly useful in case α = b = 0. It shows that P(E) ~
(ύ1 Λ ••• Λ dw, f\m(TE(n))d1 Λ - - dm) = 0 exactly when E is an eigenvalue of the
operator on /2(1, . . . ,m) with boundary values w(0) = u(n + 1) = 0. Here P(E) can be
seen to be a monic polynomial of degree mn and thus the Thouless argument [17]
(see also [4]) immediately implies that if Im£ =£ 0:

lim — ln|P(£)| = f ln|£ - E'\dk(n}(E'\
n->aomn

showing that y(E) ^ j In E - E'\dk(m)(E').
We remark that for other choices of α, b and the sequences il9.. .ia, j1 . . .jm-aί the

boundary value problem for the strip is in general non-selfadjoint.
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As the example above shows, we should not directly try to control all matrix
elements ofΛm(T). Rather, we will analyze enough linear combinations of matrix
elements.

Proposition 3.2. Suppose that for any choice of vectors d* , . . .d£,d* , . . .d* in the span
of the d's
_

+ « > Γ ) Λ Λ(em + d;), Λ'»TE(«)[(e 1+dt)Λ- Λ(em + dJ])|

£'|d/C(m)(E'). (3.2)

Then Theorem 2.4 holds.,

Proof. It is easy to see that {(el + df ) Λ ••• Λ (em + d^)} span Λw(Rm). Moreover, for
any finite spanning sets S1 and 52 in a vector space, we have for all A

sup \(φ,Aιl/)\^c\\A\\
φeSί ,φeS2

for some c. Thus, the hypothesis shows that γ(E) ^ J In \E - E'\άk. We already noted
the opposite inequality above. Π

Given E fixed and d^, . . . ,d£ we can find W(0), a non-necessarily symmetric

matrix on [R", so that (5(0) = ί 1 maps d to df 4- ef and similarly, we

can find W(n + 1) so Q(n + 1)' (note the transpose) maps d; to — (df 4- ef). Then

= |(dt Λ - Λ dmΛ"[β(rc + IJT^QίOJld! Λ - - Λ dm)|,

so, by the Thouless argument, the log is just

"£ ln|E - £jl - (n + 2) j ln |£ - £'|^(m);n(E')?

j = ι

where £" are the eigenvalues of the operator on /2( - 1,N + 1 ;Cm) with "potential"
W(0) and W(n + 1) at the ends, vanishing boundary conditions at — 2 and n + 2 and
the usual potential at 0,1,. . . ,n. The required inequality (3.2), and thus Theorem 2.4,
then follows from the following two lemmas.

Lemma 3.3. As n-»oo, άk(m).n as a measure on C converges weakly to dk(m).

Lemma 3.4. Ifdμn and dμ are measures on C supported in {t\\t\ ^ R}for some R, and
dμn-^dμ weakly, then for any E

ΪΪ5 l\s\\E-Et\άμn(Et)^ \\n\E - E'\άμ(E'\
n-> oo

Proof of Lemma 3.4. Let /ε(E') - ln|JE - £'| if \E - E\ ̂  ε and ln|ε| if \E' - E\ ̂ ε. By
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the weak convergence and the support hypothesis,

S fε(E')dμn(E')^ $ fe(E')dμ(E').

But In |E — E'\ ̂  fε(Ef), so

ΠE J ln|£ - E'\dμ(E') ^ ΠE ί fε(E')dμn(E')
H-> oo H-» oo

= J fε(E')dμn(E').

Now take ε|0 using monotone convergence to obtain the desired result. Π

Proof of Lemma 3.3. Let Ej be the eigenvalues of the problem defining d/c, and let Ej
be the eigenvalues of the problem with the correct potential at 0 and n+\. We need
only show that

n + 2

or equivalently, (3.3) for m = 0 and

1

n + 2.j
0. (3.4)

When m -0, (3.3) just says that (l/(n + 2))Tr(Hj - flj) ->0, which is immediate since
diagonal matrix elements are equal for all sites at least a distance ̂  from the ends and
matrix elements are bounded. To prove (3.4), we proceed as follows: Since E is

1
bounded and \zm - Z"\ ̂  \z - z\m(\z\ + \z\T~1 , (3.4) follows from - £ (Im^l -» 0,

which follows (by Schwarz) from

1
->0. (3.5)

There exists an orthonormal basis ("Schur basis"; see e.g. [14]), so that

J = (q>j9B<pj). Thus

is bounded, so (3.5) holds. Π
We end this section with a series of remarks outlining the proof of Theorem 1.2,

weakening the hypothesis that / be bounded to the requirement that / satisfy
E(ln(|/| + 1)) < oo. Recall that the potential is defined by vω(n) = f(Tnω).

(1) The condition is natural, since if dkε(E) denotes the density of states for the
operator εh0 + υω, then J hι(|E'| + l)dk0(E') = (ln(|/| 4- 1)). Furthermore, since
— 2v + vω ̂  ft0 + vω ̂  2v + υω9 for any bounded monotone function g,

J g(E' - 2v}άkQ(E') g J g(E')dk(E') ^ f g(E' + 2v)dk0(Ef).

It follows that

jln(|FH-l)d/c(£')<oo. (3.6)
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(2) The proof of Lemma 1.5 must be modified to exclude the conditions
on the boundedness of the support of dμ. It suffices to bound the integral in (1.7) by
Jln(|E'| + l)dμ(E')< oo. Hence the extended version of Theorem 1.2 will follow
once the positivity of J ln|£ - E'\dk(E'\ ImE > 0, is established.

(3) We may make approximations to the integral J ln| E — E'\ dk(E') by modifying
f(ω) as follows: Let

(7(ω) if |/(ω)|^M
fM(ω)=< M if f(ω)>M

I- M if f ( ω ) <-M.

Theorem 1.2 implies that j ln |E — E'|d/cM(E') ̂  0, so we need only show

that lim $ln\E-E'\(dk(E')-dkM(E')) = Q. The bound (3.6) allows for
M^oo

each fixed E a choice of cutoff R, uniformly in M-»oo, such that

I J ln\E-E'\(dk(E')-dkM(E'))\<ε. Thus we only need address the weak

convergence of the measure χ^R^d^E') — dkM(E')\
(4) We now address the weak convergence of (dkM — dk) by first restricting the

operator to a finite region A c /v, and then taking limits. Denoting hΛ and h* the
operators with potential v and vn respectively, restricted to the region A, we have

Tr
1 1

= E

^ const E(—τ|Trχ>-ί;M)|

^const|J(d/cO M(£')- dk0(E'))\,

which tends to zero as M -> oo. This implies the weak convergence of (dkM — dk) to
zero.

(5) For simplicity, the above procedure avoids proving the Thouless formula for
the strip for unbounded potentials, but with straightforward estimates and the
bound (ln(|/| + 1)) this can be done as well.
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