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We study eigenvalue problems for operators H0 + tiP', where  the per turbat ion 
series is finite order  by order  bu t  divergent for any ft. We prove that, under  
suitable conditions, the series nevertheless determines the level uniquely [and 
is not  merely asymptotic] because some control of the remainder  term, RN,  
uni form in N is present;  in fact, for fi real, positive, and small, the perturbat ion 
series is actually Borel summable.  We discuss applications to finite-dimensional 
oscillators and spatially cutoff field theories already announced plus some 
additional examples. 

1. INTRODUCTION 

One is faced often, particularly in physical applications, with a 
perturbation problem of finding eigenvalues of operator sums H 0 -]-/3V, 
where the perturbation series are finite term by term but divergent 
for any value of/3. The usual interpretation of such a series is that it is 
asymptotic 1, but we are interested here in answering the more ambitious 
question of whether the eigenvalues might possess some additional 
property which allows one to determine them uniquely from the 
Rayleigh-Schr6dinger perturbation series. We have in mind using the 
following criterion of Carleman [2]: 

CARLEMAN'S THEOREM. Let g(z) be a function analytic in a sector, 
S = {z l0  < I z l  ~ B ;  [ a r g z l  ~ r / 2 +  e},for some B, e ~ O. Sup- 
pose, for  all z ~ S and all n, ] g(z)l ~ b~ I z ]~ where ~ b~ 1/~ = ~ .  Then 

* Research sponsored by the Air Force Office of Scientific Research under  Contract  
AF49(638) 1545. 

1 For  cases where this can be proven, see Kato [9, 10]. 
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g(z) - -  O. In particular, i f  f is analytic in S and obeys the strong asymptotic 
condition 

N 

If(z) -- ~ a~z~] < CaN+'(N + 1)[Jz I n + '  (1) 
n 0 

for all N and all z c S, for some formal series ~. anz ~, then f is uniquely 
determined by the fact that it obeys (1) for some C, a. 

Actually, if f obeys condition (1), it can be recovered explicitly in 
{z] 0 < ]z[  < B; ] a rgz [  < c} by the method of Borel summability 
(Watson's theorem; see, e.g., Hardy [6]). However, we regard this as 
of secondary importance to the fact that when an energy level obeys (1) 
[with f = the level; z = fi and a~ = the Rayleigh-Schr6dinger coeffi- 
cients], the level is "determined" uniquely by the Rayleigh-Schr6dinger 
series. 

Recently, Graffi, Grecchi, and Simon [5] have announced generalized 
Borel sunamability for finite-dimensional anharmonic oscillators [14] 2, 
and Simon [15] has announced a similar result for the ground state 
energy in spatially cutoff (¢4)2 field theories [4]; in both these cases, 
the perturbation series is known to diverge [1, 8, 14]. It seems worth 
while to present detailed proofs of the results sketched in [5] and [15] 
in the context of abstract Hilbert space operators, H 0 and V, and this 
is our goal here. To give the flavor of the type of results we shall prove, 
let us quote one of them: 

THEOREM. Let H o and V be positive self-adjoint operators with 3 
C°°(Ho) C D(V)  and V[C°°(Ho)] C C°°(Ho). I f  there are constants, C, n so 
that 

Jl(Ho + ~)m V~ II < C II(Ho + n) ~+~ ¢ [1 

for all m = O, 1, 2,... and all ¢ E C~(Ho), then any isolated, nondegenerate 
eigenvalue of H o has a Borel summable Rayleigh-SchrOdinger series, 
summing (for 0 < fi small) to an eigenvalue of H o + f lV (defined by a 
Friedrich's extension). In particular, the eigenvalue is "determined" by 
the perturbation series and a strong asymptotic condition of type (1). 

2 I t  was  ear l i e r  p r o v e n  b y  Loeffe l  et al. [11], t h a t  the  leve ls  of  o n e - d i m e n s i o n a l  x 4 a n d  x 8 

osc i l l a to rs  h a d  c o n v e r g e n t  d i agona l  Pad6  a p p r o x i m a n t s ;  so, in  pa r t i cu l a r ,  i t  was  k n o w n  
in th i s  case t h a t  the  leve ls  w e r e  d e t e r m i n e d  b y  t h e i r  p o w e r  series.  

D ( A )  = d o m a i n  of  t he  o p e r a t o r  ,4; C ~ ( A )  = 0~=1 D(~t~) " 
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2. T H E  M A I N  THEOREM 

Our main theorem has an embarrassingly simple proof but  is also 
something of a cheat since the conditions are picked precisely to allow 
a simple proof. In Sections 3 and 4, our goal will be to find conditions 
on operators H 0 and V which are more easily verifiable and which 
imply the conditions of our main theorem. 

THE MAIN THEOREM (THEOREM l). Let H o > 0 and V be self-adjoint 
operators so that V leaves C°°(Ho) invariant. Let £2 o be the eigenvector 
for an isolated nondegenerate eigenvalue, E o of H o . Suppose: 

(a) For [3 in the cut plane (i.e., fi 5/- a negative real), H o -~ [3V 
defined as a quadratic form on C°°(Ho) has a form closure which is an 
analytic family in the sense of Kato [9] 4. 

(b) For any E ~ spec(Ho), [[(H o -1-/3V --  E) -1 --  ( H  o --  E) -1 I] -> 0 
uniformly as I fi l + O in some sector {fi[ [ argf i [  < ~ r / 2 @  e} for some 
e > 0 .  

(c) For some C, a o , and a and all N 

II[r(Ho - -  E ) - I ]  2v D0 [] < Cao NN! 

for all E with ] E -- E o ] = a, where E o is the only point of spee(Ho) in 
{ E l l  E - -  EoL <~ a}. Then the Rayleigh SchrOdinger series for the 
perturbed level E(fi) with E(O) = E o and for the normalized perturbed 
eigenvector D(~) with D(O) = D o are finite term by term and are Borel 
summable to E(~), D(fi) for ] fi [ small; [ arg fi ] < e. In particular, E(fi) 
is uniquely determined by the Rayleigh-Schrddinger series and a strong 
asymptotic condition of type (1). 

Note. We intend Borel summabil i ty of D(fi) to mean Borel sum- 
mability of the numerical function <¢, D(fi)> for any ¢. 

Pro@ Because of the norm resolvant convergence (b), the isolated 
nondegenerate eigenvalues of H 0 are stable in the sense of Kato [9, 
pp. 437-439], i.e., for I~ ] sufficiently small with I arg fi ] < ~r/2 -~ e, 
H o + f iVhas  only one point of its spectrum in the disc {Ell E-E01 ~< a}, 
and the projection 

(Ho + ~V --  E)-I dE P(fl) ~ ( 2 ~ i )  ~ 1  
d [E-~0l=a 

4 Tha t  is for h ~ spec(Ho + fioV), (H0 ÷ flV --  )0 -1 is a bounded-operator-valued 
anaIytic function for/3 near P0. 
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onto the corresponding eigenspace is one dimensional. To prove a strong 
asymptotic condition on E(fl) and (¢, X2(~)), we need only prove a 
bound on the remainder to the asymptotic series for P(fi)£2 o of the form 

and then use 

and 

N 
II P(15) no - ~ ~n~" II ~ CoaN+a( N 4- 1)! ]/3 ]u+~ (2) 

,#z=0 

E(fi) = E o 4- tS(V~Jo , P(15) Qo>/<~2o, P(15) Oo> 

(¢ ,  ~ ( 3 ) )  (¢ ,  P(fi) tgo>/<~o, P(fi)/20)1/2. 

To prove a bound on the remainder of the asymptotic series for P(,8)12o, 
we need only obtain a bound on the remainder of the series for 
(H 0 + f i V - E ) - l ~ 0  uniform in E with I E - - E o l  = a  and then 
integrate. This is the critical simplification, for the asymptotic series, 
for the resolvent is just a geometric series and we have thereby eliminated 
all the complicated additional terms in the perturbation series for E 
[9, pp. 83-84]. We thus write: 

N 
(Ho + f l V  - -  E)  -1 £2 o = ~ ( H  o - -  E)-I[ - V ( H  o - -  E)-a] *~ tinY2 o 

~ 0  

4- fim+~(H o 4- f l V  - -  E ) - I [ - - V ( H o  - -  E)-I] N+I ~Qo- (3) 

Since V ' C ° ~ ( H o )  --+ C~°(Ho); (H o --  E) 1: Co~(Ho) __~ CoO(Ho), the geo- 
metric series with remainder is valid if both sides are considered as 
maps of C ~ ( H o )  into ~ .  Since D o ~ C°°(Ho), (3) is valid. Thus, we 
need only prove for ]fi ] small, I arg fi ] < 7r/2 q- ~, that 

I[(H o 4- f l V  - -  E)-~[V(Ho - -  E)-~] N+I ~2 o [1 ~ Da~o+~(N + 1)! 

uniformly for E with [ E -- E o [ = a. Bu tby(b) ,  [[(H o + f i V - -  E)-I[] < F ,  
some constant independent  of fi as long as [ ]3 I is small and in the sector. 
Thus  using (c) and letting D = CF,  we obtain the required bound on 
the remainder of the asymptotic series. 

3. CONDITIONS (a) AND (b) 

We give in this section more manageable conditions on the operator 
H 0 and V which imply conditions (a) and (b) of the main theorem. 
The theorem for condition (a) is simple: 

6o7]7]3-3 
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THEOREM 2. Let H o and V be self-adjoint operators with quadratic 
form domains Q(Ho) , Q(V) .  Suppose H o > O, and V: , V_ are the positive 
and negative parts of V, i.e., V = V + - -  V ; V~ , V_ >/0;  V+V = 0 .  
Finally suppose 

(i) O(Ho) n 9 ( V )  is dense. 

(ii) For any fi ~ O, H o - - f i V  is bounded below as a quadratic 
form; i.e., V_ is a small form perturbation of H o . 

T h e n  Ho ~-/3V defined as a quadratic form on Q(Ho)c~O(V ) = 
O(Ho) n Q(V+) is a closed sectorial quadratic form 5 for any fi in the 
cut plane and H o ~-/3V is an analytic family of type (B); in particular 
[9, pp. 393-403], condition (a) of Theorem 1 holds. 

Remarks. 1. The  estimates C 0 ~< H o + / 3 V _  for all /3 > 0 imply 
estimates H 0 ~< 2(H0 -5 /3V) + a~ ; I V I <~ 2 [/3 1-1 (Ho + f iV) ÷ ee for 
/3 > 0. These estimates are essentially the reason the form is closed. 

2. Once the form is closed, the analyticity is immediate since 
H o + / 3  V clearly has analytic expectation values. 

3. This result is proven by Simon and Hoegh-Krohn  [16]; so 
we only sketch the proof below. 

4. It  is an open question whether  (ii) can be weakened to merely 
require H o -~ /3V bounded below. 

Sketch. 6 Let 

/~ = I/3 [ ei°(i 0 I < ~)- 

One proves Re(e-i°/2(¢, (H 0 + ]3V)~b)) is bounded below as ¢ runs 
through all ¢ c Q ( H o ) n  Q(V)  with [~bl = 1, and the argument  of 
b + e ~0/~.(¢, (H ° _~/3V)~b) can be made to lie in [-- [ 0 i/2 --  3, I 0 L/2 --  3] 
for arbitrary 8 > 0 by taking b large. The  idea is that arg(e~°/2@, L/3 ] V+¢)) 
is 0/2 and, by taking b large and using (ii), arg(e-i°/z@, (Ho+/3V_)¢) -t- b) 

5 O u r  defini t ion of  sector ial  is sl ightly m o r e  general  t han  Kato ' s ;  we  say a closed form,  
( ' ,  H "), is sectorial  if there  is a real ¢, a 0 < ~r and  a Z c C wi th  

I arg(e~¢( ~2, ( H  -~ Z)f2>)l < 0 for all £2 ~ 24C 

Kato  requi res  ¢, Z = 0. 
6 F o r  details, see [16]. 
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is in (--0/2 -- S, 0/2 q- 3). Thus,  H 0 q- ~V is sectorial; to prove it is 
closed, one must only prove if 

~m ~ 9(1to) n Q ( v )  and ((~,~ - -  ~ ) ,  H o ( ~  --  ~ ) )  -+ 0; 

( ( ~  -- ~ ) ,  V(~,~ -- ~ ) )  ~ 0 and II ~m - @~ II ~ o; 

then ~ = lim ~ c ~(H0) n ~(V). This follows since ~ E O(H0) by the 
H0-convergence and the fact that H 0 is closed; since V is a small 
perturbation of H0,  ~ ~Q(V_) so ( ( ~ m -  ~ ) ,  V+(~ ,~ -  ~ ) ) ~  0 so 
that ~ ~ 9(V+). Thus,  ~ ~ Q(I V I) - ~(V)- 

For condition (b) of the main theorem, we have two distinct subsidiary 
methods of verification: the first is a generalization of the condition used 
in [15] for (44)2, and the second is a generalization of the method used 
for x 2"~ perturbations in [14]. 

THEOREM 3. Let H o and V obey the conditions of Theorem 2 and 
suppose in addition ] V I ~ ~Ho 2 + 7 for some ~, 7 (equivalently, [ V ]1/2 
is a small operator perturbation of Ho). Then condition (b) of the main 
theorem t, olds ( for  any sector, I arg ~l  ~< ~ < ~). 

We first prove a lemma: 

LEMMA 3.1. Let the condition of Theorem 2 hold, and let 0 < ~r be 
given. Then there are B, E and a, so that I argfi]  < O, 0 < [ fi I < B 
imply: 

(i) 

(ii) 

Proof. 

E ¢ spec(H o q-/~ V), 

Ill r 11/2(Ho + ~ r  - E )  - 1  Jl ~ a I/3 I-1/2. 

P i c k  0 < ~ < min(Tr/2, 7r -- 0). Then  geometry (Fig. 1) shows, 

I~1 tan "r/ 

FIGURE 1 
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for any/3 with [ arg/3 i < 0 and any q~ real, [ arg(/3 q- [/3 ] tan nd*)l  < r~. 
Let  7 = ]/3 [ tan ~7e i*. Then, by writing 

Ho +~V +TL V[ = Ho +(~- -7)  V_ +(8 +7) V. 

and using the technique of the proof of Theorem 2, we see that this 
operator is uniformly sectorial if we keep I/3 I small with/3 in the sector 
l arg/31 < 0. Thus for some b and some 60 independent of/3 in the 
region and of ~, Re((~b,(H o - / / 3 V - k y [  V [ ) ~ ) e  i*oq-b@,~b)) > /0 .  
Equivalently: 

] fi [ tan ,/@, [ V[ ~b) ~ Re(@, H o + fiV~b) e ~"o + b@, ~b)). 

In Theorem 2, we saw H o + / 3 V  is uniformly sectorial for /3 in the 
sector; so (H o q - / 3 V -  E) -1 is uniformly bounded for suitable E; thus, 
letting ~ = (H 0 @/3V -- E)-16, we see 

il ~ 112{[](Ho +/3V - -  E)-I*(Ho -]- f l V ) ( H  o @ [3V - -  E)  ~ ll 

+ b II(Ho -+- ~ v  - E) -~ II 2} ~ C [[ q~ []2 

independent  of/3 in the sector. 

Proof of Theorem 3. By standard arguments [9, pp. 173-174], we need 
only prove [[(H o -k/3V -- E) -1 -- (H o -- E) -1 II --+ 0 uniformly as ]/3 ] ~ 0 
in the sector ] arg/3 I < 0 for one fixed E, say the E of the lemma. Write 
V = U I g l with U unitary and write: (H 0 @ / 3 V -  E) - t  -- (H o -  E) 1 = 
/3(H o -- E) -1 [ V I~/~ U I V I1/2 (H o 4- fiV -- E)-L By assumption, 
( g  0 -- E) - l [  r I1/2 is bounded and ]/3 ]~/21 V 11/2(Ho - 5 / 3 V  --  E) 1 is 
bounded by the lemma; so the norm of the difference goes to zero at 
least as fast as [/3 ]1/2. 

There is a second result allowing worse growth of V relative to H 0 7 
but requiring more linking of H o and V in the sense of bounds on the 
commutations: 

THEOREM 4. Suppose H o and V obey the conditions of Theorem 2 and 
that V"  C~(Ho)--+ C*(Ho). Suppose also (Va) (3b, C) so that on 
C~(Ho) × C°°(Ho) and for all 0 ~ ~ ~ C, 

E.g., V ~ x~'~;Ho = P 2  I-  x". 
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(i) :~e[H~o/~, [H~o/2, V]] ~< a(Ho ~ 4- e~V 2) + b, 
(ii) 4-ie[Ho, V] <~ a(Ho 2 4- e2V z) 4- b, 

(iii) [ V[a/" ~< ~(Ho z 4- 1)for  some integer n. 

Then  condition (b) of the main theorem holds in any sector 
[ argfi ] ~ 4  ~ 7r. 

We prove this theorem by first proving the lemmas: 

LEMMA 4.1. I f  (ii) holds, then for any ¢ > O, there is a B and a d 
such that for ] fi j < B and ¢ < [a rg f i [  < 7 r - - ¢ :  

Hg + 15 12 V 2 ~< d[(Ro + 5V)+(Ho + 5V) + 1]. 

Remarh. This is an abstraction of a result in [14, Section II.9]. 

Proof. 

(Ho + 5V)*(Ho +/3V) = Ho 2 + 15 12 V2 + (RcS)(HoV + VHo) + Imp[Ho, V] 

= IRES] [ H o W l 5 1 V ] 2 +  (1 IRe/31) 
PSI 1/31 

× (Ho~+J/312V~)~ ]Im/3~{]/3][H o V]} 
[5] 

> 1/2 (1 I Re 5 I) (no + re 12 v2) + e  
151 

if ¢ < ] argfi ] < 7r - -  ¢ and I/? [ is small, where, in the last step, we 
used (ii) with a = (2 s ine)  -1 (1 --  cos¢).  

LEMMA 4.2. I f  (i) and (ii) hold, then for any ¢ < ~r/2, there is a B 
and d such that for 1,8 I < B and I arg]3 ] < ¢: 

Ho 2 + 15 I s V 2 ~< a[(Ho + 5V)+(go + 5V) + 1). 

Remarh. The  double commutator  technique we use is due to Jaffe [7]. 

Proof. 

(H o 4- fiV)+(Ho + fiV) = Ho 2 q- ] fi 12 Vz + Re fi(HoV + VHo) q= Im/3[Ho, vJ 

= Ho2 + ]/3 [2 V 2 + Re 5[H~o/2, [Hi/Z , V]] 

=/= ImS[H o , V] + 2 ReSH1/2VH~o/2 

> ½Ho 2 + ½ 18 12 W --  2b 

using (i) and (ii) with a = 1/4 sin ¢. 
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Proof of Theorem 4. Write 

[](Ho +/3V -- E) -x -- (H 0 -- E) -1 ][ 

~- I/3 11/̀ ' (ll(H0 +/3V -- E) 1 i/3V [1-1/~ II)(ll I V tl/~ (H0 - E) -1 It). 

By the quadratic estimates of Lemmas 4.1 and 4.2 and by (iii) each 
(tl " tl) factor is bounded; so the norm of the difference goes to 0. 

Remarks. 1. In case V ~< ~(Ho2q - 1) and (i) and (ii) hold, the 
difference of the resolvants goes to zero as/3. 

2. In [15], the method of Theorem 3 was used for spatially 
cutoff (¢~)~ theories. Alternately, one can prove the commutator estimates 
(i) (see [4]) and (ii) of Theorem 4 and conclude 

I](Ho +/3V -- E) -1 - -  (H o -- E) -1 II = 0(/3) 

following Remark 1.8 

4. C O N D I T I O N  (C) 

Before turning to proving (c) for weaker requirements, we should 
like to give arguments as to why (c) is not only sufficient for a strong 
asymptotic condition to hold, but  almost necessary. For, if a strong 
asymptotic condition holds, the Rayleigh-Schr6dinger coefficients obey 
I a~ ] < Dorian! automatically. These a~ are obtained from the geometric 
series for the resolvant by integrating in a circle and then dividing 
a series for (f20, VPDo) by a series for (O0, Pf2o). I t  is, of course, 
possible to have condition (c) fail but still have I a,, I < Dcr~n! but  only 
if there are considerable concellations, either in the integration or the 
division--thus we conclude the usual situation is to have (c) when a 
strong asymptotic condition holds. 

The  simplest theorem about condition (c) is: 

TH~OaEM 5. Let the conditions of Theorem 2 hold and suppose an 
operator, C, exists so that: 

(1) C commutes with H o and 0 <~ C <~ Ho, 

s I t  is a p l e a s u r e  to  t h a n k  L o n  R o s e n  f o r  a d i s c u s s i o n  o f  e s t i m a t e  (ii) in  t h a t  case .  
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(2) V :  C°°(C) ~ C°°(C) and for some constants m and d: 

II(C + 1) 3 g¢ [1 ~< d ]l(C n- m + 1) ~+z ¢I] (4) 

for n = O, 1, 2,... and all ¢ E Coo(C). 

Then  condition (c) of the main theorem holds for any nondegenerate, 
isolated, unper turbed level, ~Q0. 

LEMMA 5.1. I f  (4) holds for n = a, b two real numbers, it holds for 
all a ~ n ~ b. 

Proof. This is a simple application of the standard interpolation 
trick of Thorin  and Stein. (4) is equivalent to 

f(n) -- (C + 1) ~ V(C + m + 1) -~-~ 

being bounded with If(n)[ ~< d. Now f ( z )  is analytic in the strip 
a < R e z  < b with If(z)] ~< d if R e z  = a,b.  It  thus follows that 
Jf(z)l <~ d for all z in the strip (by the maximum modulus principle). 

Proof of Theorem 5. We first prove for any k and n = 0, 1, 2, . .  

[l(C + l + k)~/2 r@l! <~ dll(C + k + m + l)'~/e(C + m + l)Z¢ll. (5) 

This  is equivalent to an operator inequality: 

V(C + 1 + h) '~ V <~ d2(C 4- k + m + 1)n(C + m + 1)'. (6) 

To prove (6), we compute: 

V 
4=0 

~< d~j=o'= (~)kJ(C 4- m 4- 1)~+ 4-j (by (4)and Lemma 5.1) 

= d~(c + m + 1)~(c + m + h + 1) n. 

Now write 



250 SIMON 

where 

Wj [C + (j -- 1) m + 1] j-~ V[C + j m  + l]-J+l[C -~/7/ -}- 1] -z, 

Ys : (A - -  E)-a(C @ m + 1), 

Z s = ( C @ m + l ) ( C @ j m @ l )  -~. 

T h e  inequal i ty  (5) says [I Wj 1[ ~< d, and we obviously have ]] Yj I1 = Y for 
some y independen t  of E with  J E - -  E 0 J - -  e. Final ly  I] Z j l ]  ~< 1;  so: 

[[[B(A -- E)-~] ~ D0 [] < (dY) ~ [I(C + n m +  1) ~ ~?o [1 

= (ay)"(nm + c + ~). 

< A(dy)"(mx)" n! 

for suitable constants  A and x. 
Finally,  let us state two more specialized criteria for condi t ion (c) 

to hold which may  be useful  in certain circumstances:  

THEOREM 6. Suppose H o has purely discrete spectrum with eigenvectors 
,('2 o , g21 ,... and eigenvalues 0 < E o <~ E 1 <~ -." and suppose there are 
integers P,  Q so that: 

(i) v~ <~ ~H~ P, 

(ii) (Q~ , vg?r~ ) - -  O i f  [ n - -  m [ > Q, 

(iii) I E . o  l ~(e-1) <~ Cer"n!. 

T h e n  condi t ion (i) of the main  theorem holds. 

P r o @  Le t  us write v~m = < ¢ . ,  Veto 5. T h e n  

k 

Next,  pick ao so I E --  Eol = e implies J E - -  E,~ 1-1 ~ ao[ E,~ 1-1, 
m = O, 1, . . . .  

N o w  consider 

II[v(/Jo - E)-I] N X)o II ~< Y~ I<s?~, IV(H0 - E)-~]~ ~>l 

hr 

< X [ [  [ % % , 1 ( E % ~ - - ~ ) - ~  
m l , . .  ' ~ N  i = 1  
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Because of condi t ion  (ii), there  are fewer  than  (2Q + 1) N te rms  in 
the  sum;  so it is enough  to establish a CaNNI b o u n d  on every  t e rm 

N 
of  the fo rm  I - I i= l  [ Vmimi+ 1 [ [ Emi+ I - -  E 1-1 with r a N +  1 = O. I f  this is to 
be nonzero ,  each mi ~ nO so: 

N N 

* E P _ F - I  

i = 1  i = 1  

N 

~o N [ [  (E,~,+,)J E~,,+, I-' 
i = l  

[ENo I N(P-1) a N ~ C(~%) N N!.  

THEOREM 7. Suppose there exist a positive self-adjoint operator C, an 
integer k, operators V 1 ,..., Vm , and numbers oq ,..., ~m ; dl , '",  dm so that: 

m 
(i) V - -  5Zi=a Vi ,  

(ii) II Vi(C + 1) -~-' IJ ~< ~i, 

(iii) ( C +  1) k ~ ( H  o-¢- l), 

(iv) [c ,  v ,]  = div~ on C°°(Ho), 

(v) [C, Ho] = 0 in the sense o[ self-adjoint operators commuting. 

T h e n  condi t ion  (e) holds. 

Proof. We need  only  prove  a b o u n d  of the fo rm 

]l V,I(Ho -- E) - ~  V~.(Ho -- E) -lg2 o II ~ Ca" n! for [][V(H o --  E)-I] n f2 o I1 

is b o u n d e d  by  m s such terms.  L e t  C(2 o z CoQ o . Wri te  

Vq(H o -- E)-:  .-- V~.(H o -- E)- :  .0 o 

f i  {[V,j(C + 1)-~-1][(C + 1)~(H0 --  E)-I][C + 1]} Y2 0 

fi 
= ~ F v 4 c  + ~)-,~-q[(c + ~)~(Ho -- S)-I] [ 2 d, + ~o 

1 = 1  /,~ 1 

using (IV). T h u s  

t l (v .  ... (Ho - -  E)-I ~o [I 

max ~i)~(sup [l(C + 1)k(Ho --  E) -1 ]l)'( max ] d~ I + Co) nln!- 
i = 1  . . . . .  m IEI-~E i = 1  . . . . .  m 
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5. EXAMPLES 

(a) x4-oscillators [5, 14, 15]. These are the motivating examples. 
For the theory with finitely many degrees of freedom or for the spatially 
cutoff (¢4)2 field theory of Glimm-Jaffe,  all the conditions of Theorem 1 
hold. (a) follows from Theorem 2; in the x4-case, V ) 0 and in the 
(¢4)~ case, one must  appeal to the bound of Ne l son-Gl imm [12, 3] 
(see also [13, lb]). For (b), either Theorem 3 or 4 may be used in either 
case and for (c), it is probably easiest to appeal to Theorem 7 (with C 
the number  operator and k ~ 1 in the (¢4)~ case), although Theorem 5 
can be employed. 

(b) Perturbations of ( p  2 q- x~) k. Let H o = (a*a q- ½)k, and let V 
be any polynomial in a, a t which is of degree 4k or less and which defines 
a self-adjoint operator which is bounded  below (e.g., ( p2 __ x~)k @ ]?x4k). 
Then  the conditions of Theorem 5 are obeyed with C = H 0 and, in 
particular, V ~ C(H  o @ 1)2; so Theorems 3 and 1 may be applied. 

6. A CRITIQUE 

There  is one major weakness in the results we have proven here. 
They  are, in the end, restricted to a very special class of perturbations. 
In the ease where H o ~ C (in the terminology of Theorems 5, 7), the 
perturbation V is restricted to have the property that for some Eo,  
(¢, V¢) = 0 if ¢ = P~(Ho)~b; ¢ : P~I(Ho)¢ with inf~l:yE~ ~ I x - y [ > E0, 
where P~(H) are the spectral projections for H 0 . When H o 7/- C, this 
is no longer strictly true [example: (¢4)2 has V linking states of arbitrarily 
large free energy difference; it is the difference of the number  of particles 
which is bounded],  but  the conditions of Theorems 5-7 are very 
restrictive indeed. 

It would be interesting to know if the Borel summabil i ty of levels 
of H o -~ f iV is stable under changing V by a bounded  operator. This  
would greatly increase the class of perturbations we can treat by this 
method, but  unfortunately the question does not seem answerable by 
the methods of Section 4. 

Of course, the class we consider, while restricted, seems to include 
several cases of direct physical interest. And, in general, our results 
suggest one can hope to determine levels of "singular" perturbation 
"directly" from the perturbation Series. 



DETERMINATION OF EIGENVALUES 253 

REFERENCES 

1. C. M. BENDER AND T. W. Wu, Phys. Rev. 184 (1969), 1231- 
2. T. CARLEMAN, "Les Fonctions Quasianalytiques," Gauthier-Villars, Paris, 1926. 
3. J- GLIMM, Comm_ Math. Phys. 8 (1968), 12. 
4. J. GLIMM ANn A. JAFFE, Phys. Rev. 176 (1968), 1945_ 
5. S. GRAFFI, V. GttECCHI, AND B. SIMON, Phys. Lett. B 32 (1970), 631. 
6. G. H. HARDY, "Divergent Series," Oxford University Press, London/New York, 

1949. 
7. A. JAFFE, Ph.D. Dissertation Princeton University, unpublished, 1965. 
8. A. JAFFE, Comm. Math. Phys_ 1 (1965), 127. 
9. T_ KATO, "Perturbation Theory for Linear Operators," Springer-Verlag, New York/ 

Berlin, 1966. 
10. T. KATO, Progr. Theoret. Phys. 4 (1949), 514; 5 (1950), 95, 207. 
11. J. J. LOEFFEL, A. MAttTIN, B. SIMON, AND A. 5. WIGHTMAN, Phys. Lett. B 30 (1969), 

655. 
12. E. NELSON, in "Mathematical Theory of Elementary Particles" (Goodman and 

Segal, Eds.), Massachusetts Institute of Technology Press, Cambridge, Mass., 1966. 
13. I. SEGAL, Bull. Amer. Math. Soc. 75 (1969), 1390. 
14. B. SIMON, Ann. Physics 58 (1970), 76_ 
15. B. SIMON, Phys. Rev. Lett.  (December, 1970). 
16. B. SIMON AND R. H6EGH-KROHN, jr. Func. Anal., to appear. 


