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The analysis of discrete Schriidinger operators of the form (ha)(n) = u(n + 1) + u(n - 1) + 
R tan(zan + f?) u(n) is discussed. Depending on Diophantine properties of a, the spectrum may 
be dense point, singular continuous or a mixture of the two. 0 1985 Academic Press, Inc. 

1. INTRODUCTION AND RESULTS 

Exactly solvable models are useful laboratories that can teach one both positive 
and negative lessons: Certain phenomena that one might not expect or about which 
one might be unsure can be examined, while, on the other hand, one can find explicit 
counterexamples to “reasonable” conjectures. Of course, one must decide which 
aspects of the model are typical and which are artifacts of its special elements. 

Thus the discovery of an exactly solvable almost periodic Schradinger operator by 
Grempel, Fishman and Prange [ 19,301 (henceforth GFP) is very significant. It is 
their model, which we dub the Maryland model, that we wish to study here. The basic 
model is the Jacobi matrix (= discrete Schriidinger operator) on I’(Z): 

@u)(n) = u(n + 1) + u(n - 1) + A tan(nan + 6) u(n). (1) 

In (l), 01, A, 8 are parameters with 8 # n/2, n/2 f a, n/2 f 2a,... (so the potential is 
everywhere finite). We always take 12 0 (if A< 0, use n -+ -n symmetry). The 
potential V(n) = tan(naarn + 0) is technically not almost periodic since V(4) = tan(#) 
is not continuous or even in any Lp (p > 1) space, but it is almost periodic in some 
kind of extended sense. However, one should bear in mind that V is unbounded so 
even small 1 isn’t “weak coupling.” 

In an analysis, which should become a textbook example of how to conquer small 
divisors, GFP show that when cz has suitable Diophantine Properties, h has an 
explicit set of exponentially localized states. Their analysis is essentially rigorous. 

In this paper, we want to discuss a number of aspects of the model not treated in 
GFP. We found the bulk of these results in the fall of 1982 but did not publish them 
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at the time several reasons. At roughly the same time, Pasteur and Figotin (PF) 
obtained a number of results about the model which they announced and sketched in 
[27]. There is considerable overlap of results (but not methods) between their work 
and ours, and we will point out the overlap where it occurs. We especially draw the 
reader’s attention to the elegant formula PF obtain for the Green’s function. 

The themes we will treat here include: 

(a) Completeness of the eigenfunctions found by GFP is not established in 
[ 19,301. We will prove it here. We note that for sufficiently large A, results of 
Bellissard, Lima and Scoppola [3] also yield completeness. Also, Pastur and Prange 
[28] have informed me that one can deduce completeness from the PF Green’s 
function formula. 

(b) We want to discuss what happens when a does not have typical 
Diophantine properties (see below for the meaning of this). In later papers [29, 301 
written subsequent to our own work on this case, GFP did discuss such a; as we will 
discuss in Section 4, while both our work and that in [29] provide some insight into 
such a, the most basic questions about the nature of the eigenfunctions remain open. 
PF [27] also discuss non-Diophantine a’s and obtain results similar to ours in this 
case. Berry [6] also has results on this class of a. 

(c) We want to note that the analysis works in arbitrary dimension. Indepen- 
dently, GFP [ 171 and PF [27] have recently also discussed this case. 

(d) We want to discuss certain analyticity questions involving both analyticity 
in ;1 and analyticity of the Fourier transform of the eigenfunctions not addressed in 
[301. 

(e) GFP discovered their model in their study of certain time dependent 
problems (see also [ 161) and they obtain the basic equations by going back and forth 
between the time-dependent problem and equation (1). We want to present a more 
straightforward analysis also found by PF (271. 

GFP correctly compute the density of states in [ 19,301, although their calculation 
is not rigorous for two reasons: (a) Their calculation only uses the eigenfunctions 
they find and since they haven’t proven completeness of these eigenfunctions, they do 
not know that they have properly counted states (b) The real density of state is 
normalized by counting states in n-space boxes; GFP label eigenfunctions in a 
natural way and they count states in label-space boxes. As for point (a), we will 
prove completeness in Section 2. As for (b), it is important that the eigenfunction 
labeled by n is in some weak sense localized near n (see Eq. (9) below+nder such 
conditions, we will show (also in Section 2) that label space normalization yields the 
correct density of states. Thus, in Section 2, we provide a rigorous justification of the 
GFP calculation of the density of states (at least if a has typical Diophantine 
properties; once one has the density of states for such a, one can deduce it for all 
irrational a since the density of states is continuous at such a-see [2, 151). 

While one can justify the GFP calculation of the density of states, we found a 
simple, direct calculation [33] which “explains” why the density of states in the 
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model agrees with that in the Lloyd model, and which works directly for all irrational 
a. PF [27] also have a direct calculation of the density of states. 

It is actually useful (although not essential) to know the density of states a priori, 
i.e., before trying to find eigenfunctions of (1). We therefore begin by quoting the 
result from [33]. We suppose that the reader is familiar with the definition of the 
integrated density of states (ids), k, and Lyaponov exponent, y (see, e.g. [2]). It will 
also be useful to consider the v-dimensional analog of (1); the operator on Z2(Z”) 
given by 

@u)(n) = x u(n +j) + 1 tan 71$ ajnj + 0 u(n). 
ljl = 1 ( 1 i 

We recall that in v-dimensions, the free ids (i.e., k when I’= 0), is given by 

The free Lyapunov obeys (V = 1) 

cash J+,(E) = 1, PI < 2, 

= f IEI, IEI > 2, 

or for short 

coshy,(E)=f[]l+fE]+]l-+E]]. 

Then, it is proven in [ 33 ] that 

THEOREM 1. For any 1, v, 19 and any {aI ,..., a,} so that {l,a, ,..., a,} are 
independent over the rationals, one has that 

k,(E’) dE’. 

In one dimension, the Lyapunov exponent is given by 

YO (E’) dE’. 

Remarks. 1. Equation (4) follows from (3) and the Thouless formula. 

2. One can write y* in “closed” form, viz: 

cash y,(E) = &/(2 + E)’ + A* + &2 -E)’ + A’]. 

In one dimension, one can also write k, in closed form 

k,(E) = 4 + K’ Arc sin(E/2 cash y*(E)). 

(4) 

Pa) 

Pb) 
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Equation (5) can be proven in many ways; e.g., one can compute the invariant 
measure for the Lloyd model and obtain (5) from that ([20]). As we will see in 
Section 2, one can write (5) in an especially compact form; Let 

Then ]z~] < 1 and 

zA = -exp(-y, + ink,). PC) 

z,+z;‘=E+iA. (54 

3. It is remarkable that k is independent fo a! 

4. Since spec(H) = {E 1 k(E + E) - k(E - E) > 0 for all E > 0}, (3) shows that 
for I # 0, spec(H) = (- co, co). The spectrum is not a Cantor set so this “typical” 
aspect of a.p. Jacobi matrices (see [25, 11, 1, 4, 321) is absent. 

5. In one dimension, y > 0 for all E. This implies [20, 26, 23, 34, 121 there is 
no a.c. spectrum (Z “extended states”) no matter what the value of a (V = 1). 

6. Notice that E, dE/x(E* + A’) is exactly the density for A tan(o) if 8 is 
uniformly distributed. 

It is an important remark of Sarnak [3 1 ] that spectral properties of a.p. 
Schrodinger operators should depend on Diophantine properties of the frequencies. 
This has been realized already in the almost Mathieu equation (see [2]) and will be 
illustrated more completely in the Maryland model. The measure of irrationality we 
will use is 

L(a) E JLl - 12-l ln(] sin(nan)]). (6) 

This measures the degree of rational approximation, since if a --p/q is small, then 
]sin(xaq)] is approximately xq ]a -p/qI. L(a) > 0 means there is a sequence of 
approximants p,, /qn with 

la -p,/qnI N CLqn. 

What we have called “Liouville numbers” in [2] is just {a I L(a) = co}. It is a dense 
G, . Standard Diophantine analysis shows that {a ] L(a) > 0} has Lebesgue measure 
zero. The theory of continued fractions [22] can be used to show that for any fixed 
L,, (a ( L(a) = L,} is a dense, uncountable set. 

The analysis of GFP is when L(a) = 0. The basic result, proven in Section 2, is 

THEOREM 2. Let v = 1, L(a) = 0. Then for any A # 0 and any 0, h has a 
complete set of eigenfunctions u)m,n,e(.)(m = 0, rt l,...) with eigenvalues e,,,(A). These 
eigenfunctions and eigenvalues are real analytic in A for A# 0 and are uniquely deter- 
mined (up to phase) by this analyticity and 
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Moreover 

lim Inl+m InI-’ WCo,,,,,(nl* + Irpm,A,& + 1)l’l = -r@m,o@>)e (7) 

Remarks. 1. While our presentation will differ from that of GFP, this result and 
the overall strategy of proof is due to GFP except for one result: The completeness of 
the eigenfunctions. 

2. Of course, the point of things is not merely the existence of a, and e, but an 
explicit formula for them. e is determined by 

k,(e,,,(A)) = am + - - - (8) 

where (x),.= fractional part of the real number x. Of course, the eigenvalues are dense 
by (8) and the density of {(am + l/2 - 19/~)~1,“=, (or alternatively by 
o(H)= (--co, co) and completeness). We will refer to (8) as the quantizafion 
condition. The formula for v, (see Section 2) is quite complicated. 

3. q,,, is exponentially localized near m in the sense that 

lfp,(n)l < Ce-A’n--m’ (9) 

where C < 03, A > 0 can be chosen uniformly for A, a, 0 fixed and all m with e, in a 
fixed compact set. 

There is one important lesson to learn from the above: 

Lesson 1. Dense point spectra in almost periodic problems tend to move 
analytically in L. 

Since the point spectra are dense, this is far from obvious from a perturbation 
theoretic point of view (even assuming that one can justify perturbation theory). 
Second order perturbation theory C,,, (e, - e,)- ’ [(co,,,, Vqn)lz is not trivially finite: 
Because of Eq. (9) one can see it is finite but it is not easy to imagine a proof of 
analyticity by direct control of the perturbation series. Craig [8] has informed us that 
in the regime where his KAM procedure [9] is applicable, one obtains eigenfunctions 
analytic in A. 

In Section 2, we will also note the v-dimensional analog of Theorem 2: 

THEOREM 3. Let a ,,..., a, be irrational numbers obeying 

I I i nisi > C(ln,I + a.+ + In,l)-K 
i=O 

for some fixed C, K and all (no, n, ,..., n,) # (0,O ,..., 0) where a0 = 1. Then for any 
A# 0, and any l3, h has a complete set of eigenfunctions u),,,&.) (m E Z”) with 
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distinct eigenvalue e,,,(A). Th y e are analytic in A and uniquely determined up to 
phase by 

Remarks. 1. Equation (9) (with m, n now in 2”) continues to hold. 

2. Since V only depends on the sole direction a . It, one might be surprised by 
the exponential decay in directions perpendicular to a . n. The lattice is sufficiently 
effectve at coupling things in the orthogonal directions. 

3. Spencer [36] has suggested that multidimensional random Hamiltonians 
have simple spectrum. The above supports his suggestion, at least in the localized 
state regime. 

4. A moral one might draw from one dimension where random (iid) potentials 
always localize (see, e.g. [ 131) and where suitable a.p. potentials have extended states 
(see, e.g. [14]) is that almost periodic potentials have less of a tendency to localize 
than random analogs. Given this and Theorem 3, it is tempting to believe that the 
Lloyd model [24] (the random analog of (2)) h as only localized states in all 
dimension, contrary to the conventional wisdom [38]. Since we have been warned by 
Thouless [38] not to yield to this temptation, we will not make any conjectures, but 
only ask: Does the model have extended states (for v > 3), and if so, what is the 
essential difference between the Lloyd and Maryland models? 

Returning to v = 1, (7) says that to leading order 

11 Q(n)11 = d/lq$n)l” + lp(n + 1)l’ - ecY’“‘. 

The standard method to go beyong leading order is to Fourier transform, note that 
q(n) will have an analytic transform, find the nearest singularities and deform a 
contour in an inverse Fourier transform. This will not work so easily; in Section 3, 
we will prove: 

THEOREM 4. Let (p(n) be an eigenfunction given in Theorem 1. Then for a.e. 8, 

G(k) E 2 eeik”(o(n) (10) 

written as a function of eik = z is analytic in the annulus 

epy < Ii1 < ey 

with natural boundaries on both circles bounding this annulus. 

Remarks. 1. That natural boundaries might occur was suggested to us by 
Prange [28], who noted that small divisors yield Taylor series which have a structure 
similar to those in lacunary series [38,21]. 
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2. This phenomenon is a general feature of small divisor problems; in 
Section 3,, we will first study the warm-up problem, f obeying 

f(zeiza) -f(z) = z/l - z (11) 

which for a having typical Diophantine properties has a solution analytic in 1 z 1 < 1 
with a natural boundary on ]z] = 1. 

3. The above theorem suggests that eYLn’ o(n) has very irregular behavior. 

In Section 4, we will discuss some results for the case where L(a) > 0. By 
mimicking the arguments in [2], one can prove 

THEOREM 5. If L(a) = oc), then (1) has purely singular continuous spectrum. 

Lesson 2. The density of states cannot distinguish between pure point and 
singular continuous spectrum-indeed, there is a pair of potentials (namely, (1) with 
some a obeying L(a) = 0 and (1) with some a obeying L(a) = co) with equal k’s but 
with one yielding dense point and the other purely singular continuous spectrum! 

That the above is qualitatively true should not be surprising to the thoughtful 
reader-but we find it remarkable that there are these examples with strictly equal k’s 
and different spectrum. The a.c. spectrum is determined by k since k determines y by 
the Thouless formula and (T,, is the essential closure of {E I y(E) = O} ([23,24]), but 
it is global features of k that determine sac and not the local, as can be seen by noting 
that by Aubry duality (see, e.g., [2]) the k for the almost Mathieu equation in the 
coupling constant regime where it is expected to have dense point spectrum and the k 
in the expected a.c. regime differ only by scaling. 

Interesting phenomena occur if L(a) # 0, co. As a preliminary to the next theorem, 
it is useful to note that the minimum value of yn obeying (4) occurs at E = 0 where 
cash Ye = dm or equivalently sinh y,(O) = $. Thus, condition (12) below is 
equivalent to min, y,(E) > L(a). In Section 4, we will prove 

THEOREM 6. Suppose that L(a) # 0, 03 and 

]A] > 2 sinh L(a) = A,. (12) 

Then the operator, h, of Eq. (1) has a complete set of eigenfunctions u)m,n,e(.) 
(m = 0, f l,...) and corresponding eigenvalues, with the same analyticity and infinite 1 
properties as in Theorem 1 (analyticity on@ on IA I> A,) but the limit in (7) is now 

-b@,,dU - L(a)1 
for a.e. e. 

Lesson 3. It can happen that a stochastic Jacobi matrix has dense point 
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spectrum with exponentially decaying eigenfunction, but where the exponential decay 
is not given by the Lyaponov exponent. 

Remarks. 1. The rate of decay is neuer faster than -y (see [lo]). 

2. It is often assumed in the physics literature that the “inverse of the 
localization length” (= negative of the limit in (7)) is identical to y; what we see is 
that while this is probably “usually” true (and is proven for suitable one dimensional 
random systems [7, lo]), it can fail. 

Thus, in the (e, A) plane, the exterior of the ellipse with foci (k2,O) and semimajor 
axis 2 cash L(a), is a region of localized states. We believe that the interior of the 
ellipse consists of “exotic states,” i.e., that {e / y(e) < L(a)} is purely singular 
continuous spectrum, but we have been unable to prove it. Instead, we will show in 
Section 4 a weaker result. Define yA(e) by 

where A,,,(B) is the 2 x 2 matrix 

4.m = ( 
e-A tan@) -1 

1 1 0 * 

(13) 

(14) 

While In l],4,,A(r3)l] diverges at 8= 7c/2, the divergence is only logarithmic, so 
TA(e) < co. By the ergodic theorem, yA(e) < 13,(e) (and both diverge as In IEl for le/ 
large). In Section 4, we will prove: 

THEOREM 7. Zf L(a) # 0, co, then for a.e. 8, h has dense point spectrum on 
{e 1 r(e) > L(a)} and purely singular continuous spectrum on {e 1 y(e) < fL(a)}. 

Thus, we have for suitable a situations where we have a region of singular 
continuous spectrum and another region of point spectrum. In between, we believe 
there is also purely singular continuous spectrum, but all we know there is that there 
is no absolutely continuous spectrum. We will prove Theorem 7 by applying 
Gordon’s method [ 181. It is probably that one could replace F(e) by y(e) (but the 
factor of i remains) by working harder in implementing Gordon’s method; indeed, in 
Section 4 we will prove: 

THEOREM 8. Let h, = h, + f (2nan + 0) for a Lipschitz continuous function, f, on 
R of period 27~. Suppose for some real e, y(e), the Lyaponov exponent for h,, obeys 
y(e) < tL(a). Then e is not an eigenvalue of h, for any 8. 

The unfortunate factor of + seems intrinsic to Gordon’s method. 
We note one not quite standard notation we use in this paper. If A is a finite set, 

#(A) denotes the number of points in it. 
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2. FREQUENCIES WITH L(a)=0 

In this section, we will give the basic analysis of normalizable eigenfunctions and, 
in particular, prove Theorems 2 and 3. We emphasize again that the analysis has 
much in common with that of GFP [ 19, 301. In the next proposition, the reader 
should think of the example 

A =A-‘(e-h,), B = mult. by tan(rran + 8) 

where e is a real number. Notice that A is bounded. 

(2.1) 

PROPOSITION 2.1. Let A be selfadjoint and bounded and B selfadjoint, both on a 
Hilbert space, 2. Let u E D(B) and c ER be related by 

c=(l +iB)u. (2.2) 

Then 

Au=Bu (2.3) 

if and only if 

(1 - iB) (1+iA) 
(1 + iB> C=(l+iA)C* (2-4) 

ProoJ: Given (2.2) and the fact that A is bounded (and Ker(1 + iA) = {0}), we 
see that (2.4) is equivalent to 

(1 + iA)(l - iB)u = (1 - iA)(l + iB)u. 

Multiplying out and canceling, one sees this is equivalent to (2.3). 1 

PROPOSITION 2.2. IfA, B are given by (2.1) and u in 1’ obeys (2.3), then 

f\& + ln[]u(n)]* + lu(n + 1)]2]1’2 = iii~ + ln[lc(n>* + Ic(n + 1)1211’2. P-5 > 

ProoJ By (2.2), lu(n)l < Ic(n)l while c = (1 + iA)u so 

Ml <D(lu@>l+ lu(n + II+ lu@ + 1)1>. 

This shows that (2.5) holds. I 

To prove completeness of eigenfunctions, we will need to discuss non-l* solutions 
of 

u(n + 1) + u(n - 1) + I tan(77an + 0) u(n) = eu(n). (2.6) 
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Notice that (2.6) is meaningful for any sequence u and so is [ (1 - iB)/(l + iB)]u. 
Moreover, Q E (1 + iA)/(l - ia) has matrix elements Q,, of the form q(n - m) with 
q decaying exponentially so Qc can be defined for any c(n) obeying 

Ic(n)l <AU + I4)” 

for some A, k (such a c is called polynomially bounded). 

(2.7) 

PROPOSITION 2.3. Let u, c be sequences obeying (2.2). If u is polynomially 
bounded and obeys (2.3), then c is polynomially bounded and obeys (2.4) and 
conversely. 

Prooj One needs only follow the proofs of Propositions 2.1 and 2.2 noting that 
(1 + L4) and (1 + iA)- ’ map polynomially bounded sequences to polynomially 
bounded sequences. 1 

What makes (2.4) so useful is that if B = multiplication by tan(xan + B), then 
(1 - iB)/(l + iB) is multiplication by 

e - 2ninn - 2it3 

and thus (2.4) becomes 

(+j-$ c) (n) = e-2nian-2ieC(n). (2.8) 

Equation (2.8) is thus similar to the Schrddinger equation for the potential 
v(n) = Ae21rian analyzed by Sarnak [3 I] and the analysis of GFP, given (2.6) is very 
similar to that of Sarnak several years before (GFP did not know of Sarnak’s work). 

Define the Fourier transform of a sequencef(n) by 

f(k) = c eei”kf(n). 
n 

(2.9) 

Equation (2.8) becomes (q is a function of 3, and e as well as k) 

q(k) E(k) = e-2iec^(k + 27~~) (2.10) 

where 

2cosk-e-A 
q(k)= - 2cosk-e+iA’ 

(2.11) 

Now q(k) is an analytic function of z = eik in a neighborhood of /z ] = 1 and 
q(k) # -1 for any k. Thus we can define c(k) (a function of 1, e also) by 

q(k) = eeicck), -n < C(k) < z. (2.12) 
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The next few results involve the study of c(k). We note first that in v-dimensions, 
the analysis goes through with minimal change: cm must be interpreted as a . 12 and 
cos k replaced by cos k, + + .. + cos k, . 

PROPOSITION 2.4. In v-dimensions the function C(k; ;1, e) obeys: 

(i) [ is analytic in zj = eikj in a neighborhood of {z ( 1 zjl = I} = C, 

(ii) (1/(2T)“)(ni .I”?, dki) C(k 4 e) = 2@,(e) - l/2) (2.13) 

where k,(e) is the integrated density of states. 

Proof (i) q is analytic in a neighborhood of C and q is never -1, so the 
logarithm is analytic in a neighborhood of C. 

(ii) Let A(& e) denote the L.H.S. of (2.13). If < is given by (2.1 l), (2.12), then 
by direct calculation 

z = 2l/(h, - e)’ + A2. 

Thus 

aA 

s 

2A d”k 

ae= (h,-e)2 +A2 m’ 

Using (3), we see that 

1 ak* 
I 

A 
ae - T (y - e)’ + i1* 

ak, (y) dy. 
ay 

Moreover, 

so we see that 

ak,- - 
ay I Wdk) -y> $$, 

-=33 aA 
ae ae ’ 

Equation (2.13) follows if we note that k,(e) + 0 as e + -co while, for all k, 
[(k,&e)-t-erase-+-co. I 

We want to know much more about [ in dimension v = 1. As a preliminary, we 
need : 

LEMMA 2.. Let I > 0, e real. Let z,(e, A) denote the solution of 

z,+z;‘=e+iA (2.14a) 
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obeying lz,, 1 < 1. Then 

z. = -exp(-y + ink). (2.14b) 

Proof. We will separately prove (2.14) for Re In z,, and Im ln zO. However, this is 
actually redundant: By general principles [37, 2, lo], for 1 fixed, -y + ilrk is the 
boundary value of an analytic function in Im e > 0 and In z0 is analytic there, so 
checking either real or imaginary parts proves the formula up to an additive constant 
(which can be evaluated by taking e+ -co). 

We will compute in the next proposition that (1/27r) (E, <(k; e, A) = 2 Im(ln zO) - n, 
so Im In z. = nk follows from the last proposition. We will sketch the tedious 
calculation that shows Re ln(-z ) = In jzo] is --y where 

Let q, = e + iA. Let y + i P x be the value of &$g;: ;j$& > 0. 
Then 

y2-x=e2-A2-4; yfi=Ae. 

Thus, eliminating y, we see that x obeys 

x2 + (e*-A*-4)x-A*e'=O. 

Moreover, z,, = +(q, - &&?) and z;‘(w, t dm) 

Re z0 e-y @e-v) e -- 
-=A-fi=J;r(y-e= fi Im z0 

and thus, if z,, = ]zOl eiV, we see that 

(2.15) 

(2.16) 

Using this, 

2 cosh(ln ]zJ) = ]z,, t ]zOJ1 

= e2 + x/$FiE 

= ~~. 

Using (2.15), one sees that 

e2tA={[a+b+fl]; a = (2 + e)’ + A*; b = (2 - e)’ t A2 

sodz=;(\/;;+fi) h s owing that In ]zO ) is --y if y is given by (5a). 1 

The lemma lets us calculate the Fourier coefficients of c(k) explicitly: 
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PROPOSITION 2.6. C(k) = C,=-, qJ,eeik” where 

cjo = 27r(k,(e) - f) (2.17) 

4, = (-1)” L e-Ylnl sin(7rnk); n # 0. 
n 

(2.18) 

Proof: Let z = eik. Then the roots of z + z - ’ - e - il, = 0 are the quantities 
zo9zo ~‘of(2.14)andtherootsofz+z~‘-e+U=Oare~o,~~’.Thus,by(2.11): 

q(k) = _ tz - zo)(z - zla 
(z-To)(z-F;l) 
To (1 - z,/z)(l - zzo) =-- 
z. (1 - z;o/z)(l - zYo) ’ 

For 1x1 < 1, ln(1 -x)=-x7x”, so if Izo) < jzj < (zo[-i, we see that -i<=lnq 
obeys 

-i<=ln -3 - r 
( -1 

m 
ZO ny, 

Go)” - (50)” ,z” + z-“l 
n 

Now, by the definition of z. as the root of (2.14a) with 1 z. 1 < 1, it is easy to see that 
Im z,, < 0, so we can normalize Im ln(-z,) to lie in 0,~. With this convention and the 
fact that [ is normalized by -rr < [ < rr, we see that 

In 
( -1 

- 2 = i72 - 2 Im In(-z,). 

From this one reads off 

r’, = -7z + 2 Im ln(-z,) (2.19) 

4, = fi Im(zr’). (2.20) 

Given our previous calculation of (2.17) (Proposition 2.4), (2.19) yields the promised 
proof that Im ln(-z,) = k. Given (2.14), (2.20) implies (2.18). 1 

With these preliminaries about C out of the way we can return to the analysis of 
(2.10). For the time being, we will discuss possible continuous solutions of (2.10). 
Later, we will show that when L(a) = 0, any distributional solution of (2.10) is 
continuous. Since )q(k)l = 1, (2.10) implies that It(k)/ = IE(k + 271c1)(. If a is irrational 
(or, in the multidimensional case, if (1, a, ,..., a,) are rationally independent), this 
equality plus continuity implies that Ic(k)l is constant, so without loss we suppose 
Ic^(k)l = 1. As ki runs from 0 to 27r, c^ defines a map from the circle to itself (since c” is 
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periodic) which has a winding number mi. Thus, for some m = (m, ,..., mL,), a v-tuple 
of integers 

c”(k) = exp(-im . k - iv(k)) (2.2 1) 

where w  is periodic in k (and continuous). Taking logarithms in (2.10) we obtain the 
basic equation 

t&k + 2na) - w(k) = c(k) - 28 - 2z(m . a + m,). (2.22) 

The integer M,, enters because, when we take logs of continuous function, the two 
sides must agree up to an additive term 2zim,. 

The average of the left side of (2.22) is zero, since w  is periodic. Thus, we find a 
consistency condition for (2.22) to have a solution; namely using (2.13) 

k,(e)=f+m.a+m,-+. 

Since 0 < k,(e) < 1, m, must be chosen to be the integral part of a . m + l/2 - 8/z; 
thus 

PROPOSITION 2.7. A necessary condition for (2.10) to have a solution is that for 
some v-tuple m = (m, ,..., m,) of integers 

. (2.23) 

Once we prove that if the hypotheses of Theorem 3 hold (or if L(a) = 0 when 
v = I), (2.23) is also sufftcient, we have the quantization condition (8) for the eigen- 
values. Before turning to the sufficiency of (2.23), we want to note: 

PROPOSITION 2.8. (a) If 8# ($a . m + $))ffor any m, then (2.23) has a unique 
solution for each m. Let e,,,(I) denote this solution. 

04 e m,e(V,f f d or txe m, e is a real analytic function of A on (0, a~). 

(c) For ,I, @fixed, {e,&)},,,, is dense in (-00, a~) and 

Jianm(2Mt l)-“#{mIe,,,(A)<e,;~mi~<M}=k,(e,). (2.24) 

Proof (a) Since k is strictly monotone and runs from 0 to 1 as e goes from -co 
to co, (a) is obvious 

(b) k,(e) is jointly analytic in A., e for (e, A) E (-co, 03) x (0, co) and 
(akA/ae)(e) > 0 for all A, e. Thus, the implicit function theorem yields analyticity. 
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(c) By a celebrated result of Weyl [40], the distribution of ((a . m + l/2 - 
e/71),} is uniform, i.e., for 0 <x0 < 1 

lim(2A4+1)-“# x= 
M+rn I ( 

a.,++-z 
11 Tl f 

x<x,;Im,((M =x0. 
I 

Equation (2.24) follows from this and monotonicity of k. 1 

Since I,U is continuous and periodic, it has a Fourier series expansion 

y/(k) = c li;, e - ikn. 
n 

Since adding constants to w  does not affect solubility of (2.22) (and c” = eeiclreimk is 
multiplied only by a phase), we can suppose I,G,, = 0. From (2.22) we see that 

+, = ce2nia.n _ 1)-l cn (n # 0). (2.25) 

Thus 

PROPOSITION 2.9. Equation (2.22) has a continuous solution, IJI, if and only if 

(i) (2.23) holds, 

(ii) $,, obeying (2.25) is the Fourier series of a continuous function. Moreover, 
we have ifv= 1: 

(2.26) 

The final statement follows if we note that (eznia”’ - 1 1 = 1 sin ~a . n] and the 
- definition of L(a) and if we note that hm,,, 

[,, (Proposition 2.6). 
l/n In ) [“I = y(n) by the explicit form of 

In particular if L(a) = 0, @, decays exponentially and therefore (2.22) has a 
solution so long as (2.23) holds. The final step needed before the proofs of 
Theorems 2 and 3 will ensure completeness: 

PROPOSITION 2.10. Suppose either v > 1 and the hypothesis of Theorem 3 holds 
or v = 1 and y(e) > L(a). Let c be a polynomially bounded solution of (2.4) (with A, 
B given by (2.1)). Then c” is a continuous function and c decays exponentially. 

ProoJ: c^ will be a distributional solution of (2.10). Pick I!?,,, so, for the e of 
relevance 

Then, by the last proposition and the discussion following it, we can find d(n) 
decaying exponentially with Id(k)1 = 1 and 

a(k + &a) = e-isck)+2ie~~(k). 
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Since d^ is analytic, we can form the distribution I= ?/ld and it obeys I(k + 2na) = 
e2’(e-eo)l(k). Taking Fourier transforms, e -2ninnfn = e2i(e-edfn, so i, # 0 for exactly 
one n. Therefore, c^ = eeznikna for some n and thus c is a translate of d and thus also 
exponentially decaying. I 

Proof of Theorems 2 and 3. As discussed above for each m E Z”, we can solve 
(2.22) and v/ is analytic in k. Moreover, when v = 1, w  is analytic in {k ) eey < 
(eik( < e’}. Thus eir is analytic in k, so c = (e’“)- decays exponentially, and, at least 
at rate y in case v = 1. By Proposition 2.2, the same is true of u = (1 + iR)-’ c. By 
general principles [lo], no eigenfunction can decay faster than e- Yln’, so the eigen- 
functions obey Eq. (7). It is easy to see that as b -+ 00, rp, -+ 6,,. Analyticity of w  
jointly in 1, k follows from the analyticity of e and the explicit formulas for I,V. Thus, 
all we need is to prove completeness. 

The eigenfunction expansion theory of Berezanskii, Browder, Gel’fand, Garding 
and Kac (see [5,35] for discussion and history) guarantees one that the spectral 
measures are supported on {e ( hu = eu has a polynomially bounded solution}. But we 
showed in Proposition 2.10 that any such solution has u E l’, so the spectral 
measures are supported by the countable set of (point) eigenvalues, i.e., h has only 
point spectrum. Moreover, every eigenvalue has an eigenfunction decaying exponen- 
tially and so c^ is continuous. Thus the eigenvalues must obey (2.23) proving 
completeness of the qm. I 

The final issue we want to discuss in this section is why the density of states 
obtained by “m labeling” agrees with the density obtained by n-space normalization; 
i.e., how one can verify that k, given by (2.17) is the density of states not a priori 
knowing it is. The key will be the proof of the estimate in Eq. (9). 

PROPOSITION 2.11. Let A be an injmite matrix indexed by n E Z” and let E, be 
its spectral projections. Let At, = {n 1 1 nil &R) and let SR denote the function on Z” 
which is 1 zf n E A, and zero otherwise. Suppose that k(e) = lim,,,(2R + 1))” 
‘W$-m,e) X,) exists. Suppose that A has a complete set of eigenfunctions rp, 
indexed by m E Z” with energies e, so that for all E,, there are A > 0 and C so that 

Irp,(n)l < Ce-A’n-m’ (2.27) 

so long as 1 e, I < E,. Then 

k(e)=Ji_m(2R+l)-“#{mIe,<eandlmil<R}. 

Proof It suffices to prove that 

$\5(2R+l)-“#{mIa<e,<bandlmil<R}=k(b)-k(a). 

Define 

(2.28) 

N,(R)= c l%&)l’. 
ll?lil <R 
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Then, by definition of k, 
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k(b) - k(u) = Jim, (2R + l)-” 2 N,(R) 
-t a<e,<b 

while the left hand side of (2.28) is 

(2R + 1))” 2 1. 
a<e,<b 

lmjl <R 

It is easy to see that (2.28) follows from 

N,(R) < 1 all m, R 

(N,(R) - &(m)l < C, exp(-$4 dist(m, a/i,)) 

and that the latter inequality follows from (2.27). 1 

Thus the GFP calculation of k is justified by our proof of completeness and the 
proof of (2.27) (= Eq. (9)): 

PROPOSITION 2.12. Let p,(n) denote the eigenfunction of Theorem 2 or 3 for 1,8 
Jixed. Then for each a, b there exist C, A so that (2.27) holds for all m with 
a < e, < b. 

ProoJ: Let v,(n) = (I + iB) p,(m + n). Then, for a normalization constant, [, , 
discussed below 

f,(k) = [me-i@(k). 

By the explicit formula for w, one has uniform bounds on w  within a fixed annulus 
for all m with a < e, < b. By the Payley-Weiner theorem (deforming the contour 
integral for q+(m) in the inverse transform), we obtain 

which implies (2.27) for qrn (if we can obtain an upper bound on &,,), and thus for o,,, 
since I v,tn)l G I vAn>l. 

To bound c,, we note that &,, = Ilfl,II”’ = C ll~~(l,~. Moreover, since 

q(n)= (1 + Z’e) u(n) - U-‘(u(n + 1) + u(n - 1)) 

([r/)12 < const 11 u 1112 where the constant is bounded as e goes through compacts. Thus 
&,, is bounded. I 

Remark. Actually, one can justify the GFP calculation of the density of states 
and prove there is only point spectrum from (2.27) alone. For, only knowing the 
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GFP eigenfunctions are a subset of all eigenfunctions, without completeness, yields 
via our proof of Proposition 2.11 

lim(2R + I)-” #{m 1 u < e, < b; lmil <R} < $%(2R + 1))” Tr&%Y,,E~;$,) 

where Ep.p. is the pure point part of E. From this, by taking a + -co, b--f 00, one 
finds that (2R + l)-” Tr($!&EP.P.)+ 1 and thus for a.e. 19, there is only point 
spectrum and k is given by (2.28). This argument does not prove completeness of the 
GFP eigenfunctions: Without additional argument, a set of eigenfunctions of zero 
density might fail to have c^ continuous. 

3. NATURAL BOUNDARIES 

Our goal in this section is to prove Theorem 4. This involves a general aspect of 
small divisor problems. While we know of no explicit previous work, we would not be 
surprised if some existed. As a warm-up, we analyze Eq. (10): 

THEOREM 3.1. Suppose that L(a) = 0. Then there is a unique functionf, analytic 
on {z 1 IzJ < 1 }, obeyingf(0) = 0 and 

f (zeznin ) -f(z) = z/l -z. (3.1) 

f has a natural boundary on 1 z I = 1. 

Proof Since z/l - z = Cy z”, we can expand 

f(z) = 2 a,z”; a, = ce*nion - 1) - 1. 

L(a) = 0 implies that the series for f converges uniformly on each disc, {z ) 1 z I < R }, 
with R < 1. This proves existence and uniqueness. 

Call an integer, m, regular if and only if lim,,1j(re2”i”m) = b, exists and is 
finite. Equation (3.1) implies that any m # 0 is regular if and only if m + 1 is also 
regular. Thus either all m > 1 are regular or none are regular. Similarly for all 
m < 0. Moreover, it cannot be that both 0 and 1 are regular since 
lim,, I [f(re2”ia) -f(r)] = co. Thus either no m > 1 or no m < 0 is regular (or both). 
It follows that arbitrarily near any eie, there are points wheref has an infinite or no 
limit, so f cannot be analytic in any neighborhood of any eie. I 

Remark. J. Avron has remarked that f(z) = lim,ti fA(z) with fn(z) = 
zl CFEo z”($+ I -A)-’ (a G e2nia) and since (y - w)-’ = CzZO ~“‘7~“-l if 
IyI > IwJ, we have for IzJ < 1, IA( < 1: 
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i.e., for Iz 1 < 1 

f(z) = lie z f Am(e2nimn - z)-’ 
m=l 

which is very suggestive and links things to examples in Titchmarsh [39]. However, 
one should not take the occurrence of poles at e2niam for m > 1 and not for m < 0 
seriously. If we replace A@“+’ - 1))’ by (&Pt ’ - l)-’ we get a representation 

f(z) = lit: z 1 Lm(z - eC2nima)-‘. 
VI=0 

We can abstract the argument in the above proof to get: 

THEOREM 3.2. Let f be a function analytic in an annulus (z ) a < IzJ < b} and 
suppose that for some 0 we have 

(9 lim,r, If@ ie+ *da) -f(reie)l = oo 

(ii) lim,T, f(re if3+2nia(m+ 1)) --f(reie+27mm) exists and is Fnite for all m # 0. 

Then f has a natural boundary on the circle { 1 z 11) z I= b}. 

Proof of Theorem 4. Look first at the phase w  is given in (2.21). The right side of 
(2.22) has logarithmic singularities on the boundaries of the annulus at the points z,,, 
Y,, (with jz / = e- ‘) and at z; ‘, P- ’ (with / = e3. Since z,, = e- y+ik, Theorem 3.2 
implies that {z[ IzI =eeY} and z I z 1 = eY} are natural boundaries unless 2k is a f 
multiple of a. Looking at (2.23), one sees that this can only happen if 8/rr = n - l/2 + 
la/2 for some integers n, 1. Eliminating this countable set of 19, we have natural boun- 
daries for all m. Thus for a.e. 0, w,,, has a natural boundary for each m. 

If ; = e-ir-imk were analytic at any point, zl, on the boundary, it would have 
either no zero or an isolated zero at zl, so IV,,, would be analytic near z, and thus I,N,,, 
would not have natural boundaries. We conclude that c^ has natural boundaries. Since 

q [2e-eik-e-ik]1 -I;(k) 

we see that I$ has natural boundaries also. I 

4. FREQUENCIES WITH L(a)#O 

We begin with the analysis in the region where rA(e) > L(a). The following 
combined with the analyticity arguments in Section 2 proves Theorem 6 and part of 
Theorem 7. 

THEOREM 4.1. Fix A, a. In the region where yA(e) > L(a) the operator, h, of 

595/159/l-12 
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Eq. (1) has only point spectrum and for a.e. 8, the limit in Eq. (7) is 
-Me,,&>> - W4. 

ProoJ Our analysis in Section 2, both of solutions with c^ continuous and of 
polynomially bounded solutions, works in the region y > L since the decay of coef- 
ficients of C overcomes the growth of (ezZiam - 1)-l. Suppose that e is an eigenvalue 
with L(k,(e)) = 0. Since L(a) = 0 for a.e. a, k, is smooth and e is continuous in 8, 
L(k,(e)) = 0 for a.e. 8. L(k) enters because of the occurrence of sin(nnk) in Eq. 
(2.18): By that equation, lim(l/n) In [” =--y (limit and not %) so that w  has a 
singularity on the circles of radii efCywL). We claim that c^ must also have 
singularities on that circle, for if c^ did not have singularities, v would just have 
logarithmic singularities and the density of n’s for which $,, > e-‘“i(y-Lt ‘) would be 
positive for some small 6. But, since L > 0, this density is zero by the lemma below. 
It follows that c^ has singularities and thus so does $e,l,B. I 

LEMMA 4.2. Let a > 0 and a irrational. Then 

as N-, co. 

Prooj Fix c. By Weyl’s theorem [40]. 

?‘-“, N-‘#{q <N 1 ]sin(rraq)( <c} = & ]{f3 1 ]sin(Q & c}]. 

But 
T- 

lim N-‘#{q < N ( (sin(naq)] < epaq} < hm N-‘#{q <N ( (sin(xaq)] < c} 

for any c > 0, so the lim is 0. I 

The remainder of this section deals with situation y,(e) &L(a). Since the set-up is 
intrinsically complicated and because our results are not sharp, the material is unfor- 
tunately denser than the preceding material. 

Since m(e) > 0 for all e, the Pastur-Ishii theorem [20,26] implies there is no ac. 
spectrum. On the other hand, since dk,/de > 0 for all e, the spectrum is all of 
(-co, co). Thus, Theorem 5 and the remaining part of Theorem 7 follow from 

THEOREM 4.3. There is a set, S, of 8 of measure zero, so that ifpA(e) < $L(a), e 
is not an eigenvalue of h, for any 8 CL S. 

As a warm-up for the proof of Theorem 4.3, we want to prove Theorem 8 which is 
of interest in its own right. To keep this discussion self-contained, we begin with the 
proof of a lemma of Gordon [ 181: 

LEMMA 4.4. Let A be a 2 x 2 invertible matrix. Let x be a unit vector in C2. 
Then max(llAxll, llA2xll, IIA -‘XII, llA-2xll) > f. 
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Proof: Let a,A* + a,A + a, = 0 be the characteristic equation for A normalized 
so max(luil)= 1 and so that some ai with lail = 1 has ui = 1. Suppose a, = 1. Then 
applying the A-equation to A -lx we see that x = -+4x- u,A -lx. Since /u,I, 
la,1 ( 1, one of Ax and A -lx must have norm at least f. Similar arguments work if 
a, = 1 or a, = 1. 1 

In controlling transfer matrices, we will need: 

LEMMA 4.5. Let A, ,..., A, and B, ,..., B, be L X L matrices with I( Bjll = pj and 

IIAf+j-1 .a. Aj(l < CeD’ for some C, D. Then 

II@, +B,) -a* (A, + BJII < @” fi (1 + CepDPj) 

.j= 1 

(4.1) 

and 

(J(A,+B,)...(A,+B,)-A,...A,II~CeD” 1 [ fi (1 + Ce-OP,)] - 11 . (4.2) 
j=l 

ProoJ Note that the norm of a product of n matrices, k of which are B’s obeys 
llAn . . . Bj, . . . Bj, . . . A,([ < Ckt ‘eDtnek) 
(4.1) and (4.2). 1 

l-If=, /-Ij,. Summing up these estimates yields 

We can now make concrete the argument of Gordon for operators h, defined by 

h, = h, +f(2zan + 0) (4.3) 

where f obeys 

f(x + 27L) =f(x); If(x) --f(Y)l G co Ix --YI* (4.4) 

Fix e and let A(B) be the matrix 

( e-f(B) -1 

1 0 ) 

and suppose that 

llA(13 + 27m(l- 1)) .a. A(O)11 < C?’ (4.5) 

for some C, D and all 8. Then Gordon’s argument and Lemma 4.5 yield 

THEOREM 4.6. Let f obey (4.4) and suppose (4.5) holds and that 

D < fL(a). 

Then e is not an eigenvalue of h, for any 8. 

(4.6) 
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ProoJ Pick E with 2(0 + E) < L(a) and choose rationals rationals pk/qk = ak so 

I I 
a-P” <,-2(D+&)qk. 

qk 

Suppose that ZJ is any non-zero solution of h,u = eu and let uk be the solution of 
[h, +f(27rokn + f?)] uk = euk with the same values as u at n = 0, 1. Let 

Normalize u so I] @(O)]l = 1. Then 

suP 11 @kb) - @@>I1 
o<n<zq, 

so using Lemma 4.5, (4.5) and (4.4) (which implies I/A (4) -A @‘)]I < Co IQ - 4’ I) 

SUP 
O<n<%k 

Il@k(n) - @(n)ll < CezDqk{(l + 2Ceoqke-2’D+ E)qk)4k - l}. 

Now(l+x)<eXand]eY-l]<]yleYforx,y>Oso 

RHS of (4.7) < CezDqk(2Ceo) q:e-2’Dt ‘j9k exp( W,) 

where W, = 2Ce,qie- 2(Dt ‘jqk. Since E > 0, we conclude that 

(4.7) 

II @k.(n) - W)ll] = 0. 
k 

(4.8) 

Since det A(0) = 1, (4.5) implies that 

p(e- 27ra(Z- I))-’ ...A(B-2na)-1A(8)-111~C~’ 

also, so ~~~~~~~~~~ in (4.8) can be replaced by sup,,, G2qk. But by Lemma 4.4 
(applied t0 the matrix A(2nckqk + 0) ... A (2ZCQ + 0)) 

min(ll @k(*!?k)ll II @k(f2c?k)ib > $ 

and thus 

implying that ZJ is not in 1’. 1 

Theorem 8 follows from Theorem 4.6 and 
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THEOREM 4.7. Let h, be given by (4.3) with f bounded and continuous and 
f(x + 2n) =f(x). Let 

e-f(B) -1 
&P) = 1 

( 

o 

i 

and let y(e) be the Lyapunov exponent for h,. Then for all e: 

lim n-’ In sup ]/A,(0 + 2xzn) -a- A,(0 + 47ro)A(B + 27ra)]] = y(e). (4.9) n-03 e 

Remarks. 1. y is defined, so that (4.9) holds for a.e. 6 if “supe” is dropped from 
7. 

the left side. That the hm is at most y(e) even for the anomalous values of 8 where the 
limit fails to exist or has an a typical value is a result of Craig-Simon [lo]. We use 
their ideas to prove (4.9). 

2. While we state this for an almost periodic f whose hull is the circle, the 
argument is valid for any almost periodic$ 

Proof Definef,(B, e) = In ]]Ae(t9 + 2zan) . .. A,(0 + 27ra)]] and 

f,(e) = s;p f,(e, e). 

Eachf,(e, 8) is subharmonic in e, so since f, is easily seen to be continuous in e, f, is 
subharmonic. Moreover, fntm(8, e) G f,(b) + 2nan, e) +f,(S, e) so 

fn+de) <f,(e) +f,(e>. 

Thus lim,,, n-If,(e) = inf, 2-“fzk(e) z F(e) exists and is subharmonic. Since y is 
also subharmonic, we need only show that jr(e) = y(e) for e with Im e > 0. But, the 
Thouless argument that 

n-‘f,(O,e)+l ln(e-e’)dk’(e’) 

for Im e’ # 0 depends only on the rate of convergence of the finite volume density of 
states to the infinite volume density of states, i.e., if dk”,(e) is the finite volume sum of 
delta functions, we are concerned with I In ]e - e’ ] dk’,(e’). But by the next lemma 
this is uniform in 0, so n-‘fn(d, e) converges to y(e) uniformly in 0 if Im e # 0. Thus 
sup, n-‘fn(f9, e)+ r(e). Therefore y(e) = jr(e) for all e with Im e # 0 and so for 
all e. 1 

LEMMA 4.8. Let dk’,(e) be the density of states for h, on the interval [0, I- 11. 
Let g(e) be a continuous function on R. Then 

( g(e) dk&9 --t 1 g(e) dk@) 

uniformly in 8. 
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ProoJ By a standard limiting argument, we need only prove this forfof the form 
g(e) = e - ife. But then, if h: is an 1 x 1 matrix: 

l-l 

I 
e -ife &‘,(e) = 1-l Tr(eeifhi) = 1-l 1 (e-““L)(j,j). 

j=O 

Now, by expanding, eif”h in a perturbation series 

e-if(hi+fe) = e-W 
1 

- it dse-i”ffh~e-‘u(‘-“f+ ... 
0 

we see that uniformly in 19 

]e-“h$j,j) - eKifhF(j,j)] < C exp(-min(]jl, 11 -jl)) 

so 

l-1 

1-l 2 le-ifhA(j,j) - e"G(j,j)( + 0 

j=O 

uniformly in 8. 
Moreover (see, e.g., [2]), eeithg(j,j) = F(2naj + 19) with F continuous on the circle. 

The convergence of the Riemann sums 

I-1 

1-l c F(2zaj + 8) 
j=O 

to s F(4) d#/2n is uniform in 8. 1 

To prove Theorem 4.3, the first thing we must face is that tan(O) is not Lipschitz. 
So long as tan@ + naj) does not get too large, an estimate is possible. The goal of the 
next lemma is to show that by eliminating a set of measure zero of 8, we can be sure 
that tan(lraj + 0) - tan(na, j + 19) is very small for ] jl < 2q, : 

LEMMA 4.9. Let ak = pk/qk be the continued fraction approximants for a number 
a with L(a) > 0. Define 

Sk(e)= 101 i(++aj),-ii 1 <2e-qk’4 somejwithljl<2q,. 

Let 

s = u n iYJ S,(E)* 
E>O k /=k 
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Then, S has measure zero and for any L < L(a), and 8 & S, there is a subsequence 4k 
of the qk and C, so that 

1 tan(7ran + 0) - tan(rrcS,n + B)I Q CkeWLBr 

for all n with 1 n I< 2ek. 

(4.10) 

ProoJ: Clearly ISk( < (4x)(2q, + 1) e-Eqk’4, so JJzk I SI(s)I -+ 0 as k-t co, so 
each set (Jk U,“=k S,(E) has measure zero. Since the sets increase as E decreases, 
U,,, = UEE2-” and so S has measure zero. 

Given L ( L(a), pick E with L + E < L(a) and then, given 6 6 S, k, so 8 & SI(s) if 
Z> k,. Pick a subsequence, $,,, of the {qk}k>k, so that 

I -1 

a -‘$ < (2qJ1 e-Pk(L+E’. 

Then, for I jl< 2q,, we have that 

1 ($-/jj),-+i >e-Eok/4 all /3 between a and ak. 

Thus, since (d/dx)(tan x) & C, [(x/r~)~-- 1/21p2, we see that 

1 tan(7raj + 13) - tan(n&,j t f9)l < C, e7k’*xe-@kL + ‘) 

as desired. I 

Proof of Theorem 4.3. By following the proof of Lemma 4.5, we see that if B & S 
and if L, Qk are picked obeying (4. lo), then for j < 2q, 

lp(e + 2xaj) . ..A(e+27Ca)--A(e+271akj)...A(e+2~ak)ll 

i 
< ,I_I, lp(e t 27ral)ll { (1 t CkepLpky' - I}. 

Following the argument between (4.7) and (4.8) we see that for k large 

LHS of (4.11) < C;qkemLBk ,Q Ii4e + 2~4)11. 

By the ergodic theorem applied to In lIA(t9)ll, we see that for a.e. 0 

,‘\iI Ijl-’ In fi ([A(0 t 27raZ))l= T(e). 
I= 1 

(4.11) 

(4.12) 

Parenthetically, we note that the set of t9 which needs to be eliminated for (4.12) to 
hold can be chosen independently of e: For we can arrange that (4.12) hold for all 
rational e and then note that as e, + e, In IIA,,(S)ll converges to In II A@)([ uniformly 
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in 8 (at the point where In ][A,(@]] = co, one has for any fixed e, e’ that 
~~~lI~e~~~IIIlI~,~~~~lll = 0). 

Thus, if L > 2jr(e), we know that for a.e. B 

lim[LHSof(4.12)forj=*q,k2q,]=O. 
k+x 

Thus, by mimicking the proof of Theorem 4.6, we see that h, has no 1* eigenfunctions 
so long as we have L(a) > 2$7(e). 1 

We should close our discussion of Theorem 7 by explaining why we did not use the 
“obvious” argument that when r(e) < L(a), there are no eigenfunctions. The same 
argument that leads to the proof of (2.26) shows that if r(e) < L(a), then (2.22) can 
have no solution w  in I*. It is tempting to therefore conclude that (2.10) then has no 
solution. Certainly it has no continuous solution, but we need to show it has no L* 
solution. If c^ is an L* solution of (2. lo), then it is not hard to show that ]?@)I= 1 
and thus e(k) = eiSck) where p obeys 

j?(k + 2m) -/3(k) = c&k) - 28 - 27m,(k) 

B(k + 27r) - P(k) = hm,(k) 
(4.13) 

with m,(k) and m,(k) integrally valued. But the lack of continuity does not allow us 
to conclude that m, and m, are constant. Thus, we cannot conclude that a solution of 
(4.13) will yield a solution of (2.22). That is, we do not know how to rigorously 
eliminate the possibility of eigenfunctions decaying so slowly that c^ is discontinuous 
when e is in the set {e 1 r(e) < L(a); p(e) > fL(a)}. 

Finally, we should complete our analysis of L(a) # 0 by remarking that the most 
significant questions concerning the operators with L(a) # 0 remain open. The BGK 
theory of eigenfunctions expansions ([35] and references therein) assure us that for 
each 8, A, a there is a set S in R so that (i) for every E E S, h,u = Eu has a 
polynomially bounded solution, (ii) S has measure one with respect to the spectral 
measure. When there is some singular continuous spectrum, S must be uncountable 
and of Lebesgue measure zero. Identifying what E lies in S we call finding the quan- 
tization condition. For L(a) = 0, we have found S in Eq. (8). We will not regard the 
general a case as being “solved” until the quantization condition is solved in general. 
The structure of the eigenfunctions is also of considerable interest. Here the recent 
work of Prange et al. [29] may be of significance: They do not find the quantization 
condition but do find the structure of ooze particular eigenfunction-it remains to be 
seen if it is typical. We note that the open question discussed above (C36) in [35] 
may be solved negatively by an understanding of eigenfunctions. 
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