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A smooth periodic potential, V. with one minima per unit cell, is considered. Let d(l) be 

the width of the ground state band for -d + /I’V. It is rigorously proved that 

lim A+rr, - /I ~’ In d(l) is given by the minimum action among all instantons connecting two 
distinct minima of V. cl 1984 Academic Press Inc. 

Double well problems appear to be among the easiest tunneling problems to 
analyze in a rigorous mathematical manner, in part because it is easier to give precise 
meaning to an eigenvalue splitting than to a lifetime. The first mathematically 
rigorous treatment of the precise leading order behavior in a tunneling problem is 
Harrell’s analysis [ 31 of one dimensional double wells. More recently, Simon [ 8, 9 ] 
obtained the leading order in certain multidimensional multiwell tunneling problems, 
and Helffer and Sjostrand [5] have even gone beyond leading order. 

Harrell realized that widths of bands for strongly coupled periodic potentials are 
essentially a multiwell problem, and he analyzed such problems in one dimension if 
the potentials were both periodic and reflection invariant [4]. More recently, Keller 
and Weinstein [6] have analyzed the one dimensional problem without the reflection 
symmetry restriction. Our main goal in this note is to obtain the leading asymptotics 
in the multidimensional case. The proofs are an easy extension of those used in [ 9 ] to 
handle double wells; indeed, a special case of the situation in [9, Section 6.31, is a 
large box whose size is a multiple of the basic periods with periodic boundary 
conditions (discretizing momentum space). Because of the unbounded nature of R” 
and the infinity of minima, there are some technical issues which we must (and will) 
handle. 

We first describe our results and then sketch the proofs drawing heavily on the 
ideas and results of [9]. We will suppose that the potential V is smooth and has one 
minimum per unit cell. By adding a constant to V and shifting, we can without loss 
suppose V> 0 and V(0) = 0. We will also suppose that the minimum is 
nondegenerate. Thus, our hypotheses are 
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(1) V is C” on R”. 

(2) There is a linearly independent set a, ,..., a, so that V(x + uj) = V(x). 

(3) Q) 2 0. 
(4) Let L = {njaj ] nj = 0, f l,...}. Then V(x) = 0 if and only if x lies in L. 

(5) (a’ vpxi ax,)(o) = A, is strictly positive definite. 

We are interested in the operators 

H(A) = -fA + A2 v (1) 

We recall (see, e.g., [7, Section X111.16]) that for each k in the Brillouin zone, B, 
there is an operator with discrete spectrum, H(J; k), on a space Zk so that 

L2(R”) =(@Zk d”k, 
B 

H(A) =~@H(l; k) d”k 
B 

(2) 

(we describe this in more detail later). The eigenvalues si(IZ; k) < c2(IZ; k) < ..a 
(counting multiplicity) of H(& k) are continuous and are the band functions. The set 
b,(A) E UkaB E,(k; A) is the nth band (and spec(H(A)) = lJ,, b,(J)). 

Our first result is the analog of the results of [ 81: 

THEOREM 1. Let al<a2< ..a SO the eigenvalues of -+A + { ,JJi”j=, AijXiXj. 
Then lim, ‘oo A-‘c,(k; A) = a,, and the limit (for nfixed) is uniform in k. 

Of course the eigenvalues, an, can be written down explicitly in terms of eigen- 
values of the v x v matrix A. One consequence of Theorem 1 is that if aj is a simple 
eigenvalue, then for 1 large, bj@) is disjoint from the other bands. Moreover, for 1 
large, it is easy to see that spec(H) is guaranteed to have an arbitrarily large number 
of gaps in its spectrum. 

As in [8], one can write down asymptotic perturbation series in A-’ for E,(& k) in 
case a, is nondegenerate. The series are k independent, so one sees that 
lb,(A)] = 0(2-l) for all 1. In fact 

THEOREM 2. Jb,(l)) < C, epd”‘. 

The ground state band, sr(& k), can be analyzed in more detail. Let A@) = b,(l). 
Recall the definition of the Agmon metric [ 1, 21 

’ @&@8 II@) I dsl~(O) =x9 ~(1) = (3) 

3’(s) ds + lo= Ws>) ds I ~(0) = x3 YG’-‘I = Y) (4) 

(the equality of the two infs is from [2]). The width, A@), will have asymptotics 
determined by the minimum distance between minima in the Agmon metric: 
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THEOREM 3. hm,,, - (l/A) In Id (A)] = min@(a, 0) 1 a E L, a f 0). 

We will sketch the proofs of Theorems 1 and 3. Given our proof of Theorem 3, the 
proof of Theorem 2 just follows the arguments in Section 6.5 of [9]. We also remark 
here that eventually we will present a heuristic picture of the form of Block waves 
associated to the ground state. 

To begin our proofs we must describe the decomposition (2) in more detail: By a 
fundamental cell, we mean a measurable subset, C, of R” so that for any a E L, 
a + C, the translate of C by a is disjoint from C and so that R” \UaEL(a + C) has 
measure zero. A standard fundamental cell is the Wigner-Seitz cell, W = (x 1 x is 
closer to 0 in Euclidean metric than to any other point of L}. W is a polyhedron 
whose faces are perpendicular bisectors of some of those vectors a E L with Ia / < 
2 sup(]xl] x E W). 

The dual lattice L* is defined by K E L * if and only if (1/2~r)K . a E Z, the 
integers, for all a EL. The Brillouin zone, B, is the Wigner-Seitz cell in the dual 
lattice. For each k E B, we define a Hilbert space, Rk, of functions f E L:,, so that 

f(x + a) = e’“‘“f(x) 

for all a E L with inner product 

(f, s> = jcf(x) g(x) d’x 

where C is any fundamental cell. L*(R I’, d”x) is isomorphic to i,“Rk d”k under the 
isomorphism that associates g E L* to {fk EZ~} by the relation of Fourier 
transforms 

j;:(l)=c r 
KEL’ 

g(l) &(I - k -K) 

with c = (27r)“” [vol(C)] -‘I*. 
Inside Zk, let D, denote those f E Z$ which have a distributional Laplacian in 

.Pk. Define H(A; k) on D, by 

(W; klf)(x) = -&!f)(x) + A * W)f(x). (5) 

Then H(& k) is selfadjoint on D,, has compact resolvent, and 

H(~)=f?-Z(i,;k)d”k. 
B 

Sketch of the proof of Theorem 1. We assume the reader is familiar with [8]. Let 
p,(A;x) be the nth eigenvector of -fd + iA* Cy,j=l Aijxixj. Let w,(A; k; x) = 
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C eik- (IEL q,#;x - a). Then I,Y,(& k) E Zk and by elementary calculations (with 
errors uniform in k) 

(w,@; k), w,(k k)) = a,, + OWcA) 

and from this and the variational principle, one obtains (as in [S]) that 
lim 1- ‘s,(k; J.) < a, (uniformly in k). 

We can obtain the lower bound exactly as in [8] if we note first that any periodic, 
C”, function j maps Rk to itself and that if j,,..., j, are periodic and C” with 
C: jz = 1, then H(J; k) = C: j,H@; k)j, - c{(Vj,)‘. We need only take I= 2 and 
choose j,(x;1) = JJbEL q@““(x - b)) where cp E CF with (p(x) = 1 for 1x1 small. I 

Now let Q,(I; x) denote the lowest eigenvector in Z0 of H@; k = 0). As in [9], we 
prove the tunneling result, Theorem 3, by first controlling R, : 

THEOREM 4. lim,,, 1-l In 52,(A; x) = -min,,, p(x, a) with a limit uniform in x. 

ProoJ Let e-‘“(l) (x, y) be the integral kernel of e-‘*(*) and define P,(x, y; A) = 

c (IEL eptHcA)(x, y + a). P, is the integral kernel of H(I, k = 0) in the sense that 

(e- fH(A;k=o)qg(X) = I, P[(X, y; 1) q(y) d”y (6) 

for any q ERo. 
Since P, is an integral kernel, it is not hard to show that with fij the jth eigenvector 

for H@; k = 0), we have 

Pl(x, y; A) = g e- w:k=o)Qj(& x) .Rj(& y) 
j=l 

and in particular 

We claim that 

IL!,@; x)1’ < e’B1(A,k=O)Pl(x, x; A). 

lim A- ’ In PTIA(x, y; A) = 4(x, y; T) 
A+cc 

(7) 

with 

6(x, y; Z) = min l 
Yt0E.L [ j 

T rf2(s)ds+~rY((~(s)dsIy(0)=x,y(T)=y+a . 
0 0 I 

(8) 

This can be proven either by applying large deviations [lo] for conventional 
Brownian motion to each term in the sum defining P, and controlling the infinite sum 



LOW LYING EIGENVALUES 419 

by suitable estimates or (even better) writing P, directly in terms of Brownim motion 
on a torus and using large deviations for that motion. 

Given (6)-(8), the proof of Theorem 4 just follows the proof in Section 3 of 191 of 
Theorem 2.3 of that paper. Uniformity is easy by the periodicity in x. 1 

Remarks. (1) As in [9], Theorem 4 has a PDE proof using Agmon’s methods. 
(2) zaEL e-ik.a e-fWA) (x, y + a) is the integral kernel of eefHtAtk’ in just the 

same way that PJx, y; 1) is an integral kernel for e-tH(“k=o). 
As a final preparation for Theorem 3, we need 

THEOREM 5. Let q~ E Zk. Then 

(rp, [H(A; k) - el(& k = O)]rp) =+i, 1V(qQ;‘)120; d”x. (9) 

Proof (analog of the proof of Proposition 2.2 in [ 91). Let f be a bounded 
function in .X,. Then M,, the operator of multiplication by f maps -;F6 -.Fk and 

H(A, k)M- MfH(& 0) = -fG, . M,,- tM,, . Go 

where G, is the operator on <Irk given by gmkg = ?g. Similarly M7:Zk -+.& and 
M+, - GoMy= -Me. Thus (the analog of [S, [A -+A]] = -1Vfi’ on L2) 

MrMfH(I2,O) + H(& 0) M7Mf - 2M7H(& k)M, = -M, rf, 2. 

Let f = rpJ2 ; ’ and apply this expression to 0, to get (9). I 

Sketch of the proof of Theorem 3. Let a0 E L be chosen the nearest point to 0 in 
L\{O) in the Agmon metric. Let d = p(a,, 0). It suffices to prove that for any F > 0. 
there is C, with 

&,(A, k) - el(J, 0) < C,e-‘d- E)-’ (10) 

for E. large and all k E B; and to prove that for any E and any compact K c B disjoint 
from {k \(2x)-‘k. a,, E Z), we have a c”,, with 

cl(IZ, k) - el(& 0) > c,,, ep(d+E).’ (11) 

for 1 large. 
It will be convenient to deal with a different choice of the fundamental cell from 

the usual one. Define 

A = {x / x is nearer to 0 in the Agmon metric than any other point of L). 

Thus A is like the Wigner-Seitz cell but with the Agmon metric chosen rather than 
the Euclidean metric. If V(-x) = V(x), it is not hard to see that bisectors of 0, a E L 
in the Agmon metric are hyperplanes, so A = I+‘, but in general A # W. 
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To get (IO), choose j E CF so that (i) supp j E A (ii) supp( 1 - j) c {x 1 p(x, 0) > 
$f - fs}. Let p(lz; k, x) = CasL. eik”j(x - a) .R,(A; x) E A$. Then 

which, by Theorem 4, is O(eCCd- ‘)I). 
To iset (10 let MsNocscI be a geodesic from 0 to a, with geodesic paraterization 

will consider the cell y(t) + A which contains 0 and a, in its 
is the lowest eigenvector of H(A., k) normalized so 
[9], we see that a,@; k,x)Q,(A, x)-l+ 1 in a shrinking 

neighborhood of 0 and then to eik”o in a neighborhood of a,. So long as 
k. a, 67? 27cZ, the contribution of a small tube about y contributes enough to 
if lvfi,(k WW-‘I* lW~)l’ d” x t o obtain (11) as in the proof of Theorem 1.5 
(lower bound) in [9, Sect. 21. I 

Let N = (x ] p(x, a) = p(x, b) for some distant a, b E L}. The above arguments 
suggest strongly that for I large, .R,(A; k; x) a,@; x)-l is very close to a constant in 
each component of R”\N except for a small neighborhood of N (if the component 
contains b, the constant is eik’“). 

Note added in proo$ Outassourt (University of Nantes preprint) has used the methods of Ref. [5 ] to 
recover the results of the present paper, and to go beyond leading asymptotics in situations where there 
is a unique geodesic minimizing the Agmon metric between points on the period lattice. 
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