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ABSTRACT. 2014 We prove that two classes of random Schrodinger operators
exhibit a transition from pure point spectrum with power decaying eigen-
functions to purely continuous spectrum when varying the coupling
constant. These classes are i) a Schrodinger operator with a random
Kronig-Penney potential and an electric field and ii) a Jacobi matrice with a
random potential of strength decaying as a = 1/2.

RESUME. 2014 On demontre que deux classes d’operateurs de Schrodinger
aleatoires presentent une transition d’un spectre purement ponctuel avec
fonctions propres decroissant suivant une puissance a un spectre purement
continu quand on fait varier la constante de couplage. Ces classes sont
i ) un operateur de Schrodinger avec un potentiel de Kronig-Penney et un
champ electrique, et ii) une matrice de Jacobi avec un potentiel aleatoire
decroissant en a = 1/2.

(*) Groupe de Recherche 048 of C. N. R. S.
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I INTRODUCTION AND STATEMENT OF THE RESULTS

A. Introduction.

Disordered systems have been and are being extensively studied because
of their relevance to a large variety of physical situations; for a review of
the physics of this problem as well as the present mathematical status,
see Ref. [1 ]- [3 ]. It has been proven recently that, as predicted by Mott
and Twose [4 ], one-dimensional Schrodinger Hamiltonians with disorder
possess a complete set of exponentially localized states, i. e. have only a
pure point spectrum with exponentially decaying eigenfunctions [5 ]- [10 ].
In higher dimensions d, at least for d &#x3E; 3 a transition from a pure point
spectrum with exponentially decaying eigenfunctions to a purely absolu-
tely continuous spectrum is expected to occur at a given energy when
varying the coupling constant : this is the Anderson-Mott transition. A
transition of this kind has been proven [77] for the Anderson model on
a Bethe lattice, which corresponds to the case of large enough d. The

present paper intends to describe and prove a transition from purely con-
tinuous spectrum to pure point spectrum with power decaying wave
functions.

This new type of transition will be proven in two kinds of models. The
first one consists of Jacobi matrices (one-dimensional tight-binding model)
with a random potential whose strength decays at infinity as When
a = 0, we have a usual homogeneous random potential, an Anderson
model, and as proven in Ref. [6] ] [10 ], the spectrum is almost surely pure
point with exponentially decaying eigenfunctions. It is useful to realize
that the method of Ref. [70] is up to now the most powerful one among
the one-dimensional methods in the sense that it is the only one which
does not require homogeneity of the potential: it can accomodate an
additional potential or non homogeneity of the randomness from site to
site and it is a finding of Ref. [72] that the method of Ref. [70] also yields
that the spectrum is pure point for 0  a  1/2. In the present paper we
will show, among other results, that when a = 1/2 we have a transition
from purely continuous to pure point spectrum with power decaying
wave functions when varying the coupling constant or the energy.
The second system for which we will prove this new type of transition

concerns a one-dimensional Schrodinger equation with an electric field F
and a random Kronig-Penney potential. There we prove that for small
field the spectrum is pure point, with eigenfunctions decaying 
at + oo where a(F) ~ Cte F -1 for small F, whereas for large enough field
the spectrum is purely continuous. These results are somewhat surprising

l’Institut Henri Poincaré - Physique theorique



285FROM POWER PURE POINT TO CONTINUOUS SPECTRUM

since Ref. [7~] had studied the model where the potential was an arbitrary
(disordered) potential, sufficiently smooth e. g. with two bounded deri-

vatives (some square integrable singularities can also be accomodated [14 ]),
instead of a Kronig-Penney potential: there was no localized states; actually
the spectrum was purely absolutely continuous, and initial wave packets
would be uniformly accelerated. On the other hand, the results that we
have proven for a Kronig-Penney potential, exhibiting a transition as
described above, had been anticipated in Ref. [7~] where such a behaviour
was predicted in the case of an electron in a white noise potential and an
electric field and in Ref. [7~] ] some transmission coefficient had been

numerically computed in an approximate model with a stair potential
replacing the electric field.
Our results have been annonced in Ref. [17 ]. In the same time a precise

numerical study of the electric field case has been performed [7~] which
in particular illustrates clearly some of the aspects discussed here, and
moreover discusses the behaviour of resonances.

B. Statement of our results.

The first model (Model I) that we consider, consists of Jacobi matrices
acting on l2(7 ) defined by

where the { Vn are independant identically distributed random variables
with a probability density r(V), always supposed to have zero mean, and
I I behaves for n ~ I large, namely for some Ci, C2

The operators H are self-adjoint and admit as a core the subset of [2(2)
consisting of those with a finite support. In the following we will suppose
that

and that

Concerning this model, our main results are summarized in Theorem I.1
below:

THEOREM 1.1. - The following properties of H hold for almost all

sequences {Vn}n~Z:
i) if 0 ~ 11  1/2, the spectrum of H is pure point and the corresponding

eigenfunctions satisfy

Vol. 42, n° 3-1985.
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and

ii) if 0 = - and ’ 03BB &#x3E; 03BB1(r), the spectrum of H is pure point and the ’ corres-

ponding o eigenfunctions satisfy

and if p &#x3E; 2, the eigenfunctions for E E ] - 2, 2 [ satisfy

iii) if a = - , p &#x3E; 2, x any compact of ] - 2, 2 [, and ~,  ~,2(r, x), the2

spectrum of H is purely continuous in x.
1

iv) if a &#x3E; 
2 , p 

&#x3E; 2, the spectrum of H in [ - 2, 2 ] is purely continuous.

v) if ap &#x3E; 1, the essential spectrum of H is [ - 2, 2 ].
vi) if a  0 and | (k)  C |k|-03B3 for some C, y &#x3E; 0, the spectrum of H

is pure point and the eigenfunctions satisfy

We have also some arguments for the following conjecture

CONJECTURE I.2. When a 1 1 or an 03BB, the s ectrum o H is alm stCONJECTURE I. 2. - (J( = 

2’ f 
the spectrum of H is almost

surely pure neighbourhood of - 2 and of + 2, neighbourhood
depending and the corresponding eigenfunctions decay with a power

power diverging as I E I ~ 2 - 0. Hence there is also a transition
from power localized to continuous spectrum at weak disorder when varying E I.

Remarks. 2014 While we were writing the present complete version, S. Kotani
has proven [33] that iv) can be strengthened. Using a martingale inegality
different from the one we use in Section II, and a result of Carmona [24 ],
he proves that : if 03B1 &#x3E; 1/2, p &#x3E; 2 and the distribution is of compact support,
the essential spectrum of H, [ - 2, 2], is almost-surely absolutely continuous.

2014 (1.5~) is proved in [12 ].
All results concerning pure point spectrum and upper bounds on the

eigenfunctions depend only on the lower bound on |an| in (1.2); they also
extend readily to the case where ~(v) ~ 0.
All results concerning continuous spectrum and lower bounds on

the eigenfunctions depend only on the upper bound on |an| in (1.2), and
do not depend on hypothesis (I . 3), and in fact do not require the existence
of the density r( . ).

Annales de l’Institut Henri Poincaré - Physique theorique
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The lower bounds should also hold in some cases when 0.
Then instead of a variation of parameters about the V = 0 solutions, one
would need a variation of parameters about the long range potential 

2014 It follows from general results of Ref. [6 that the diffusion constant
vanishes in the regions where we prove that the spectrum is pure point,
and that the participation ratio vanishes when the spectrum is purely
continuous.

2014 If p  2, it can happen that there is localization and pure point

spectrum for some oc, a &#x3E; 
-. 

For example for a Cauchy distribution (p = 1),

we will prove pure point spectrum for all (X  1 and for a = 1 pure point
spectrum for large coupling constant ~,.
Our proofs accomodate easily the cases where the variables Vn are

not identically distributed.
The reasons for the results described above, a sketch of the arguments

and of proofs will be given latter in the next subsection, but we turn first
to the results concerning our second model.
Our second model (Model II) is a Schrodinger operator with an electric

field and a random Kronig-Penney potential, acting on and defined by

where F  0 and the {Vn}n~Z are independant identically distributed
random variables with a density r(V) and zero mean. The operators H can
be defined as self-adjoint operators using form methods and admit as a
form-core the subset C~ of In the following we will suppose that

and that

THEOREM 1.3. - The following properties of H hold for almost all

sequences { Vn 
i) if F = 0, the spectrum of H is pure point and the eigenfunctions are

exponentially decaying.
ii) If F  Fl, the spectrum of H is pure point and the eigenfunctions

satisfv.

and if p &#x3E; 2, the eigenfunctions satisfy also ,

Vol. 42, n° 3-1985.
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for some ’ C, y &#x3E; 0, they also , satisfy

&#x3E; 2 and F &#x3E; F2, the spectrum H is purely continuous.
iv) if p &#x3E; 2, F 7~ 0, the essential spectrum of H is [R.

Remarks. - All results concerning continuous spectrum and lower
bounds on eigenfunctions do not depend on hypothesis (I.9) and in fact
do not require the existence of the density r( . ).
- - It follows from general results of Ref. [6] that the diffusion constant
vanishes in the regions where we prove that the spectrum is pure point, and
that the participation ratio vanishes when the spectrum is purely continuous.
- If p  2, we may have point spectrum even for large field, and for

example in the case of a Cauchy distribution (p = 1), the spectrum of H is
almost surely pure point for all field F.
Our proofs accomodate easily the cases where the variables Vn are

not identically distributed.
For F = 0, the localization length (inverse rate of exponential decay

of the wave functions) diverges at the energies E = an integer.

Let us first give a heuristic explanation of our results [17]. Let us start
with our Model II (eq. I.8) and consider a solution / of the equation

= Since we can integrate the equation between the 03B4 functions,
we can get a relation equivalent to = but involving 03C8 only at
points x = n. One then sets the following recursion relation on the 

where the an, ~n, Yn are expressed in terms of Airy functions. The important
point is that yn will be mainly a product of two Airy functions, each of them
decaying as n -1 ~4 at +00. Hence yn will behave at + oo as n -1 ~ 2 and
more precisely one finds for n large and modulo oscillations that

By studying an and one can show that the qualitative behaviour is the
same as if equation I. 14 was replaced by

This is the equation associated to an Anderson model (our Model I), at
zero energy, with potential at site n and coupling constant F-1/2.

Annales de l’Institut Henri Poincare - Physique theorique
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We can understand why model II and Model I for a = 1/2 have power
localized states for F small, or respectively ~, large : since wave functions
represent standing waves, we can imagine the wave being set up by trans-
missions from a central peak. In the approximation of ignoring multiple
reflections and approximating the randomness of potentials at distinct
sites by independant reflections, we see that

where rj is the reflection probability at sitey. For weak coupling, the Born
~ 

approximation says that r is proportional to the square of the potential
strength, so when [E(V2)  oo

We have thus power localized states for F small enough and we turn to
extended states when F becomes large and the wave function ceases to be

square integrable. The above heuristic argument shows also that for oc  1/2
our Model I will have always localized states, whereas it will have only
extended ones in [ - 2, 2] for a &#x3E; 1/2. We also see why different behaviour
is to be expected if = oo.

The results on the lower bounds on the eigenfunctions and on the conti-
nuous spectrum will be proven in Section II. Actually it will be proven
there a lower bound at x = + oo on the decay of all solutions of the equa-
tion = for some range of parameters and for all E in some interval.
When we have non square integrable lower bounds, it ensures that in the

corresponding region of energy the spectrum is purely continuous.
The results on pure point spectrum and on upper bounds on the eigen-

functions will be proven in Section III. They will follow from the study of
a correlation function. We will basically use the method developped
in Ref. [70] which was used in Ref. [72] to prove the upper bound half
of part i) of our Theorem 1.1. However the version we give here is a little

simpler, and can be adapted to continuous equations and in particular
to model II.

In Section III, the reader will also find our arguments for the conjec-
ture 1.2; the idea is that in a reasonable perturbation theory, the power
behaviour of wave functions at infinity should diverge as I E I ~ 2 - 0,
ensuring always square integrability and thus localization and pure point
spectrum near I E I = 2.

Finally let us explain point v) of Theorem 1.1 and iv) of Theorem 1.3.

Vol. 42, n° 3-1985.
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If ap &#x3E; 1, the essential spectrum of Model I is [ - 2, +2] because almost
surely the sequence { anVn goes to 0 as n ~ I ~ oo, as follows from the

fact that oo for some qp, a.q&#x3E; 1 which implies by Fubini
n

that 03A3 | anVn|p is almost surely finite. The essential spectrum of Model II
is [R when p &#x3E; 2, because then we prove in Section II that for given E
(e. g. E E Q) almost surely no solution of = can grow exponen-

tially at + oo, which implies that E belongs to the spectrum, since there
is always a solution which is L2 at - oo.

II THE LOWER BOUNDS
AND THE CONTINUOUS SPECTRUM

In this Section we intend to study the solution of the equation

(I I .1 )
for operators H given by (1.1) and (1.8), and will prove the lower bounds
which have been annonced in Theorem I.1 and I.3. Since a solution of
equation (II.1) will oscillate, in order to acommodate the oscillations
we will look to lower bounds on gn where gn is defined respectively for Model
IandIIby

As we will see it is not too difficult to get lower bounds for a fixed E, almost
surely with respect to the sequence vn. However we want, in contrast, a
lower bound almost surely, for all E in some interval or in M. This difficulty
will be solved by using an idea similar to the one used by Kolmogorov
in his study of the regularity of stochastic process (see e. g. Ref. [20], p. 43-44).
But let us first rewrite our problem in an equivalent but more convenient
way.

In the case of the Jacobi matrices we choose two solutions of
+ 1) + 1) = for instance = cos kn, = sin kn,

E = 2 cos k and for any solution of (II 1), we define (An, Bn), n E ~, by

Equation (11.1) becomes on the variables B")

Annales de l’Institut Henri Poincaré - Physique " theorique "



291FROM POWER PURE POINT TO CONTINUOUS SPECTRUM

where

and the Wronskian of the two solutions (~

Now tr 4 and det = sin2 k. So the smallest eigenvalue
of is at least sin2 k/4. Thus equation (11.4) yields

so that we only need to get lower bounds on the norm of Bn) when
it satisfies (II. 5).
For Model II we choose two solutions 03C6±(x) of -03C6"(x)-Fx03C6(x)=E03C6(x)

and for any solution of (II .1), we define Bn), n E Z, again by (11.4),
which implies that equation (II .1 ) in the variables Bn) becomes again
equation (II. 5) where now

and the Wronskian W(03C6+,03C6-) is now W(03C6+,03C6-)=03C6’+(x)03C6-(x)-03C6’-(x)03C6+(x)
independant of x. Furthermore we know that we can choose such
that asymptotically at + 00

and = 1. It is then easy to find a constant C such that

and again our problem is to find a lower bound on the norm of (An, B").

Let us now set for both cases U - we have to study

where ~ is ,(sin for Model I and for Model II, ~, is 

and a = 1 ~ 2 , the T,, are 2 x 2 matrices in both cases uniformly bounded
in n, independantly of E, F. A crucial fact is that for both models

Vol. 42, nO 3-1985.
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n

so that det Mn = 1 and if we set Mn = Mi, then also

i= 1

In order to get a lower bound on the solutions of (II. 11), we use the
fact [19] that it is sufficient to get an upper bound on the growth of pro-
ducts of transfer matrices: indeed we have = so that

II M; 1 11-: II U 1 but Mn is a 2 x 2 matrix with determinant 1
and so M - 1 !! = M which implies

We are now left to obtain upper bounds on the norm of the products of
transfer matrices Mn. This amounts also to obtain, with probability one,
upper bounds on the norm uniformly with respect to the energy E
and to the initial condition U 1, The uniformity with respect to U 1 follows
if we obtain upper bounds for two independant initial conditions, since
the intersection of two sets of measure one is a set of measure one. So from
now U1 will be a fixed initial condition that is a given vector of ~2 with
norm unity, and we set

Xn is a random variable depending on the random 
In the following, we shall denote by the conditional expecta-
tion of Xn is the average of Xn with respect to ~’n
for fixed. (g-n is the cr-algebra generated Xn is
~n measurable and is the conditional expectation of Xn with
respect to ~n -1 c 

In view of (1.4) and of the definition of j/ for Model I and Model II,
we see that

We note also that the matrices Tn appearing in Model I and II are bounded
in norm independently ofn, so we let T denote such a bound. We then have
the

LEMMA II .1. - If I i/’ ~q)  oo for some q &#x3E; 2, there exists a cons-
tant Dq depending only on q so that

Annales de Henri Poincaré - Physique " theorique
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Note that since Mn = 1 + we have that

For q &#x3E; 2, the result follows directly from the fact that [E(j/) = 0 and
that for a and b as above (&#x26; ~ 0, 1 + a + b &#x3E; 0) one has

Inequality (II.17) itself is proven separately for q &#x3E; 4 and 2  ~ ~ 4.
For q  4 it follows from the fact that if 1 + x &#x3E; 0

since (1 + x)q~2 - 1 - q 2 x is: 0(x2) for x small and 0(xq~2) for x large, and

taking into account that b2  (b + bq/2) and | a |q/2  a2 + |a|q in this case.
For 2  q  4, inequality (11.17) follows from the fact that for 1 -p x

positive,

since f(x) = 0(xq~2) for x large and 0(x2) for x small, and from the fact
that f(a + b) ~ 4a2 + 2q~2b~~2 (for b, f(a + b) ~ f (2a)  (2a)2
and if ~ ~ f(a + b) ~ /(2b) ~ (2~)~~).

Finally we note that, since ~(’~n) = 0, the inequality (II .15) is readily
verified for q = 2 with Dq = 1/2, that is

Let us set cn = [1 + + !~)]. Let us
t=i

also define S~ as

where for a given r &#x3E; 0, i is the integer such that 2ri ::::; n  2rci + 1 ~. Using
Lemma II.1, we are now going to prove the

LEMMA II . 2. - If [( 11/ ~q)  oo for some q &#x3E; 2, then for any E &#x3E; 0,
r &#x3E; 0, there exists a random variable CE(w) depending on cc~ _ ~ V~ 
almost-surely finite, such that

Proof From Lemma II.1, and the definition of Cn, we get that

Vol. 42, n° 3-1985.
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which ensures that is a (positive) supermartingale. A classical theorem
on supermartingales f271 then tells us that

from which

By replacing C by C2i~ 1 + E~ we can obtain that

which is summable with respect to i, and so by the Borel-Cantelli Theorem
we get Lemma 11.2. D

Using Lemma II. 1, we are now going to prove also the
LEMMA 11.3. - 7/’ p &#x3E; 2, and if the 2  2 matrices Tn satisfy

then

is a positive ’ with

and

Proof - Let us consider the random variables

and for the sake of notations, let us drop E and E’, keeping only the prime
for distinguishing both energies. So

In view of (II.18), one can readily bound the first term of (11.22) by
( 1 + n-2IXT2[(f2))Y;-1’ Using the hypothesis (11.20), and the definition
of Mn, M~ the second term is bounded by X;-l T’2(E - E’)2n2{P-IX) [(1/"2).

de l’Institut Henri Poincaré - Physique theorique
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The third one is bounded by

. 
and using = 0, this is equal to

where we have used (11.20).
From these bounds on the three terms of (II. 22) it follows that

from which we finally obtain by using (11.18) that

Now from (II.23) we see that if

and Zn is a (positive) supermartingale. And of course IE(Zo) = (E - E’)2.
D

We prove now the

LEMMA II . 4. - Under the hypothesis of Lemma II. 3, for any 8, 0  8  1,
r &#x3E; 0, exists a random variable D~(03C9) depending on (D = {Vi}i~N,

surely finite, such that

where i = i(n) is the integer such that 2r~ ~ n  2r~i + 1 ~.

Vol. 42, n° 3-1985.
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Proof. Since Zn is a positive supermartingale, we get that for all and k

where we have made explicit the two energies and (k + 1)/2~ that we
consider in Z . It follows

Choosing now C = C’2’~’’B we get from it

The right hand side is summable with respect to i so that we get by Borel-

Cantelli that for all n, all l &#x3E; i(n), all k, o  k  2l, Zn 21’ T 
 

where is a random variable almost surely finite. The Lemma follows
then from the definition of Zn and from the fact that

We can now state ’ and 0 prove the main result of this Section :

THEOREM 11.5. - If 1 ’  oo some q , &#x3E; 2, and if 
]

then for any 8 &#x3E; 0, there ’ exists a random variable depending on
cc~ = almost surely finite, such that

with cn and dn defined above.

Proof - Let n be given and 0 suppose first that [a, b] c [0, 1 ]. Any
energy E in [0, 1 ] can be written as

where ’ E~ E Sn(r) and B, is 0 or 1 : E~/2~ is the dyadic decomposition of E - E1.

l’Institut Henri Poincaré - Physique " theorique "
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L

Clearly E = lim EL, if we set Ei, = Ei + 
~ 

2014 and since is a
/ j 2’

continuous function with respect to E 
~=’+~

L

By Lemmas 11.2 and 11.4 we thus get

where in the last term we have made use of the fact that

since n  2’~’~. .

This result clearly does not depend on the special interval [0, 1 ] which
has been choosen for simplicity and by a scale factor applies to the inter-
val [a, b on which the hypothesis of the Theorem hold. Furthermore the
result will be the same with another initial vector U i orthogonal to Ui,
hence yielding the result on the norm of Mn(E) stated in the Theorem if
we choose r = /3-1(q-1 + 1/2). D
We can now apply the result of Theorem II . 5 to our models. For Model I,

if a = 1/2, cn and dn behave that is if the interval

(a, b) of Theorem II . 5 is choosen as [ - E, E ], E  2 : in view of the discussion
before eq. (II .14), we have thus obtained power decaying lower bounds on
the solutions of the equation  E and so on the eigenfunctions
when the spectrum is pure point in [ - E, E ]. Furthermore we can check
that ~3 = 1, so that, since p &#x3E; 2, for Band ~,2(4 - E2)-1 sufficiently small,
c ~(’~2)~,2(4 - E2)-1 will be smaller than 1/2 : thus almost surely with
respect to the potential, no solution of .= can be square integrable
for any e, ~ e ~  E and the spectrum is purely continuous in [ - E, E ].
For Model I, 0 ~ a  1/2, cn and dn behave like exp { - cnl - 2°‘ } , which
yields the lower bound claimed in (I.5&#x26;).
For Model II, 1E(r-2) = 221E(V2)F-1, a = 1/2 and from the asymptotic

behavior of Airy functions, one can deduce that /3 = 1/2. Thus cn and dn
behave like nC[E(V2)À2F- B and so we obtain power decaying lower bounds
on the solutions of = Actually we have

so that gn is not integrable for p &#x3E; 2, and for sufficiently small À. 2F-1.
This result extends from compact energy interval to the whole spectrum IR

Vol. 42, n° 3-1985.
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by countable intersection of sets of measure one. Incidently we have also
proven that the spectrum of H is almost surely this follows from the
fact that almost surely for all E the solutions of the equation Ho/ = Eo/
do not increase exponentially.

III. UPPER BOUNDS AND PURE POINT SPECTRUM

In this section we intend to prove that, as stated in Theorems 1.1 and I . 3,
the spectrum of Models I and II is pure point in various cases and to provide
the announced upper bounds on eigenfunctions. We intend also to give
the heuristic arguments leading to Conjecture 1.2.
We first discuss Model I, which is simpler. We follow the basic stategy

of [6 ], studying the correlation function p(m, n ; A) defined for an energy
interval A as .

where n; d~,) ~ denotes the absolute value of the spectral measure of
the Hamiltonian H, taken between the two vectors bm and ~n of the cano-
nical basis of l2(Z).

If for all m in Z, p(m, n; A) is summable with respect to n, then for almost
all potential the spectrum of H is pure point in A [6 ]. And if in addition
it is bounded by a function /(~ 2014 then for almost all V the eigen-
functions for energies E in the interval A decay at least according to

for G arbitrarily small; the constant C(V) depends only on V.
Actually it is sufficient [6] to obtain, uniformly in A, a bound on the

correlation functions n; A) associated to a sequence of boxes
A = [ - L, L] increasing to ~. In this latter case, the correlation functions
are given as

where the sum runs, for a given potential, over all eigenvalues in A of the
operator H2014restriction of H to the box A with Dirichlet boundary condi-
tions at :1: (N denote the corresponding eigenfunctions (equa-
tion III . 3 holds as an equality because for all V, the eigenvalues of HA are
non degenerate).
We are going to prove the

Annales de l’Institut Henri Poincaré - Physique theorique



299FROM POWER PURE POINT TO CONTINUOUS SPECTRUM

PROPOSITION 111.1. - If p , &#x3E; 2, the correlation function for Model 1
satisfies for all A,  

(The case a  0 will be treated later on in this Section).

Proof The basic method for proving these results is the one of Ref. [10 ]
where the case a = 0 was proven. It was used [72] to treat the case a  1/2,
and the case a = 1/2 can also be obtained from it. We give here a variation
of this method which is a little simpler and extends more easily to other
situations and in particular to continuous Schrodinger equations such as
our Model II.

Let us first consider the expression (III . 3) n; A). The expectation

holds there for f and we are going to perform first the inte-

iEA

gration with respect to Vn. The eigenvalue E is a function of Vn which is
for almost every Vn a local diffeomorphism; this allows us to transform
the integration with respect to Vn into an integration with respect to E
if we note that, for {Vm}m~n fixed

and so

where Vn is now a function of E This defines in a natural

way a correlation function at energy E, n; E), that we are now going
to study.
We suppose that for example m  n, and we set

We have thus
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and following [6] ] [10 we can pass from the integration variables {Vi}i~n,i~A
to the variables { This can be done easily by iteration and one
can also check that this change of variables is valid. We obtain

where

From these expressions, we get by iteration that

Finally we need the following estimate, which is crucial in this approach
and which follows from the estimates of Ref. [70] ] [72] and from the upper
bounds on the behaviour in (1.2):

From the expression (III. 9) n ; E) and using the estimates (III. 14),
(III.15) we obtain now by

the estimates of Proposition 111.1. D

We remark that for p  2, one may get better estimates than (111.15)
1

and thus localization and pure point spectrum also for some a &#x3E; 2 . For

example in the case of a Cauchy distribution for the variables V’s, p = 1
and (III. 15) is replaced by 1 - This is because the estimate

1 - Ck2 for k small which holds if p &#x3E; 2 is replaced by the
stronger ~) ~ 1 - C k ~ I for k small in the case of a Cauchy distri-
bution. We thus have pure point spectrum for all a  1, with eigenfunctions
decaying as a fractional exponential, and we have also pure point spectrum
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for a = 1 at large enough coupling constant, with power decaying eigen-
functions.
The upper bound which has been proven in Proposition III.1 is inde-

pendent of the energy. When a = 1/2, it yields pure point spectrum only
for /), large enough and we have seen in Section II that for small ~, the spec-
trum is purely continuous within [ - Eo(~), EoM], Eo(A)  2. The question
arises thus to know what happens for small ~, near 2 - 0. We have
no rigorous result on this case, but we can argue heuristically in the following
way, which yields our conjecture 1.2: we can compute by perturbation the
spectral radius of the operator T for ~, small, (X = 0, at given E near 2 ; we
obtain that it is of order 1 - C/~(4 - E2) -1, which reinterpreted in our

1
situation with a = - yields the result. The same singularity near the edge
of the spectrum has been noticed for the Lyapunov exponent associate
with the case a = 0 both by perturbative argument and numerical compu-
tation [22 ].
We turn now to Model II and more precisely to the proof that under some

circumstances the spectrum of H can be pure point and to the corresponding
bounds on the eigenfunctions. Here we face a continuous Schrodinger
equation, but the basic strategy will be the same as in the study of Model I,
since Royer [8 has shown how to adapt the approach of Ref. [6] to the
continuous case. In particular it is also possible to consider the correlation
function p(x, y; A) defined in a way analogous to (III.1) and integrability
with respect to y will ensure the pure point character of the spectrum [8 ],
the rate of decay of the correlation function being again linked to the decay
properties of the wave functions. It is thus sufficient for our purpose to
prove the

PROPOSITION III.2. - If p &#x3E; 2, the correlation function for Model II
satisfies for all A

(The bound for n  0 will be obtained later on in this Section).

~ Proof 2014 We are going to follow closely the version of the proof of
Ref. [70] given above in our study of Model I. The correlation function
for a finite box A is given by

where the sum runs, for a given sequence Vm over all eigenvalues in the
energy interval A, of the Hamiltonian HA restriction of H to the box A
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with Dirichlet boundary conditions at - L - 1 and L + 1; these eigen-
values are non degenerate. Actually it is easy to verify that we only
need a bound on y ; A) for x and y hence we will restrict to

L

study 03C1(m, n ; A). As previously the expectation holds for f 
and we again perform first the integration with respect to In this case
we have

so that the correlation tunction becomes

which allows us to introduce a correlation function at energy E n; E)
which we are going to study.

Let us now introduce two independent solutions of the equation
- ~p"(x) - and set

We thus have of course

and by elimination of Ai, Bü one gets

where

We suppose for example m  n and we set as in the previous case

Annales de l’Institut Henri Poincare - Physique theorique



303FROM POWER PURE POINT TO CONTINUOUS SPECTRUM

so that

and mimicking the discrete case studied previously we can pass from the
integration variables to the variables {~ and we obtain for
the correlation function at energy E:

where

and from these expressions we get by iteration that

From (111.27) we have, using (111.32) and (III.24)

If we had started our proof by changing first the variable Vm into E instead
of Vm and proceeding similarly as above we would have got
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and thus

The operator norms in (III.36) are bounded now as for Model I, as
in Ref. [70] ] by product of L2-norms of the operators Ti+ 1 Ti or 
Let us first note that TiTi + 1 (resp. is conjugate through unitary
dilatation and translation to the operator T2, where T is defined

by (111.30), (111.31) with bi set equal to zero, ai equal to 1 and yi replaced
by Now, as in (111.15) we get from
Ref. [70] ] [72] ] that

for sufficiently small. We thus need only to know some infor-
mations on the behaviour of yi, and ai with i as i ~ + oo. In fact

we restrict to those i such that

for some fixed small enough E. From the behaviour of the Airy functions
(see II.9) we see that for those i, as i -~ +00

and

So that for a large density of pairs (i, i + 1) we get

and thus

whereas for the other i we use that

and we get the upper bound (III.17). D
We note that if p  2, the bounds (111.38) may be strengthened and one

can then have pure point spectrum for all field. For example in the case of
a Cauchy distribution, p = 1 and (111.38) is replaced by 1 - C(Fn)-1~2,
and thus in this case H has almost-surely a pure point spectrum for all
field F and with eigenfunctions decaying according to a fractional expo-
nential.
As announced after Propositions III. 1 and III. 2, we are now going

to study the case of Model I with a  0 and of Model II for n  - oo.

Actually we are going to prove the
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PROPOSITION III . 3.  C for some C, y &#x3E; 0, then

i) the correlation of Model I with a  0 satisfies

ii) the correlation function of Model II satisfies

Proof 2014 In the beginning of this Section we have seen the usefulness
of estimating the norm of the operator Basically the results of
Propositions 111.1 and III.2 followed from the behaviour of this norm at
fixed or small disorder. The present results will in contrast follow from the
behaviour of this norm at large disorder, which we are going to work out
now.

We are thus going to obtain bounds on the norm of the operator T~+ 1Ti
at strong disorder, where T~ is defined from (III .12), (III .13). It is useful [10 ]
to define two operators U and K~ acting on L2-functions by

Then U is a unitary operator on L2 and we have

Since the Fourier transform is an isometry in L2, we may as well esti-
mate the norm of S == Ki+ 1UKi in Fourier space

where | i(k)|  1, i(k) = 1 ~ k = 0 since it is the Fourier transform of
the density probability and ~) is the kernel (in the distributional
sensed of II’ v

Let us now set

and let X denote the characteristic function of the interval [ - ko/2, ko/2 ].
We then have
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We are thus left to estimate

But it was proved in Ref. [70] that for  1,

so that

Equations (111.44) and (111.45) thus yield

W e are lett with the e choice 0 0 In order to get an optimal bound
on this norm. In order to find it we have to recall that

so that

~ai+1~)

Now, in view of the hypothesis on r in the Proposition 111.3 (which is
satisfied by any natural density probability we are interested in), by choosing
ko = in (111.46) we obtain that if &#x3E; 1

From this later bound and from the expression (III. 9) of the correlation
function p one can read directly the behaviour of p and so also of the
eigenfunctions of Model I for a  0, if one remembers that a = 

and we obtain (111.39).
We turn now to the proof of (III . 40), and we are going to bound (III. 36).

As n  oo, we see from the definitions of an, bn and yn and from the pro-
perties of the Airy functions that
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For n large enough, we are going to find a bound on the norm of the
operator We have

Thus by convexity of the norm

and we are thus lead to estimate the norm of the operator Tf defined by
(Tv.f )(x)

But now we can see that the operator T~ is unitarily equivalent to an
operator of the type TnTn+2 except that the disorder in there has been
multiplied by + V I. Then (111.40) will follow from (111.49) and the
fact that bn+1! - exp |Fn|11/2. 0
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