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1. THE Basic THEOREM

There are two cases where it is well known that Schrédinger operators
have non-degenerate eigenvalues: The lowest eigenvalue in general dimen-
sion and all one-dimensional eigenvalues. One can ask about making this
quantitative, ie., obtain explicit lower bounds on the distance to the
nearest eigenvalues. Obviously, one cannot hope to do this without any
restrictions on ¥V since, for example, if x is the characteristic function of
(—1, 1), one can show that, for / large, —d*/dx* — y(x)— x(x — 1) has at
least two eigenvalues and E,— E,—0 as /- o (see, e.g,, Harrell [7]).
Thus, we ask the following: Can one obtain lower bounds on eigenvalue
splittings only in terms of geometric properties of the set with V(x)< E (E
at or near the eigenvalues in question) and the size of ¥ on this set? We
will do precisely this for the two lowest eigenvalues in general dimension in
this paper, and we have proven results on any one-dimensional eigenvalue
in [11].

This is not the first paper to try to estimate the gap E, — E; for —4+ V;
see, e.g., [8, 16,9, 19]. Here we will present a very elementary device which
is also quite powerful. It depends on the fact that many Schrédinger
operators can be realized as Dirichlet forms. This subject has been studied
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THE GAP OF SCHRODINGER OPERATORS 397

by many authors, e.g,, [2, 5, 6,3]. Here we quote some results of Davies
and Simon [ 3, Proposition 4.4 and Theorem C.1]. The class K, is discussed
in [3, 15].

THEOREM 1.1. Let H=—A+V,V_€K,, V, e K" andlet Hy,=Eyy,
for a positive L? function, . Let A be the operator on L(R", Y3 d'x) with
D(A)={f| fboe D(H)} and Af =y '(H — Eo)(fipo)- Then

Q(4)={fe LR, y3d'x) | Vfe LAR", Y3 I'x)} (1.1)

and

(f, 4) = (VP g3 . (12)

THEOREM 1.2. Let H, be the Dirichlet Laplacian for a bounded region
U< R", and let Hyo=EoW, for a positive L* function . Suppose that
Yo(x) >0 as x—0U. Let A be the operator on L*(U,y2d’x) with
D(A)={f| fboe D(H)} and Af=yg'(Ho—Eo)(fibo). Then Q(A)=
{fe LX(U, y2d'x) | Vfe LA(R", y2 d’x)} and

4N =[ (VP viax.

Remarks. 1. Vfis intended in a distributional sense.

2. There are geometric conditions on U which imply that yy(x) -0
as x - 0U; see Corollary C.4 of [3].

3. Theorem 1.2 and its proof in [3] extend to H=H,+ VV with
Vek,.

4. Similar theorems hold with periodic and Neumann boundary con-
ditions (where, for periodic boundary conditions, we must think of the
operator on a torus) with Vf a distribution on the torus (including possible
singularities at the boundary of the cube stitched to a torus).

Since A4 is unitarily equivalent to H—E,, we obtain a variational
principle for the gap:

CorOLLARY 1.3. E,—E, = inf{| (V/)*Y3d'x/ [ Y2 d'x| [ fYy2=0}.

It is this variational principle first exploited by Kac and Thompson [10]
and more recently by one of us [16] that we will use here. We will call a
general operator H, so that H— E, is unitarily equivalent to an operator
with Q(A4) given by (1.1) and A4 given by (1.2), an operator related to a
Dirichlet form. Our basic comparison result is:
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THEOREM 1.4. Let H, H be two operators related to Dirichlet forms with
lowest eigenvalues E, E, (resp. Eq, E,) and lowest eigenfunction , (resp.

¥o) Let a(x)=yo 5" and
a, =max a(x); a_ =min a(x).
Then
2 2
a_ =~ o= a,
[—] (E,—Ej)<E,~ Ey< [—] (E, - Eo)
a, a_

Remark. 1In all cases of interest, a(x) is continuous, which is why we
write max for a, rather than sup.

Proof. Let b(x)=y, ¥, where ¢, is the eigenfunction of H associated
to E,. Then we can find « so
j [o+b(x)] P2 d"x =O0.
Let c(x)=a+ b(x),
E,—Eo< | (Vo) 33 de/j AP dx

- [ e @ops v x| ovs Vv

<(a,fa ) (Vey 3 d"x/j Y2 d'x

=(a,/a_)* [(E, - E))/(«* +1)]
<(a,/a_)*(E,~ Eq).

Let é(x)=a(x) 'sod, =a~', d_=a7'. Reversing the roles of H and
in the above arguments

E —E,<(a,/a_) (E,— Ey)= (ay/fa_) (El "Eo),
which is the other desired inequality. |

Despite the simplicity of this argument, it is quite useful. In the next sec-
tion, we use the theorem and its strategy to find new bounds on the lowest
band in a solid. In Section 3, we prove bounds on a special situation which
we use elsewhere [11]; actually, it was this application that motivated the
present note. In Section 4, we prove bounds that answer the question raised
in the first paragraph of this section.
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The methods and results of this paper carry over to the case of finite dif-
ference Hamiltonians on a lattice Z’. Let h, denote the finite difference
Laplacian, i.e.,

hou(n)=— 3, [u(n+a)—u(n)],

lel =1

and set A= hy+ V, V multiplication by the function (sequence) V(n). If 2
denotes the ground state of 4 and E, the ground state energy, then the
corresponding Dirichlet form is given by

u, Auy =Y [i ] Q(n) Q(n+d)lu(n+9,)—ufn)|?

neZ' =1

with 4 =0~ '(h— E,) .

2. THE GROUND STATE BAND IN A SOLID

Let H= —(2m)~! 4+ V(x), where ¥(x) is periodic on R’, ie.,
V(x+a)=V(x)

for a in some lattice, L, i.e., a discrete subgroup of R’ spanning R" as a real
vector space. Let L* be the dual lattice, ie., Ke L* if and only if K-ae2nZ
for all ae L. Let B be the Brillouin zone, i.c.,

B={keR’| |k| <dist(k, L*\{0})}.
It is well known (see, e.g., [13, Sect. XII1.16]) that

LR, )~ [T ae:  H=[® HI) Pk 2
(’x)Bka B(), (2.1)

where the H(k) are operators we will describe later. They have discrete
spectra and their eigenvalues gq(k) <¢,(k)< --- are called band functions.
We want to prove the following in this section:

THEOREM 2.1. Let y, be the positive periodic solution of H\, = ,(0) Y.
Then

(a_/a,)(2m) ' k2 <eo(k) —eo(0) < (2m) ' k2, (2.2)

where a ., = 25X [o(x)].

min
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It often happens that for reasons of symmetry 0%,/ 0k, 0k,)(0) is a mul-
tiple of the identity matrix, in which case the “effective mass” is defined by

go(k)=¢eo(k) + (2mg) ' k* + O(K3).

(Actually, the physical effective mass is associated with the curvature of
bands higher than ¢,.)

COROLLARY 22. m<mg<(a,/a_)*m.

We also note that (2.2) implies that gy(k) isn’t flat (constant). For
general ¢, this is a result of Thomas [ 18] proven by rather different means.

Proof of Theorem2.1. We need to describe (2.1) in more detail
[13, 17]. Define the Wigner—Seitz cell by

C={xeR"||x| <dist(x, L\ {0})}.

Then #,={YeL (R)|¢y(x+a)=e*“Y(x); all aeL} with inner
product

W oh=| T 0x) I

and

Hk)y=[—(2m)~" 4+ V(x)]¥,

where H(k) (suppose V is locally L"? if v=5, L*if v=1,2,3, L?, p>2 if
v=4) has a domain {y € #, |4y € #,}. Let Y, be the positive periodic
solution of Hyy=£4(0) ¢, (ie., ¥, is the lowest eigenfunction of H(0)) and
define

H= A,

but with the inner product
frgde=| ()8 ¥3)

and the operator A(k) on #, by D(A(k))={f | fbo€ D(H(k))} and
A(k) f=q ' (H(k)—eo(0)[fpo].

Then, as usual, one can easily show that

Q(Ak)) = {fIVfe A}
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and
(f, Ak) )= (2m)~'(IVflIz)* (2.3)
Taking f= ™~ #,, we see that
golk) — &o(0) =inf{(f, A(k) /)| I flg=1} <(2m)~" k2.

On the other hand, if fis the lowest eigenfunction of A(k), we can use f as
a trial function for 44(k) (the A(k) associated to V' =0), so

2m)~' k> gjc V) wx/jcfz &'x

<a=[ (VPy3dx/a?| fryidx
C C

=(a,/a_)? [eo(k) - £o(0)],
yielding the other bound. |
We will describe this application in detail for the discrete case, expanding

on the remark in the Introduction.

LEMMA 2.3. Let
(hou)(n)=— 3 [u(n+a)—u(n)]
la| =1

on IN(Z'). Let V be a periodic multiplication operator, and let 2, be the
positive periodic ground state of H=H,+ V with HQ,= E,Q,. Then for
ue #,,

(Qott, (H—E)(2ou))= T S, Qo) Qu(n+8,) luy 15— 1, |°. (24)
neZ'i=1

Proof. Without loss, take u real-valued. For simplicity we take k = 0;
the proof is similar for general &, and we write n + 6, models the periods of
V. Let D, and V, be defined by

(Dif)n)=f(n+4,)
Vi = (Di“ 1)

$0 hy=—3 (D,+ D} -2)
A straightforward calculation shows that

[D.,g]=(V.g) D,
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SO

[[D;, ul, ul=(V.u)> D,
and

(Q0, [[D;, ul, ul 2o> =} |(Viu)(n)|* o(n) Qo(n +6,).

neZ¥

Because of the sum over n, we get the same formula for D*. Thus

{Qq, [[Hy, u] u] Qo> = —2(rhs of (2.4)).

But [[(H—Ey),ul],ul=[[Hy, u]ul, so expanding the double com-
mutator and using (H — E;) 2,=0, we obtain (2.4). ||

THEOREM 2.4. In the above case, let eo(k) be the band function for the
ground state band of H. Then

(a_/a,)? Eo(k) < eo(k) — 20(0) < Eolk),

where Eyk)=2v—3!_,cosk, is the free ground state band and
a. =i 2o

Proof. Given the lemma and [e*®*" —¢*"12=2 —2 cos k;, the proof
is identical to that of Theorem 2.1. ||

3. BOouUND ON SOME NEUMANN LAPLACIANS

In our study [127 of Lifshitz tails for random plus periodic potentials,
we require lower bounds on the gaps of some Neumann Laplacians whose
dependence on the region’s diameter is qualitatively similar to that for free
Laplacians. Our comparison theorem is ideal for this. We state the general
v-result here. In [12], we give a more general result in one dimension.

THeOREM 3.1. Let V(x) obey Vi(x+a)=V(x) for all aeZ® and
V(tx,, £X3,.., £x,)=V(x). Let E{ (L=1,2,..) denote te (j+1)st
eigenvalue of — A+ V in the box B, = {x | 0<x,< L} with Neumann boun-
dary conditions. Then, for some a>0,

E{L) — E{P > ol ~2

Remark. 1f f(x) is spherically symmetric and |f(x)| <c(1+[x[)7" "%,
then V(x) =Y .. z» f(x — a) obeys all the hypotheses of the theorem.
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Proof. Let y, be the positive periodic solution of (—4+ V) o= Ey ¥,
with E, the ground state energy of —4+V (on R'). Then
Yol £ Xy, ., +x,)=Wo(x), by the hypothesis on ¥ and the uniqueness of
this periodic solution. Thus, y, obeys Neumann boundary conditions on
the boundary of B,, so E{")=E, and n, =,| B, is the ground state. In
particular, [min(y,)/max(n,)]*> =& is independent of L (by the periodicity
of ¥,). Applying Theorem 1.4 with ¥ =0 (Neumann b.c.), we see that

E,— Ey20(E,— E;)=&(n/L)?

as desired. |}

4. TUNNELING BOUNDS

In this section we want to describe how to obtain explicit lower bounds
on the gap depending only on the geometry of the set, C, where V(x) < E;
and the maximum value of | V(x) — E| on the convex hull of C and E in the

gap-
As a warm-up, we consider a periodic potential ¥(x) obeying

V(x+al)=V(x) forallae Z". 4.1)

We let 7, denote the volume of the unit ball in v-dimensions. Let G(x) be
the integral kernel of (—4 +1)~" and let C,=[ |(VG)(x)| &’x.

THEOREM 4.1. Set m=1 in Theorem 2.1. Then, if AL>(2C,)" !,
1
[SL:I 25 7,(4C,) " (=iL \/;)‘"/2 exp(—34 \/\7 L),
+

where A =max  |V(x)— E,|">

Remarks. 1. This yields a bound on the band size O(e“\/; L) for A
large. The analysis of [7] shows that no lower bound of the form
O(e~"'=91) can hold.

2. If AL<(C, \/;)”‘, the proof below shows that [a_/a,]>
1—(C, \/; LA). Moreover, the proof shows that A can be replaced by any
number larger than max|¥(x)— E, |2

We turn to the proof of Theorem 4.1. For later use, we single out the
following lemma:
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LEMMA 4.2. Let V be a bounded potential (not necessarily periodic), and
let E be an eigenvalue of — A + V with eigenfunction \y. Then

IVl o <2C, 1 Y]l
if IV(x)—El'? < p.
Proof (Lemma). From
(—4+ )Y =(E-V(x)+ ") ¥

we see that

V() = [ V.G, y)(E - V(y)+ 1) ¥(») dy,

where G is the kernel of (—4 + u?)~!. Hence

V()| < 24 [ IVG(x)] dix 1]

<2, p Yllw
by scaling. ||

Proof (Theorem). Normalize Y, so that |yl =¥(x,)=1. By the
lemma, if |x — x| < 1/4C, 2 then Yo(x) = 4. By hypothesis, (4C, 1)~ < L/2,
so the sphere of radius (4C, 1) ' about x, and its translates are all disjoint.
For any y and T,

Yo ¥)= (e T Eo)( y)
>e PT j e Ty, x) olx), (4.2)
C

where H, is the Laplacian on C= {x| |x;| < L/2} with periodic B.C. Since
some translate of x, is within 1 L /v of y, we have that

e~TH9( y, x) > (4nT) ~*exp(— (4 L \/v)*/4T) (4.3)

by the method of images. Looking at the contribution of (4.2) from the set
of x with |x—x,| <(4C,A)~"! (where ¥, > 3), choosing T=L \/;/411, and
using (4.3), we obtain the required bound on a_. |

Now we turn to the announced tunneling result. We consider a
Schrodinger operator H= —4 + V with ¥ bounded. We assume that H has
at least two eigenvalues below its essential spectrum. We denote by E, and
E, the lowest eigenvalue and the second, respectively. It is well known that
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E, is non-degenerate (see, €.8., Reed and Simon [13]). In certain tunneling
situations the difference E, — E, is exponentially small (see, e.g., [16]). We
will apply Theorem 1.2 to prove that in any case E, — E, is not smaller
than an exponential. The exponent we obtain is not too far from the typical
“tunneling exponent” and one might hope that the difference E, — E, can
never be smaller than in the tunneling case. This was proven to be true in
[11] for the one-dimensional case, where we used ODE techniques.

Let us denote by ¥, ¥, the ground state and the first excited state of H.
We normalize ¥4, ¥, such that ¥,20, el =1, ¥, =1 Moreover,
by shifting space we may assume that y(0)=1. Let us denote by x, a
point where |y ,(x;)| =1 and by x, a point where /,(x,) = 0. Note that ¢,
must have zeros. By normalization we may assume that ¥ (x;) = 1. We set
Sx)=yo(x) " ().

Let us denote B,= {xeR'|V(x)>E, +¢°}. B, is a bounded set for ¢
small enough. We fix such an £¢> 0. Let us denote by C= C, the smallest
closed ball containing B, and by R its radius.

PROPOSITION 4.3. The maxima of W, and y, and at least one zero of Y,
are contained in C.

Proof. Outside C we have V(x)— E;>¢*>>0 so
o= (V(x)—Ep)Y¥o>0  forx¢C.

Thus ¥, is a subharmonic function outside C, and hence y, assumes its
maximum over C° on the boundary. Moreover, since Ay,=

(V(x)—E,)¢,, we have for (y,), =max(y,0), (¢,)_ =max(—y,,0)
(see, c.g., Lemma 2.9 in [1]):

A(‘/’L)+ =(V(x)—E)NWY,),

and

AW,)_ = V(x)—-E)W,)_.

It follows that i, assumes both its maxima and its minima inside C. Since
C is convex, Y, has also a zero in C. |

By the above proposition, we have that x,, 0 € R? belong to C(or even to
B, for any £>0). We may furthermore assume that x,e C.

We will make use of this proposition in estimating ¥, and |Vf| from
below. From Theorem 1.2 we have

V12 y2d Vf | dx)? |
oL MY e

580/75/2-13
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We estimate the various pieces of the right-hand side of (4.4) in the
following propositions:
Let us start with a lower bound on ¢,. We set

lo=sup sup |V(x)—E|Y2 (4.5)

xeRI Ee(Ey E]

PROPOSITION 4.4. For any A= i, we have
Yolx) = Mol|x] +a) ™2™V, (46)
where a=(4C,A)~" and M,=1(z,/(2n)"?) a*2"22"* e~ 27" We ser
M(lx])= My - (Ix| +a) "2

Proof. Let E, denote the expectation with respect to a v-dimensional
Brownian motion starting at x. By P, we denote the corresponding
probability measure. Then, by the Feynman—Kac formula,

Wo(x) = (e~ " = B )(x) = E (e Dol V&)~ By diyy (p(1))),

where b stands for a Brownian motion. (For standard facts on Brownian
motion and the Feynman-Kac formula we refer to [4, 14].)
This can be further estimated by

Wolx) 2 e E(yo(b(1))) = (+). (4.7)

To estimate the last expectation, we recall that y,(0)=1 and that
V4| €£2C, 4 by Lemma 4.2. Thus we have ¢o(x) = 1 for |x| < 1/(4C,A)=a.
Using this, we see

21
(1) Z e 2 P(Ib(0] <a)

Il

1 2 1 2
e J —lx—y2t g
2¢ e i’

1

1.0 71127(|x|+a)2/21‘

27 2m)”?

\

We choose 1= (|x| +a)/\/§ A), the choice which minimizes the exponent,
getting

T,a"

2. -2
(zn)w 2v/4iv/2(|x|+a) v2,-27%cr !, ﬁlxl/l‘ i

Vo) >3

To get estimates on | 2 dx, | Y2 dx from above, we give an upper bound
for Yo(x), ¥,(x) for x large enough. For this, we denote by d(x) the dis-
tance of x from the set B.
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PROPOSITION 4.5. If x¢ B, then

[ = 2 g2, 2n-7 &
'WI(X)|\<1+ d( ) /(l +8) /4) CXp(*md(X)). (48)

The same estimate holds for .

Proof. We prove the assertion of the proposition for ;. The proof can
be taken over literally for y,:

W1 (x)] = e~ B (x)] S E (e~ V@ = Endsy iy )
<e P (b(s)¢ Ball 0<s<1)
+e*P (b(s)e Bsome 0 < s< 1)

<e " +e*P (b(s)e Bsome 0 < s<1).

Let us denote by 4"(s) the coordinate of b along the line through x
normal to B. bV is a one-dimensional Brownian motion and
P (b(s)e Bfor some 0 <s<1)
< PO (b(s) = d(x) for some 0 < s < 1)
2P (bM(1) = d(x)) (see, e.g., Durrett [4])
\/— o — AP/t
N 2m d(x)

by standard estimates on the normal distribution.

Thus we obtain
[ (x)l < e 2N \/_ o~ A2+ 1t
J2r d(x)

Choosing t = d(x)/ﬁ VA2 + e we get

|'/’1(x)|<<1+ —2—2_1/4(12-}-32)“1/4 o~ N2/ FHa(x) i
V nd(x) .

As a corollary we obtain the desired bound on the L? norms of y, and
¢,. Let us denote by 7, and w, the volume and the surface area of the unit
ball, respectively.

We set, for short, a-sz/(\/_,/lz+s ), b=1+/2/m 27 V412 4 g2)~ 14,

We estimate

f,. W) <, (R4 1y
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(recall that ||¢,|,=1) and

J. ‘WI(x)ldeSJ ble—2aUx = R) gy
Ix1> R+ 1

jx|>R+1

©
< b2e2ava j rvAle‘Zardr
R+1

<b2€2avaca(R+ l)v—l e~2a(R+1)

(we used [2 x"e ™ <(C,) xpe ™™ for x> 1). This gives the desired result.

Finally, we turn to a lower bound for | |Vf| dx. To obtain such a bound,
we will integrate Vf along a tube, 7, of the following form: Take
Yo, y1 €R". Set B(yo, y1—yo)={xeR"||x—yo| <& x L (y,—yo)} and
T ={x+1(y1—yo) | x€ Byo, 1 —yo) t€ [0, 1]}. Obviously

[vr1ax> L Vf] dx

<C inf - s )T

x € Be( yo, ¥y1 — yo) x € Be(y1, y1 — ¥o)

Thus, we need estimates on inf f and sup f on suitably chosen regions.
Since ¥ ,(x,) =0, we have f(x,) =0. Moreover, we know ¢ ,(x;)=1 and

Yolx) <1, 50 f(x;)=1.
To get estimates on f near x, and x, we observe that

VoLl Wl Vol
V<t

2C, A
<
Mo(1x1)

(14 Mo(|x|) ™" e*v/220) g+ V2215,

where we used Lemma 4.2 and Proposition 4.4.
We have proven

LeEMMA 4.6. For xe B we have

20,4 ENHRN ok
|Vf(x)|<MO(2R)(1+MO(2R))e . (4.9)

Calling a(R) the right-hand side of (4.9), we conclude that f(x) < for
|x — xo| < 1/4a(R) and f(x)>3 for |x —x,| < 1/4a(R). Therefore, we find
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balls of radius at least 1/8a(R) inside C where f(x)<3 resp. f(x)>3.
Integrating along a tube connecting these balls, we obtain

1

1
J‘ IVl dx?wﬁq '3

Collecting the various estimates, we arrive at

THEOREM 4.7. Suppose V is a bounded potential 1= A,. Then
El“‘E()? C(R)e_8 ZVAR.

The factor C(R) is bounded by a polynomial in R.

We refrain from stating the explicit form of the factor C(R) which is, of
course, given in various pieces in the above calculations.
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