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Abstract. Let H o ( E )  denote the Hamiltonian of a free electron in a magnetic field B. Let 
V be a periodic potential. We show that if an interval [a,  b ]  is not in the spectrum of 
Ho(Bo)+ V for some Bo, then it is not in the spectrum for all B sufficiently close to Bo. 

1. Introduction 

Let us consider a two-dimensional electron in a magnetic field B and periodic potential 
V ( x ,  y ) .  In Landau gauge 

Because of the growth of the B2y2 term at infinity, the B dependence of H (  B )  is rather 
singular. For this reason, the physically reasonable fact that gaps of H ( B )  are stable 
under small perturbations of B is not mathematically trivial. It is this fact that we 
wish to prove in this paper. We were motivated by work of Dana er al (1984) who 
needed to know this stability during an argument. This stability is related to, but is 
nevertheless quite distinct from, the continuity of the integrated density of states which 
one of us proved (Simon 1982a). Mathematically, our result here is much more subtle 
than that of Simon. 

To understand how we will attack the problem, fix Bo and, given B near Bo, write 
B = ABo with A near 1. Consider the unitary scaling ( U , ~ ) ( X )  = A - 1 ’ 2 f ( A - 1 ’ 2 ~ ) .  Then 

U,H(B)  U,’ = A-’ (  Ho(Bo) + A V , )  

where 

V,(X) = V(A-’”X). 

Thus, the stability of gaps for H ( B )  in B is equivalent to stability with B fixed for 
small changes in the period of V (the stability over the overall change of energy scale 
is trivial). Since it is well known that a magnetic field has a natural period associated 
with it (given by the area associated with one quantum of magnetic flux), this is 
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analogous to the question of stability of gaps for an almost periodic potential over 
changes of the almost periods. 

For the one-dimensional case, the stability of the gaps in almost periods has been 
proven by Elliott (1982) and by us (Avron and Simon 1983). Our proof relied heavily 
on a theorem of Johnson (1982), who (exploiting the stability theory of certain ODE 

due to Sacher and Sell (1974, 1976)) formalised an intrinsically one-dimensional proof. 
However, at the same time, we (see Avron and Simon 1983) gave a sketch of a proof 
of Johnson’s theorem which, while one dimensional, can be extended to higher 
dimensions. After some preliminary results in § 2, we prove in § 3 the higher- 
dimensional analogue of Johnson’s theorem in cases of both almost periodic and 
magnetic fields. In § 4 we use our argument (Avron and Simon 1983) to prove results 
on stability of gaps for both cases. 

The basic reason for the stability of gaps is that, if they were otherwise, eigenfunc- 
tions would have to disappear at spatial infinity as B changed. This, however, cannot 
happen because the periodicity of the potentials implies a kind of compactness which 
prevents a disaster at spatial infinity. 

We will discuss the case of a magnetic field in two dimensions, although our results 
easily extend to higher dimensions. While we will suppose all our potentials are 
bounded, it suffices that they lie in the class K ,  discussed by Simon (1982b). 

2. Some local regularity results on eigenfunctions 

Here we will need to recall (and prove for the magnetic field case) some estimates on 
eigenfunctions discussed by Simon (1982b). While the results are proven there for a 
class of unbounded potentials IC,, we state them here for bounded potentials for 
simplicity. 

Theorem 2.1. Suppose that V E  L“(R”) and that 

( - A + V ) U = E U  

(U may not be in L2;  only a local distributional solution is assumed); then U is 
continuous and 

I U ( X ) l S  c 1 l U ( Y ) l  d”Y (2.1) 
~ \ - x ~ S l  

where C only depends on E and 1 1  VII,. 

This is a special case of theorem 6.1 of Aizenman and Simon (1980); it is proven 
by showing regularity properties of the Poisson kernel for - A +  V -  E. The proof of 
this result uses a path integral representation of the Poisson kernel. That representation 
and the Feynman-Kac-Ito formula for path integrals in a magnetic field (see § 15 of 
Simon (1979)) imply that the Poisson kernel in a magnetic field is bounded by the 
Poisson kernel without the field; so the method of proof of theorem 2.1 therefore 
implies: 

Theorem 2.2. Suppose that V E  L ; C ( R Y ) ,  that U E C 1 ( R Y )  and that (in a distributional 
sense) 

[ ( iV+u) ’+  V ] U = E U .  (2.2) 
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Then U is continuous and 

I U ( X ) l S  c 1 l 4 Y ) I  d”Y 
l y - x l h l  

where C only depends on E and 11 VII,. 

Note. C is independent of a ;  a need not be bounded. 

Simon (1982b, C2) proved Lfoc estimates on gradients of solutions of Schrodinger’s 
equation. We use similar ideas to prove such an estimate in the case of a magnetic field. 

Theorem 2.3. Suppose that V E L“, that a E Lfoc( R ”) and that equation (2.2) holds. Then 

where C only depends on 1 )  V - E ] I m .  
Remark. Actually, only the local K ,  norm of V need enter in C. 

Proof: Without loss, suppose x = 0. Pick a smooth function r](x) which is 0 if 1x1 Z- 2 
and 1 if 1x1 s 1 .  Let 7~ = V -ia. Then, integrating by parts and using equation (2.2), 

Since the terms on the left-hand side and the first term on the right are real, we can 
replace UTU by Re( a m )  = fV(u12. Integrating by parts again 

( q ( E -  V)++Ar])1ul2 

from which (2.3) follows. 

In the next two sections, we will need a compactness result. It is well known: we 
provide a proof for the reader’s convenience. 

Theorem 2.4. Let U, be a sequence of functions on R ”  so that for any C <CO we have 
that 

SUP ( IVu,12 + Iu,I2) dux < CO. 
n I x / < C  

(2.4) 

Then we can find a subsequence U,,(,) and a function U,E L?oc so that, for any C 
r 

Proof: By a standard subsequence argument (see 0 1.5 of Reed and Simon (1972)) it 
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suffices to prove (2.5) for C fixed. Pick 7 E Cz so that ~ ( x )  = 1 if 1x1s C. Let 
c$,,(x) = q(x)u,,(x). Since V &  =  VU, + ( V 7 ) u n  and 7, V v  have compact support, 
(2.4) implies that 

SUP J ( lv~n12+x21~n(x)12)  d “ x < a .  

The compactness of the resolvent of the harmonic oscillator implies that 4,, lies in a 
compact subset of L2( R”),  so we can pick & so that ~c#J,, - & I 2  dux = 0. Set u,(x) = 
&(x) if 1x1 < C. 

3. Multidimensional version of Johnson’s theorem 

We will first prove a result in the case of a magnetic field. 

Theorem 3.1. Let V be periodic on R 2  (say V(x,+ n,a,, x2+ n2a2) = V(x,, x2), when 
n, = 0, i l ,  i.. .) and let E E spec(H(B))  ( H  is given by equation ( I ) ) .  There then 
exists a solution U of (2.2) obeying 

( 3 . 1 ~ )  

(3 . lb)  

In particular, U is bounded. Conversely, if (2.2) has a bounded eigenfunction, then 
E E spec( H (  B)).  

Lemma 3.2. If (2.2) has a bounded solution, then E E spec(H(B)).  

Proof: Given theorem 2.3, and using r2( vu) = ~ T ’ U  + 2V7 r u  + u A 7 ,  this is essentially 
a result of Sch’nol (1957), who dealt with the case where there is no magnetic field 
(see 0 C4 of Simon (1982b)). 

Lemma 3.3. Given n,, n, = 0, +1, . . . , let 

Then U, commutes with H ( B ) .  

Proof: This is a straightforward and well known calculation. 

Lemma 3.4. Theorem 3.1 holds if ( 2 r ) - 1 B a , a 2  is rational. 

Roo$ In that case, H ( B )  can be analysed by a Bloch wave analysis with a unit cell 
of size a , q  by a2 (if ( 2 ~ ) - ’ B a , a ~ = p / q )  (see, for example, Zak 1964). Thus, (2.2) has 
solutions U with lu(x,+ a,qn,, x2+a,n2)l periodic, so ( 3 . 1 ~ )  certainly holds. Among 
the q a, x a2 cells in the basic a ,q  x a, cells, there is one, C,, where J /uI2 is largest. 
Let U’ = U,u where n is chosen to translate C, to the cell about the origin. 
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Proof: This need only be proven for a dense set of 9. By the essential self-adjointness 
of H (  B )  on C: (see, for example, Ikebe and Kat0 1962), the set of 4 = ( H (  B )  + i)g 
with gE C; is dense. For such a 4 :  

(H(B, , )+i)- '9  - ( H ( B ) + i ) - ' 4  = ( H ( B , ) + i ) - ' ( H ( B ) - H ( B , ) ) g  

which is easily seen to converge to zero in norm. 

Lemma 3.6. If B, + B and E E spec( H (  B ) ) ,  then there exists E, E spec( H (  B,))  so that 
E ,  + E. 

Proof: This is an abstract functional analytic consequence of lemma 3.5; see VIII.24 
of Reed and Simon (1972). 

Remark. Under strong resolvent convergence (lemma 3.5), the spectrum cannot sud- 
denly appear (lemma 3.6) but, in general, it can disappear (think, for example, of the 
Stark Hamiltonian as the external field goes to zero). Effectively, the compactness 
associated with periodicity (lemma 3.3) and gradient bounds (theorem 2.3) implies 
that in this special case, the spectrum cannot suddenly disappear either. 

Proof oftheorem 3.1. We have already proven the final statement (lemma 3.2). Thus, 
suppose E E spec(H(l3)). Find B, rational (i.e. (2n)- 'B,ala2 rational) so that B, + B. 
Then, by lemma 3.6, find E, + E with E, E spec(H(B,)). By lemma 3.4, find U, obeying 
(2.2) (for B,) and obeying equations ( 3 . 1 ~ )  and (3. lb)  of theorem 3.1. By theorem 
2.3, the functions U, obey the hypotheses of theorem 2.4; so by that theorem, there 
exists a function U obeying 

1 u , ( x )  - u ( x ) ~ ~  d2x + 0. I ( X l < C  

Since the functions U, obey ( 3 . 1 ~ )  and (3.lb),  so will U .  Moreover, if gE CF (where, 
for h of compact support and w E L", ( h ,  w) = hw d2x): 

(( H (  B )  - E )g ,  U) = (( H (  B n )  - En ) g ,  U,) + (( H ( B n  ) - En )g ,  (U - U, )) 

+ ( ( H ( B ) - H ( B , ) + E ,  - E ) g ,  U). 

The first term is zero, since g E C? and U ,  is an eigenfunction. The second term goes 
to zero, since the supports and L2 norms of ( H (  B,) - E , ) g  are bounded and U, - U + 0 
in LlOc. The final term goes to zero, since U E L:,= and ( H (  B )  - H (  B, ) )g ,  ( E  - E, )g  + 0 
in L2 of a bounded set. Thus U is a distributional solution of (2.2) and so a classical 
solution by theorem 2.2. 

2 

There is also a result in the almost periodic case. For simplicity of exposition, we 
state it in the quasi-periodic case, although it is true in the more general almost periodic 
case. We state it in the continuum case; the same proof (actually it is easier since § 2 
is not needed) works for the discrete (tight-binding) case. Let F be a function from 
R + R ; k > v which is periodic with period one in each variable. Let A be a linear 
transformation from R + R and let e E T~ = {(el, . . . , 6,) E R ', 0 s 8, s 1) with ei = 1 



2204 J Avron and B Simon 

and 0, = O .  Let 

v,,,(x) = F ( A X +  e ) .  

F is almost periodic and, if ran A / Z k  is dense in Tk (as is generally the case), then 
{ V,,,(. ) 10 E T k }  is the hull of VA,,. In that case, spec( - A +  VA,B) = S ( A ,  e )  is indepen- 
dent of 8. In any event, define 

s ( A ) =  U S ( A ,  e ) .  
B E T  

Theorem 3.7. Fix A. Then there exists a 6 E T k  so that 

has a solution obeying 

( 3 . 2 ~ )  

(3.2b) 

if and only if E E S ( A ) .  

ProoJ: Since it is so similar to theorem 3.1, we only sketch the details. The converse 
part is Sch’nol’s theorem (1957). If A has rational components, VA,@ is periodic, so 
the theorem follows from a Bloch wave analysis. Since we have the translation ( e )  
freedom, we can arrange for (3.2b) to be true. As A , + A ,  - A +  VAn,@ converges to 
- A +  VA,@ in the strong resolvent sense, so if E E S ( A ) ,  we can find A ,  rational with 
A ,  + A and E, E S ( A , )  with E, + E. Using theorems 2.1, 2.3 and 2.4 together with the 
compactness of Tk, we can construct the necessary U as we did in the proof of theorem 
3.1. 

4. Stability of gaps 

Our main result is: 

Theorem 4.1. Suppose [a, b] n spec(H(B))  = #A There then exists 6 so that if IB’- BI < 
6, then [a, b] n spec( H (  B ’ ) )  = 4. 

ProoJ: If the above is not so, we can find B, + B and E, E spec(H(B,)) n [ a ,  b]. By 
compactness of [a, b], we can pass to a subsequence and suppose that E,, + E E [a,  b]. 
By theorem 3.1, we can find U, solving (2.2) for B,, E ,  with properties (3 . l a ) ,  (3.lb) 
of theorem 3.1. By theorems 2.3 and 2.4, we can find a subsequence so U, + U in L;oc. 
By property (3.1 b), U # 0. By the argument in the proof of theorem 3.1, U is a solution 
of (2.2) for B, E. Thus, by (3. la) ,  E E spec(H(B)) .  This contradiction establishes the 
theorem. 

Given theorem 3.7, the same argument yields: 
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Theorem 4.2. In the context of quasi-periodic Schrodinger operators, if [ a, b ]  n S (  A )  = 
4, there exists a 6 so that if (A’ - AI < 6, then [ a ,  b ]  n S (  A‘)  = 4. 
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