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We investigate the L’-properties of the intrinsic Markov semigroup associated 
with a Schrodinger operator on [w” which possesses a positive ground state. We dis- 
cover cases for which this semigroup is norm analytic for positive times, and others 
for which the semigroup is norm discontinuous in the strongest possible sense. In 
the case of the harmonic oscillator, we show that the generator of the intrinsic 
semigroup has totally different spectrum depending on whether one works in L’ 
(R, em\’ d-y) or L2 (Iw, em ” dr). In more general cases we show that the equality of 
the L’ and L2 spectrum is closely related to whether the Schrodinger semigroup is 
intrinsically ultracontrdctive. ( 1986 Academic Pres,, Inc 

1. INTRODUCTION 

Our goal is to compare the L’ and L’ spectral properties of certain 
second order elliptic operators defined on an open connected subset X of 
RN. Our starting point is an operator L defined by 

Lf= -$(‘wg)+ W)f(x) 

where A, and V are real valued C” functions on X such that V is bounded 
below and A(x) is a strictly positive symmetric matrix for all x E X (many 
of the theorems in this paper are valid under much weaker local regularity 
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conditions on A and V; we leave the necessary modifications to the 
interested reader). We define the corresponding quadratic form Q on the 
domain Cr(X) of C” functions with compact support in X by 

Q(f)=[ 1 (&gg,+ Vf.‘))d”x. 
i. J I I 

This form is semibounded, closable, and densely defined in L2(X, d”‘x), so 
its closure is the form of a semibounded self-adjoint H on L”(X, dNx). One 
has 

Hf= u fE c; (X) 

and in many cases H can be identified with the operator obtained from L 
by imposing Dirichlet boundary conditions in the classical manner. 

If q is a strictly positive C” function on X which satisfies Lcp = Eq for 
some EE R, then we may define the intrinsic operator fi on L2(X, cp2 dNx) 

by 

f-i= Ii ‘(H-E) U 

where the unitary operator U from L’(X, (p2 d’“x) to L’(X, 8.x) is defined 
by Uf = c$ A routine computation [ 1, 81 shows that n is given on C;- (X) 
by 

and that the associated form is 

A,,,g; cp2 dNx. -) 
I I 

Since & 3 0 on C;(X), which is a form core of n, we deduce as in [ 1, S] 
that 

The above calculation does not depend upon assuming q E L2, and does 
not imply that 0 E S’(B). However, we shall henceforth assume that cp lies 
in L’(X, dNx), has norm one, and is the ground state of H, so that 
1 E Dom (A) and 81= 0. Then X is a probability space with respect to the 
measure cp2dNx, and e -” is a self-asjoint positivity preserving semigroup 
on L*(X, (p2dNx) which satisfies 



128 DAVIES AND SIMON 

for all t > 0. It is standard [6, 81 that e--” induces a strongly continuous 
one-parameter contraction semigroup on Lp(X, cp2dNx) for 1 < p < co, 
whose generator we shall denote by fiP. 

Our concern in this paper will to be study continuity properties of e apI 
and spectral properties of fi,, with particular reference to the case p = 1. 
For other values of p the following result is known. See [7, S] for further 
information when H is a Schrodinger operator. 

LEMMA 1. if e- Hr is compact for 0 < t < CC then e-‘p’ is compact for 
O<t<coandl<p<ccj,andisanormanalyticfunctionoftforO<t<oC. 
Moreover Sp(A,) is independent of p for 1 < p < a. 

ProoJ: The compactness of e H’ implies that of e --‘,+ for 1 < p < Q by 
an interpolation argument [4, Lemma AS]. Norm analyticity now follows 
by [7, 81 and spectral independence by [4, Lemma A.51. m 

The proof of the above lemma cannot be extended to include the case 
p = 1, and to analyse this case it is convenient to transfer back to the space 
L’(X, dNx). Thus we define the isometry V form L’(X, d”‘x) to 
L’(X, cp2dNx) by 

and define the strongly continuous positive one-parameter contraction 
semigroup e - fit on L’(X, dNx) by 

e-fiitf= y-I,-hryf: 

Since cp is C” is one sees that CF (X) is contained in Dom (I?), and a stan- 
dard calculation yields 

on this domain. The two terms on the RHS of this equation are called 
respectively the diffusion and drift terms of fi. Note that fi is formally the 
adjoint of R if we regard the latter as acting on L”. Note also that e-” is 
a Markov semigroup with (p* E L’(X, dx) as invariant state. 

We shall not make any use of the following result, but include it for com- 
pleteness and reassurance. 
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LEMMA 2. If H is essentially self-adjoint on the subspace C;(X) of 
L*( X, dx), then CF (X) is a core for the operator A on L’(X, dx). 

Proof: We first note that Cr (X) is a core for i7, because U leaves this 
domain invariant. Secondly Dom (A,) is dense in L’(X, p*dx) and 
invariant under e ~ “, and so is a core for i?-, by [2, Theorem 1.91. But 
Cr (X) is dense in Dom (A,) for the graph norm wrt L2, and hence also 
dense for the graph norm wrt L’. Thus, C’F (X) is a core for A,. Since V 
leaves C; (X) invariant, C$ (X) is also a core of Z?. 1 

When we started this research we thought that proving 

would be routine, wo we were rather surprised to find that even the case of 
the harmonic oscillator had never been analysed from this point of view. 
The behaviour of this example came as rather a shock. 

THEOREM 3. If 

on L’(R, dx) then 

Sp(R7,)= (z:RezaO}. 

Indeed, every z with Re z > 0 is an eigenvalue of multiplicity 2 of fi,. If 
O<s<t<oo then 

((epRls - eeAlr(l = 2. 

Proof: We start with the facts that 

q(x) = ce --‘*/* 

and that Mehler’s formula [2, p. 1811 states that e-“’ on L2(R, dx) has 
kernel 

where 

B,(x,y)=(1-e~2’)-‘[~(x2+y2)(1+e-2t)-2e-’xy]. 

Routine calculations then show that e- AZ on L’(R, dx) has kernel 

~,(~,y)={rr(1-e~*‘))-‘~~exp{--S,(x,y)} (1.2) 
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where 

jj(x y)=(x--e-‘Y)2 
2 l-g-2’ . 

If 9 denotes the Fourier transform map from L’([w, dx) to C,(iR) then it 
follows that 

(9e -q)(k)=e &4 ~f(~ ‘k) 

where 
ct= 1 -em “, 

Let X’ be the characteristic functions of + [0, cc ). Letting f’ denote the 
L’ functions whose Fourier transforms are X”(k) Ik(‘e- k2’4, we see that for 
any Rez>O 

(Fe “ry+ )(k) = x’ e c,k’ e z’,k,z Ed L’- “k2:4 

=e --’ (Ff’)(k). 

Hence 
e "'fjLe-='.f'l 

and 

We deduce the second statement of the theorem from the explicit form 
(1.2) of the integral kernel of em Ar. If f is any probability density in 
L’(iR, dx) and we put 

then one sees that for any 0 < s < t < cc, e “‘f; and e ‘tf, have 
asymptotically disjoint supports as a -+ co, so 

We should like to comment on the compact form, 1.2), of Mehler’s for- 
mula. It says that e ” is the composition of dilation and convolution with 
a Gaussian. Thus if p = - id/dx and A = $(xp +px) is the generator of 
dilations, (1.2) says that 
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for suitable functions a(f), 6(O), c(t), (a(t) is constant). This presumably 
provides a proof of Mehler’s formula using the structure of the Lie algebra 
sl(Z, R), generated by x2, p2 and A. It is essentially the form arising in.the 
Hoegh-Krohn-Simon proof of Mehler’s formula, see [9, pp. 2.5-29; esp. 
Remark 2 on p. 291. 

The strange behaviour of the above example suggests that the L’ 
behaviour of intrinsic Schrodinger semigroups will not be very interesting. 
However, it turns out that this is incorrect and that such semigroups fall 
into two very different classes, at least in the case where A,= 6, and the 
potential increases in a fairly regular way at infinity. If the .potential 
increases quadratically or slower at infinity, then the L’ intrinsic semigroup 
often behaves in a qualitatively similar manner to the case of the harmonic 
oscillator. However, if the potential increases faster than quadratically at 
infinity, then e PH’ is often intrinsically ultracontractive [4], and this 
implies that e -‘I’ is norm analytic for 0 < t < cc and that 8, and fi, have 
the same spectrum. The case of bounded potentials does not fit into the 
above pattern, however, and a complete understanding of the possibilities 
remains to be obtained. 

In Section 2, we use ultracontractivity to show the phenomena we just 
found for x2 potentials do not hold for xX potentials if IY > 2. We provide 
some relations to these conditions and the question of whether the con- 
tinuous functions in L’( X, cp’&) vanishing at (7X are left invariant by e ‘I. 
In Section 3 and 4 we provide two distinct ways of seeing that the 
phenomena we found for x2 potentials do hold for X” potentials if 0 < c( < 2. 

We should like to thank S. Agmon, S. Albeverio, M. Berry, E. Harrell, T. 
Lyons, A. Sokal, and D. Williams for various communications and helpful 
remarks concerning this work. B. Simon would also like to thank the 
SERC for supporting a visit to Kings College, London and the University 
of Swansea in the summer of 1984 during which much of the work reported 
here was done. 

2. ULTRACONTRACTIVITY AND INVARIANCE OF C,(X) 

Following [4], we say that e-‘* is ultracontractive if for all t > 0 there 
exists c, < cc such that 

Ile~?fll K 6 c, llfll2 (2.1) 

for all f~ L*(X, cp2dx) and 

tr[e- ‘I] < co. (2.2) 

If the eigenvalues of A2 are denoted by (E,};=O and are written in in- 
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creasing order, so that E, = 0, then the corresponding eigenfunctions (P,~ 
satisfy 

(2.3) 

THEOREM 4. Zf epAr is ultracontractive then e- ‘I’ is compact for all 
t>O and 

SP(K) = SP(K). (2.4) 

Moreover e -‘It is a norm analytic function of t ,for 0 < t < ccj. 

Proof: If t > 0 then (2.2) and (2.3) establish that the series 

is norm convergent as a series of operators on L’(X, ‘p’dx). But this series 
also converges weakly to e -‘lr by considering test functions in C’; (X). We 
have that 

(2.5 1 

so exp (-A, t) is a compact operator. It follows from the formula 

(8,+l)~~'=~oae 'Ire ‘dt 

that fl, has compact resolvent and by the argument of [4, Lemma AS] 
that (2.4) holds. The norm analyticity of ePR1’ for 0 < t < 00 is immediate 
from (2.5). 1 

We now comment that ultracontractivity should be thought of as a very 
strong form of recurrence, amounting to the positive probability of sample 
paths returning from 8X to a compact subregion of X in a finite time. In 
these terms one can often anticipate whether one has ultracontractivity by 
looking at the drift term in the expression (1.1) for fi on its own. An 
associated question is whether C,(X), the space of continuous functions on 
X which vanish on 13x, is invariant under (em ‘l)*. 

THEOREM 5. The space C,(X) is invariant under (e ‘I)* if and only if 
C,(X)nL’(X, cp2dx) is invariant under em AZr. Zf this happens then e -‘I’ is 
not compact for any t > 0, and in particular e par is not ultracontractive. 
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ProoJ: The equivalence of the first two properties follows from the fact 
that 

for allfE CF (X), and that this subset is dense in C,(X) for the L” norm 
and in C”(X) n L’(X) for the L2 norm. 

On the other hand if e-” were compact for some t > 0, then one would 
have 

lim /leK” - Iq2> < l))/ =o 
t-* 

by [2, Theorem 2.201 and hence 

lim /I(e-‘I)*- 11 > <cp’l)/ =O. 
,--rcO 

If 0 <f E C,(X) we conclude that (e-“‘)*f converges uniformly to a non- 
zero multiple of 1, so C”(X) cannot be invariant. 1 

Note 6. The invariance of C,(R) is an elementary consequence of the 
explicit formula for (e-“)* obtainable from (1.2), in the case of the har- 
monic oscillator. 

Together with the analysis of [4] the following theorem shows that the 
invariance of C,(X) is quite close to being the converse of ultracontrac- 
tivity. We do not claim however to have found conditions under which a 
precise theorem to this effect can be proved. 

THEOREM 7. Suppose H= -A + V on L2(RN), where 0 ,< VE C” and 

V(x) = 0(x2) 

as 1x1 + co. Then Co(RN)nL2(RN, (p2dx) is invariant under ecAr, where cp 
denotes the ground state of H. 

Proof: If follows from the Trotter formula [2, p. 1191 that the integral 
kernel a,(x, v) of e--Ht on L2(RN, dx) satisfies 

O<a,(x, y)< (47~t))~‘~ e-(“-Y)2/4t 

and by subharmonic comparison inequalities [3] that 

q(x) 3 cg e --8-‘2 
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where cP > 0 for all 0 < p < co. The integral kernel ii, (z, y) of e ~ ” therefore 
satisfies 

< cp’ (4nt) N/Z exp 
i 

(X-Y)’ j?x’ + By2 - 7 
1 

from with we see by taking ,!? small enough that if ,fE C’F ( [WN) then 

le-R’f‘(x)l < kcT1., epdr’ 

for any 0<6<(4t))‘. 1 

3. NON-CONTINUITY OF epAf IN ONE-DIMENSION 

In this section we show that the differential operator 

L= --$+ V(x) 

in one dimension has similar L’ intrinsic properties to the harmonic 
oscillator, provided I/ is reasonably well-behaved and diverges slower than 
quadratically as 1x1 --, cc. Although we shall draw a similar conclusion in 
higher dimensions in Section 4, we have included the present section 
because the methods are entirely different and the results significantly more 
complete. 

Our basic approach will be to examine the asymptotics of the eigen- 
functions of Lu = EU explicitly. The key estimates involve qO, the ground 
state of L with energy, E,, and cp, any (in particular a growing) solution of 
Lcp = Ecp with Re E > Eo. We need; 

J’ Iq(pOl dx < 00 and I(p’qO( + 0 at infinity. 

To see why this should be true for xa potentials with a < 2, take E real and 
imagine that q, cpo obey WKB asymptotics: 

cpo(x)- Vp1/4 exp 
(5 

- X (V(s) - E,)y2 ds 
> 
, 

0 

q&(x)- Vi4 exp 



INTRINSIC SCHRdDINCER SEMIGROUPS 135 

qn(x)-Vp”4exp 10X(V(~)-E)j’ds), 
( 

q’(x) - V4 exp 
(I 

“(V(s)-E)yvs 
0 1 

where f-g means lim. _ + mf(x)/g(x) = ci with ct non-zero constants. 
Then, if V(x)-x” it is always true that flqqol dx < cc, albeit for very dif- 
ferent reasons when c( d 2 or when a > 2. I&q\ + 0 requires c1 d 2. Under 
suitable conditions on v’, V”, one can verify the WKB asymptotics (see 
Theorem 2.1 on p. 193 of Olver [S]) and use these estimates to replace 
Lemmas 8 and 9 below. We provide these lemmas partly for the reader’s 
convenience, partly to emphasize that only upper bounds are needed and 
partly because we require no bounds on V”. 

Throughout this section we make the standing assumption that V is a 
positive C” function on [w such that 

V(x)-c(xl’ as 1x1 -+ cc (3.la) 

where c > 0 and 0 < c( < 2, and also 

v’(x) = O( (x(’ -‘) as 1x1 --f co. (3.1 b) 

Equation (3.1) is much too strong a condition. The proofs of the lemmas 
below are valid if (i) V(x)-+ co as 1x1 -+ co, (ii) V’(.~)k’(x))“~ -+O 
as as 1x1 -+ co, (iv) 
e-g(.r) -+ 0. The theorem then requires (v) 
s e-““’ dx < co. Rather than state (i)-(v) as our basic hypothesis, we settle 
for (3.1). 

Let ‘pO be the (strictly positive) eigenfunction of H corresponding to its 
lowest eigenfunction E,, and let cp be any solution of the differential 
equation 

with Re(E) > E,. 

-cp”+ Vq=Ep (3.2) 

LEMMA 8. If E, <F, there exists a constant c, > 0 such that 

Icpo(x)l+ Idl(x)l 

V(s)“’ ds + f F, j; V(s) - ‘I2 u’s] 

for all x30. 
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Proof. If 

W(x)=!; V(~)‘~‘ds-;Fj; V(~)~“*ds 

and $ = eP W, then using (3.1): 

lp’/$ = (w, )2 - w” 

= (VI!2 _ + FV- l/*)2 

-; V’V~ ‘12 -$FV’V ~312 

= V-F+o(l) 

as x -+ co. The upper bound on cpO(x) now follows by the subharmonic 
comparison lemma [3]. To bound C&(X) we note that ‘pO is convex (and 
positive) for large X, so 

where E, < F, < F, . Therefore 

Icpb(x)l < c2 xzi2 exp 

+I‘ y .-r.2 
V(s)“2 ds+; F2jj: V(s) I’* ds] 

V(S)“~ ds+ 12 F, ?^; V(s) ‘I* ds] 

because 

is bounded as x + CC and xaJ2 is dominated by 

exp [; (F, -F,) l; V(S)~‘:’ ds] 

as x --$ CO, by virtue of (3.1). 1 
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LEMMA 9. If F3 < Re(E) then there exists cg > 0 such that 

Idx)l + I4W)l G c3 exp [j 
” 

0 
V(S)‘/~~S-; F3 j; V(S)~‘/‘&] 

for all x > 0. 

Proqf: We put 

.x = p2 - f FV-‘;2 

for large x > 0. Then 

SO 

$‘=A’ ‘(V-E)cp-X-‘X’q 

Putting 5 = (cp, II/) and using the L’ norm on C2 we deduce that 

lI4ll’G lli”‘ll G 11~11 II411 

where the norm of the 2 x 2 matrix B satisfies 

11 BII = Max { (X-‘( V- E)J, IX-‘A”/ + /XI }. 

If F3 < F4 < F-C Re(E) then 

IX-‘x’( + 1x1 = V1’2 - ; FV- ‘I2 + o(x ‘) 

< v’f2 - $ F4 V- 112 

for large x > 0. Also 

(T’(V-E)I= V”21(1-fFVp’)-‘(1-EV-‘)I 

= V”2l1 + (4 F-E) VP’ + O( VP’)/ 

< V”‘( 1 + (4 F- Re(E)) V-’ + 0( Ve2) 

< If”2 -$F4 V-‘/2 
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for large x > 0. The estimate 

Il~ll’aW~*-~F4 v-I’*) 11511 

for large x > 0 leads immediately to 

ll5”ll d c4 exp 
iJ 

y v(s)‘~‘ds-;F4~‘ V(s) -ds] 
0 0 

for all x 2 0, and hence 

<c,(l +X)exp V(s) - Ii2 ds 
1 

<cs(l +x”)exp V(s)“‘ds-;F4j; V(s)p’12ds] 

6 c3 exp V(.S)“~ F, lay V(s)- “2 d.+ 1 

THEOREM 10. The function @ = ‘p/q0 lies in the domain qf A, and 
satisfies 

A,@=(E-E,)@ (3.3) 

Hence every z E C with Re z > 0 lies in the point spectrum of H, and thus 
spec (A,) = {z(Re z 20). 

Proof: Since cp satisfies (3.2) the function @ satisfies 

-~“-thfj’=(E-E,)ij (3.4) 

where 

Moreover if E, < F, < F3 < Re( E) then 

bc,c, ~ozexp[-~(F,-F,){~ V(s)--‘!*ds]dx 

and a similar calculation on ( - co, 0) implies @ E L’( R, ‘pi dx). 
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Altough Q5 lies in Li and satisfies the differential equation (3.4) this does 
not immediately imply that @J lies in the domain of i-i,. Using the bounds 
of Lemmas 9 and 10 and the corresponding estimates on (- ~0) we 
obtain 

and 

so 4, 4’ and b@ all lie in L’(R, cpg dx). 
Now let fE C’? (R) satisfy f(x) = 1 for 1x1 f 1 and put 

@n(x) = W)f,(x) = G(x)S(-dfl). 

Then @,z~C,“(R) so +,EDom (fi,) and 

R,tj,= -ip::+t& 

which converges in the L,(R, ‘pi dx) norm to 

(E- -%) 4 

as n + co. Since 8, is a closed operator (3.3) follows. m 

In the above, f; and fi stand for f’(x/n) and f”(x/n) and not for 
(d/dx) (fn), (dz/dx2)fn. Note that since f,, is supported in (--an, an) for 
some a, we do not require that @’ and h@ lie in L’(R, 9: dx) but only that 
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and, as above, this holds if ((p’qOl + Iqbq( -+ 0 at + co. This remark is 
important if one wanted to discuss the x2 potential from this point of view. 

Naively, one might suppose that all this fooling around with derivatives 
is a purely technically nicety and that surely any cp E L1 ([w, cpi dx) obeying 
Hcp = Ecp must lie in D(fi,). However, if V(x) = xX with a > 2, as we 
remarked above, WKB asymtotics and (V(x) + 1)) ‘I* E L’( [w, dx) imply 
that cp is in L,(R, q$ dx) for any solution of Hcp = Eq. By Theorem 4, not 
all such cp lie in D(H,). In this case, j’p’qOl is bounded but not vanishing at 
infinity! 

COROLLARY 11. If 0 < s < t < cc then 

)jepAs-epA’JI ~2. 

Proof: We have shown that if Re z > 0 there exists fz E L,( R, dx) such 
that 

fifz = zf,. 

GivenO<s<t<co and&> weput 

Z=E+E 
2 t-s 

to get 

lle-Ar-e-Asll > Ile-‘tf, - ec”“f,ll/ll f211 
= 1,--n _ e-;SI 

= le-=( le-z(t-s)- 1, 

=e -ye --e(I-.NS+ 1) 

-+2 

as E -+ 0. Thus 

2 < lJeeQr - e-““11 

< IlepA’jl + lleCAsll 522. I 

4. NON-CONTINUITY OF em" IN HIGHER DIMENSIONS 

In this section, we use an entirely different method to show that for a 
large class of operators i?, which have compact resolvent but are not 
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ultracontractive, the semigroup e-” is not norm continuous. Although we 
deal with a much wider class of operators than in Section 3, we do not 
obtain such detailed spectral information about R, as in Theorem 10. 

We start with some abstract considerations. If eear and ePBr are one- 
parameter contraction semigroups on a Banach space B, we say that B lies 
in the limit class of A if there exists a sequence of invertible isometries I’,, 
on B such that B is the limit of V;’ A V, in the strong resolvent sense. By 
[2, Theorem 3.171 this is equivalent to eeBr being the limit of I’,-’ eeA’V,, 
in the strong operator topology, uniformly on all intervals [0, T]. We also 
write %(A) for the component of C\Sp(A) which contains the left-hand 
half-plane. As far as we know, the following proposition is new in the form 
written down. 

PROPOSITION 12. If B lies in the limit class of A then 

II,-As-,-Aq > I(e-Bs-e-Brl( 

for allOds<t<co, and%(A)e%(B). 

Prooj If f E B then 

IleC”“f- eC”lfll = lim I( V;’ eeAsV,f- V;’ e 
n-m 

= lim (I(e-As-ePa’) V,fjl 
n-co 

< /le~As-e~Arll IIV,fll 

= JIeCAS- e-A’IJ /IfI/ 

(4.1) 

“‘Vnf II 

and this establishers (3.1). A similar calculation to that of 
[2, Theorem 3.171 shows that 

II(l-A)-‘11 2 lItA-W’ll 

for all 

and so in particular for all Re 2 < 0. The second statement of the theorem 
now follows from the fact [2, Corollary 2.31 that //(A - B)-‘11 becomes 
infinite as 1 approaches the boundary of S(B). 1 

COROLLARY 13. Let B lie in the limit class of A, and let B generate a 
one-parameter group of isometries on B such that 

lie-B’- 111 =2 
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,for ail t # 0. Then Sp(A)zSp(B) and 

(4.2) 

for all 0 < s < t < 03. 

Proof: Since Sp(B) c iiw and 

(z:Rez<Ojc4Y(A)e~Z(B)e@\Sp(B) 

we see that Sp(B) lies in the frontier of %!(A) and so is a subset of Sp(A). 
To prove (3.2) we merely note that 

and that the reverse inequality is trivial. 1 

We apply Corollary 13 to the semigroup e ~ ” on L’( RN, dx) by making 
an explicit choice of V,, for which B can be computed. In this section, we 
assume that fi is given by (1.1) on the domain Cc (RN) and that X = UP’. 
We do not need to assume that Cz is a core of fi, but only that Z? has 
some extension which is the generator of a one-parameter contraction 
semigroup on L’( KY”). We rewrite ( 1.1) in the form 

where bi = 2x, A rl cp ~ ’ (i3cp/il~j). 
We now define the isometries V,, on L,( [w”, dx) by 

V&x) = n-“f y ( > 
where u, is some sequence in RN. It is evident that V, leaves Cc invariant 
and if we put 

ii,, = v,- ’ XIV, 

then a straightforward compution establishes that 
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where 

A;(x)=n-2A”(u,+nx) 

b;(x) = n - ’ b’( u, + nx). 

THEOREM 14. Suppose there exists a sequence u, and a vector 0 # c E R” 
such that 

lim A!(x) = 0, 
n - x 

lim 1 A A$ (x) = 0, 
n--rm , ax’ 

lim b:,(x) = c, 
,, - x: 

all locally uniformly on RN. Then 

II,-cis-,-AIJI =2 

for allO,<s<t<oo, and 

Sp( A) 2 iiw. 

Proof: If we define the operator B on C; by 

then the conditions above are precisely those needed to ensure that 

lim I(fiJ- Bfll, = 0 
n-x 

for all f E Cg . But the group e ‘I is given explicitly by 

e meB’f(~) =f(x - ct) 

so R” converges in the strong resolvent sense to B by [2, Theorem 3.173, 
which only requires C: to be a core for B; this fact follows from the 
invariance of CF under e d-B1 by [2, Theorem 1.91. The Theorem now 
follows directly from Corollary 13. 1 
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Note 15. In some cases, such as that of Theorem 10, we can prove that 

Sp(I?)= {z: Rez>O] 

but we are not able to prove this in general. 
In order to get a feeling for the circumstances where Theorem 14 is 

applicable, we now specialize to the case where H = -A + k’ and where the 
ground state cp is rewritten as e-W. 

THEOREM 16. If there is a sequence u, with It- ‘\u,( + cc us n + 00, and 
a non-zero vector c E RN such that 

.lirnm 2n-’ VW(u, + nx) = -c 

locally uniformly on RN, and 

lim AW=O 
I v I - = 

then the conditions of Theorem 14 are satisfied. 

Proof We see that in this case A”(x) = 6” so the first two conditions of 
Theorem 14 are immediate, and 

b(x) = -2VW(x). 

Also 

S&&(x)=V.b(u,+nx) 

= -2AW(u,+nx) 

and this goes to zero locally uniformly as n --f cc because 

lu,+nxl> lu,l -nIxI 

and n-‘lu,l --) co as n+ co hypothesis. 1 

Unfortunately we do not have explicit conditions of a general nature on 
the potential I/ which ensure that W satisfies the hypotheses of 
Theorem 16, but we believe that they are valid if V increases sufficiently 
regularly at infinity and is 0(x*) for large (xl. However, one may regare the 
operator as determined by W instead of V, because of the relationship 

I/= JVWI’- AW (4.3) 
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and from this point of view, which is quite natural probabilistically, the 
conditions on W may be explicitly verified in many cases. For example, if 

W(x) = c( 1 + x’)~‘~ + d 

then the conditions of Theorem 16 hold if and only if 0 < CI < 2. This con- 
trasts with the condition for intrinsic ultracontractivity, which is 2 < a < co. 

In spite of our above comments about the potentials V for which 
Theorem 16 might be applicable, the following theorem shows that the 
situation is not entirely straightforward. Because of the identity (4.3), the 
conditions of the following theorem can only hold if the potential V is 
bounded. We actually expect them to hold for all bounded potentials which 
are sufficiently regular at infinity. 

THEOREM 17. Suppose the operator H = -A + V on L2(RN, dx) has 
ground state cp = e ~ “, where VW and A W are bounded functions on RN. 
Then e-” is a norm analytic operator-valued function on L’(RN, dx) for 
o<t<m. 

ProojI A direct computation shows that 

fif= -Af-2(AW)f-2VW.Vf 

on C; (RN). We may rewrite this as 

A= -A+A 

where A is a perturbation -A with relative bound zero. Since A is the 
generator of a bounded holomorphic semigroup on L’( R”‘, dx), the result 
follows by [6, Theorem 10.541. 1 
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