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We discuss two results for the Anderson model of random quantum Hamiltonians: (1) smooth-
ness of the density of states in the one-dimensional model, even in many cases where the potential
distribution is not smooth; and (2) a criterion for localization which, among other consequences,
implies that certain estimates of Frohlich and Spencer yield a dense point spectrum for the multidi-
mensional model at large randomness or large energies.

PACS numbers: 71.55.Jv, 71.20.+c

In this Letter, we want to announce some rigorous
results, and discuss their consequences on the regulari-
ty of the density of states in the Anderson model ob-
tained by two of us!, and on the localization in this
model obtained by two of us.2 Full details will appear
elsewhere.!-2

The Anderson model of random impurities® is the
random Hamiltonian H,= Hy+ V, on [2(Z"), where

(Hou)(n)=| IE uln+j)

=1

and V, is the diagonal operator V,(n), with ¥,(n) in-
dependent identically distributed random variables
with distribution dk (v).

Theorem 1 (Ref. 1).—In the one-dimensional case
(v=1), suppose that dx has the form dk(v)
= F(v)dv, where F has compact support and F (k)
= [e~*vF(v)dv obeys*

[F(l=scO+kD™ a> 4.
Then, the integrated density of states, k(E), is an in-
finitely differentiable function.

This result, whose proof we discuss at the end of
this Letter, says that k (E) can be much smoother than
the distribution of V(n). Previous results either
proved some form of continuity weaker than differen-
tiability® or proved that k is only at least as smooth as
J~ dk(v).° The result applies to the case where ¥ (n)
is Gniformly distributed in some interval [a,b]. Infin-
ite smoothness of k(E) is consistent with, and sug-
gested by, the phenomenon of Lifshitz tails.

Halperin’ has proven that when dk=08(v—a)
+(1-0)8(v—»b) and either |a—b| is large or
0#(1—0) is small, then k is not differentiable; indeed,
it is not Holder continuous of any prescribed order.

This shows that some hypothesis on dk is needed.

The second result is a criterion for localization;
G,(n,m;z) is the Green’s function (5, (H,
-2)715,):

Theorem 2 (Ref. 2).—Suppose that for almost all
E € (a,b) and almost all » we have that

0,nE+i€)l? i 1
02221%'6”( n i€)|? < oo (1)

If dk has an absolutely continuous component® and
v =1, or dk is absolutely continuous and v is arbitrary,
then for almost all w, H, has only a point spectrum’ in
(a,b). If the essential support of the absolutely con-
tinuous component of dk is (— oo, 00),10 then (1) is
not only sufficient for a pure point spectrum, it is also
necessary.

The quantity on the lefthand side of (1) increases as
€ decreases, and so we need only treat sufficiently
small €. One estimate which clearly implies (1) is

|G, (0,n,E+ie)|< C, gexpl— C(E)|nl] ()

for almost every (a.e.) w and all sufficiently small e.
In this case, one can prove? that the eigenfunctions de-
cay with a localization length!! no larger than C(E) !
so long as dk is purely absolutely continuous.

Before discussing the proof of theorem 2, we note
that there are two cases where one knows how to
prove (1) [in fact, to prove (2)]: in the general one-
dimensional case, and in the higher-dimensional case
at strong coupling. In the one-dimensional case, Ishii
and Deift-Simon!? 13 proved (2). This provides a new
proof of localization in this case. The point is not so
much that our hypothesis on dk is weaker than that in
existing proofs,!4 but that the proof via theorem 2 is
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mathematically and conceptually quite simple, and
more significantly, explains why (2) can hold in cer-
tain almost-periodic models'® which only have singular
continuous spectra.!® Ishii’s bounds, together with
general lower bounds on eigenfunctions,!” imply that
the localization length is the inverse of the Lyaponov
exponent.18

Frohlich and Spencer!” have proven (2) in the
multidimensional Anderson model under two cir-
cumstances: (i) dx Gaussian and |E| very large, and
(ii) dx=g(E) dE with supg|g(E)| sufficiently small
(large coupling or large randomness). While it was
known that these estimates imply the absence of ex-
tended states, 20 it was not known until now that the es-
timates of Ref. 19 imply a point spectrum. Recently,
Fréhlich et al.?! and Goldsheid?? have announced
results on localization in the multidimensional situa-
tions. The Fréhlich-Spencer estimates!® and our re-
marks on the localization length imply that the locali-
zation length goes to zero in the infinite-randomness
or large-energy limit.

Theorem 2 comes from an analysis of the spectrum
of self-adjoint operators under a random rank-one per-
turbation. The basic deterministic theory of such per-
turbations was developed by Aronszajn?® and
Donaghue,?* and our own interest was kindled by the
recent work of KotaniZ on the special case of random
boundary conditions in half-line problems. Indeed,
the proof of theorem 3 below is essentially a synthesis
of ideas of Aronszajn and Kotani.

Let A be a self-adjoint operator, let P be the projec-
tion onto a unit vector, ¢, and let 4,=4 +AP. Let
du, be the spectral measure?® defined by

(d.e” ") = [le™™du, ().
We need two functions related to these measures:

Fr(2) = (x— 2~ 1duy (),

19

3)
B =[f (x=)"2dpo(0]

The Steiltjes transform, F,(z), is analytic in the upper
half-plane, and the general theory of such functions?’
implies that boundary values F)(x+i0) exist (for
N fixed) for almost all x. Since ImFy(x+ie)
=< (Ime)B(x)~1, at most one of ImFy(x+i0) and
B (x) is nonzero at any point.

Theorem 3.—du, has a vanishing singular continu-
ous part for almost all X if and only if B(x) +ImFy(x
+i0) > 0 for almost all x.

Before discussing the proof of this theorem, we ex-
plain how it implies theorem 2. If dug is the spectral
measure for H, associated to 8, then a simple calcula-
tion shows that the left-hand side of Eq. (1) is
B(E)~1, and so (1) says that for a.e. w and a.e.
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E € (a,b), B(E) > 0. As noted above, this implies
that ImFy(E+i0) =0, and thus by Eq. (4) below,
ImF,(E+i0)=0. The general theory of boundary
values of Steiltjes transforms?’ implies that dui°=0 on
(a,b). Thus, theorem 3 says that for a.e. A, H,+\P,
has only a point spectrum for a.e. w and a.e. A. The
APy just shifts the value of ¥V (0). Since V(0) is in-
dependent of the other ¥(n)’s and dk has an abso-
lutely continuous component, we have a point spec-
trum in the original H, with nonzero probability, and
so with probability 1 by general results (see the first
reference in Ref. 15).

Here is a sketch of the proof of theorem 3: (i) By
taking expectations in (A4,—z) '=(4y—2z)"!
—A(4y—2z)7'P(A4,—z)~!, we obtain the basic equa-
tion of Aronszajn?3:

Fy(2)=Fy(2)/[1+\Fy(2)]. 4)

(i) Since u\({Eg}) =lim,|gieF\(Eq+ i€), one de-
duces from (4) that u,({Eg}) >0 if and only if
Fo(Eq+i0)=—x"1and B(Ey) > 0; in fact, u, ({Ep})
=\"2B(Ey) if Fy(Ey+i0)=—x"1. (iii) By using
Eq. (4), one can study the measure dn defined by

Se®an® = [|feBaum ] a+2)-1an.
From (4), one finds that
FM(2) = [ (x—2)"1dn(x) =m/[Fo(z) =1~ il.
(5)

From this, one can deduce that dn(x)= H (x)dx,
where H is almost everywhere nonzero. For example,
since ImFy(z) > 0, ImF"(z) <, which implies that
H()=m"1"ImF"(x+i0)<1. (iv) Let C= {x|Fo(x
+i0)=—A"1 B(x)=0}. The theorem of de Vallée
Poussain?’ says that the singular continuous part of
duw,, call it dus’, is supported on the set where
Fy(x+i0) =00, which, by (4), is the set of where
Fo(x+i0)=—x"1. By (i), the subset of this set
where B(x) > 0 consists of point masses of du, so
that it is countable. Thus u,(C)=u(R). (v) By
i), |Cl=f dx=0 if and only if [ur(O)(1
+A2)~ld\x =0 which, by (iv), is true if and only if
w$(C) =0 for almost all A. This completes the proof
of theorem 3.

In some ways, the key step is (iii) (related to
Kotani’s work?®), which says that [if (1) holds] under
random changes of V' (0), sets of measure zero do not
matter. It is precisely pathological behavior on sets of
measure zero which are responsible for singular con-
tinuous spectra in those almost-periodic models where
they occur.!” The difference between random and
almost-periodic models is the decoupling of infinity
[which is responsible for (1)1 and V' (0).28

Finally, we describe some aspects of the proof of
theorem 1. Like so much in the one-dimensional



VOLUME 54, NUMBER 14

PHYSICAL REVIEW LETTERS

8 APRIL 1985

theory, it depends on an analysis of the transfer ma-
trix, ®(n), which takes data for solutions of the time-
independent Schroédinger equation at O to data at n;
i.e.,

E-V() —1
Dd(n)=A(n):---4Q); A()= 1 o |-

(6)

Since the V() are random variables, ®(#n) is a ran-
dom matrix lying in the group SL(2,R) (for E real).
The key technical input for the proof of theorem 1 is
that for any &, one can find » so that ®(#n) has a distri-
bution of the form G,(4,E)dA, where G is C*in A4
and E and dA4 is Haar measure on SL(2,R). This is
proven by showing that G3(A4,E)?° has a fractional
derivative in A4,3° noting that G;, is the n-fold
SL(2,R) convolution of G3, and that repeated convo-
lutions of functions with a fractional derivative are
smoother and smoother.3!

Next, one uses the basic fact noted already by
Schmidt®? that one should look at the distribution
dvg(x) on x=u(1)/u(0) left invariant by applying
an independent random transfer matrix to (u (1),
u(0)) for3? k(E)=f0°°dvE(x); so smoothness of dv
in E implies smoothness of k. Moreover, for each n,
v is an eigenfunction of a compact operator built out
of G,. Since the corresponding eigenvalue is simple
by results of Furstenberg,3® the general theory of
eigenvalue perturbation theory** implies that v is at
least C*. Since kis arbitrary, v is C=.

After this paper was submitted, we received two pa-
pers from Delyon, Levy, and Souillard,3* 3¢ who, also
motivated by Kotani,?® discuss localization via a pro-
cedure related to, but distinct from, ours in theorems
2 and 3.
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theorems 2 and 3. This research was partially support-
ed by the National Science Foundation under Grants
No. MCS-81-20833, No. MCS-82-01766A01, and No.
DMS-84-07099.
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