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Internal Lifschitz Tails 
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We consider an Anderson model in v dimensions with a potential distribution 
supported in (a, b )w (c, d), where c -  b > 4v. We prove the existence of Lifschitz 
tails at the edges of the internal gap at b + 2v and c - 2v. This reproves results of 
Mezincescu. 
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1. I N T R O D U C T I O N  

Many years ago, E. M. Lifschitz argued that the integrated density of states 
at the edge of the spectrum of a random system in v dimensions should 
vanish roughly as exp[ - ( E -  Eo)-V/2]. The rigorous proof of Lifschitz tails 
is a problem that interested Mark Kac over a period of time (see, e.g., Refs. 
2 and 3). During the period I knew Mark, ! invariably enjoyed my interac- 
tions with him, and I am pleased to dedicate this paper to his memory. 

I will consider the simplest case of a random quantum Hamiltonian, 
the v-dimensional Anderson model: The underlying Hilbert space is 12(Zv). 
The Hamiltonian is 

(ho~u)(n) = ~ u ( n + j ) +  Vo)(n) u(n) =- (Hou)(n)+ V~(n) u(n) 
U [  - 1 

where the Vow(n) are i.i.d.'s with a distribution d~c. Any such model has an 
integrated density of states k(E) defined, for example, in Ref. 1. 

Suppose a = inf supp(d~c), d =  sup supp(dK), and that 

tr[a, a + ~) >~ c~N; ~c(d- e, d] >~ C~, N (1) 
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It follows that inf spec(H) = a - 2 v ;  supp spec(H) = d +  2v. Then, the basic 
phenomenon of Lifschitz tails asserts that 

lira ln[ - lnk(e)] / ln (e -a-2v)=-v /2  (2a) 
e,La- 2v 

lira ln{ - I n [ 1  - k(e)] } / l n (d -  e + 2v) --- -v/2 (2b) 
eTd+2v 

Various approaches to this problem have been found by various 
authors (see Ref. 7 for references). I feel that the most elementary approach 
to this problem is the Dirichlet-Neumann bracketing method of Kirsch 
and Martinelli, (4) developed in the discrete case in Simon. (7) 

In this paper, I want to consider the case of "internal" tails, i.e., sup- 
pose that 

where 

and 

supp(d~) = [a,b] w [c, d] 

K ( b - ~ ] > / C c  N, tc[c, a q - ~ ) > / C e  N (3) 

c -d>4v  (4) 

Then 

spec(H~) = [a - 2v, b + 2v] w [c - 2v, d +  2v] 

My goal is to prove the following result. 

T h e o r e m  1.1. Let (1), (3), and (4) hold. Then 

lim ln{- ln[k(b+2v)-k(e)]}/ ln(b+2v-e)=-v/2 (5a) 
e~b+2v 

lim ln{ - ln[k (c ) -k (c -2v)]} / ln (e -c -2v)=-v /2  (5b) 
e. lc  2v 

This result has already been proven by Mezincescu. (6) The present 
proof may shed additional light on this theorem. 

It is not hard to show that k(b + 2v)= k(c-2v)= K[a, b]. While the 
result has been stated for two "bands" and one gap, it is not hard to extend 
it to several gaps; each gap in suppdx must be at least 4v in size to 
produce a gap in spec(H). In addition, one could handle the case where 
supp ~c= ( - o o ,  b] u [c, oo) with some weak moment conditions on &c. 
Essentially, the arguments in Section 3 require no change, while those in 
Section 4 require one to note that replacing V(n) by max(a, V(n)) with 
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a<b can only increase k (b+2v) -k (b+2v-e ) ,  and that once the two 
classes of sites have been decoupled, one can replace V(n) by rain(V(n), d). 

In order to understand the strategy of proof I will use, recall the ideas 
behind the Dirichlet-Neumann bracketing proof of (2). One gets a lower 
bound on k(e) by using Dirichlet bracketing, essentially by using the 
variational principle to find enough trial functions to bound k(e). In place 
of a linear trial function argument, which works at the edge of the spec- 
trum, I use a quadratic energy estimate sometimes associated with the 
work of Temple (8) (this is related to, but distinct from, his lower bound 
inequalities for ground states). Since this lower bound result depends on 
finding the right trial functions, it is completely elementary. 

The upper bound is more subtle. The proof makes sense of the follow- 
ing intuition: "levels repel" in quantum theory. Thus, the upper band 
should push levels away from the internal edge and should push them 
toward an external edge. Thus, one should be able to bound the number of 
states in an internal tail by the number on an external tail where we 
already have (2). 

In Section 2, I present the necessary linear algebra results needed in 
the later sections. I prove the lower bound on k in Section 3, and the upper 
bound in Section 4. I only prove (5a); the proof of (5b) is similar. 

Unfortunately, the present proof, as well as that of Mezincescu, 
depends essentially on independence at distinct points. Another "random" 
system with internal edges is the sum of a periodic and a random potential. 
If the randomness is smaller than a gap in the periodic potential, the sum 
has a gap and these should be Lifschitz tails at such internal edges. Kirsch 
and Simon ~5) have derived external Lifschitz tails in such a situation, but 
the case of internal tails in this situation remains an important open 
question. 

2. S O M E  L INEAR A L G E B R A  

We require two elementary results from linear algebra: a Temple-type 
inequality yielding lower bounds on the number of eigenvalues and an 
expression of the repulsion of levels. 

T h e o r e m  2.1. Let A be a finite self-adjoint matrix, and suppose 
N, E, ~ are given, and that there are N vectors (Pl ..... (PN obeying 

(a) (~o~, ~o:) =6~ 

(b) (Acpi, ~pj) = (A~oi, Acpj) = 0  if i e j  
(c) [l(A-E)~oill~<~ 

Then A has at least N eigenvalues in [E-c5,  E +  3]. 
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Proof. Let V be the span of the {~oi}. Then (a)-(c) imply that if 
q~ V, then II(A-E)~/It ~<6]Lr/n. If [ E - 6 ,  E+6]  had fewer than N eigen- 
values, we could find q in V orthogonal to the span of those eigenvectors 
and for that q, we would have that I](A-E)qH > 6 nqn. Thus the interval 
has at least N eigenvalues. | 

Our second result is an expression of the fact that coupling makes 
levels repel. This is well known to be true in second-order perturbation 
theory. The following nonperturbative result does not appear to be terribly 
well appreciated in the linear algebra literature, although, as Friedland has 
remarked, it follows from Cauchy's result on the interlacing of eigenvalues 
when one row and the corresponding column of a self-adjoint matrix are 
removed. 

Theorem 2.2. Let A be a self-adjoint matrix of dimension (n + m) 
of the block form (m) 

A= D 

m 
D* C 

Let e l ( A ) ~ " .  ~e,+m(A), e l ( B ) ~ " "  ~e,(B), and e~(C)~""  >>-em(C ) 
be the eigenvalues of A, B, and C, respectively. Suppose that e,(B) > e~(C). 
Then 

(i) ej(A) c >~ ej(B), j =  1,.,., n 

(ii) ej+,(A)<~ej(C),j= 1,...,m. 

Proof. I will prove (i); the proof of (ii) is similar. Given j, let V be 
the span of the eigenvectors of B corresponding to the eigenvalues 
el(B) ..... ej(B). Then, for r/E V, 

But, for r/6 V, 

01, B~l) >1 ej(B)(q, ~) 

(.1. Aq) = (,. By)/> ej(B)(~. , )  

The rain-max principle implies that 

ej(A)>lej(B) | 
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3. LOWER B O U N D  ON THE D E N S I T Y  OF STATES 

In this section, I p rove  that  

k(b + 2v ) - k(b + 2v - e)/> C exp [ - De v/2 ln(e - 1 ) ] (6) 

I start  with the case v = 1 and discuss the changes for general v later. I 
begin by analyzing a special s i tuat ion where 

[ V ( j ) - b l < e ,  j = l  ..... L - 1  (7) 

Define 

~o,(y) = sin(Tzjl/L), j =  1,..., L - 1 

= 0 ,  j ~ l  ..... L - 1  

the Dirichlet eigenfunctions, and let 

O = ~q~l - flq~3; c~ = sin(37z/L), fl = s in(~/L)  

is chosen to vanish at bo th  j = 1 a n d  j = L -  1. Since it vanishes there, 
HoOP will vanish at 0, L. Thus  

( H o 0 )  = 2 cos(Tz/L) ~(D1 --2 cos(3u/L)  fiq)3 (8) 

For  this to be correct  with the infinite-volume Ho,  it is essential that  
we arrange for ~ to vanish at 1, L - 1 .  [ I f  q91 were chosen instead, 
H oq)~ would have a te rm of order  q~l(t) and  then 
I I (No + V - b -  2)(plll/ll(pi [i ~ L-3/2 ra ther  than  the L -2  we will get below 
for 0-]  Note  that  

l](Ho + V--b-2)~91]  ~ ] l(V-b)tp]]  + U ( H o -  2)~911 

By the hypothesis  (7), 11( V -  b)0l[ ~< �89 Ng'N- By (8) and [2 cos(x)  - 2[ ~< cx 2 

It(No - 2)Oll ~< dL -2 IF•II 

for a constant  d. 
Thus,  given e small, we pick L o so dLo2~ e/2, i.e., Lo(e) so dLo2<~ e/2 

while Lo(e)~< g/e-1/2. F o r  this, given e, look at a volume L = m(Lo + 1) with 
m large. Break L into m disjoint blocks of size Lo + 1. Fo r  each block in 
which (7) holds, look at the translate of  ~9. If  there are N blocks where (7) 
holds, we get N functions for which Theo rem 2.1 holds with E = b + 2 ,  



916 Simon 

6 = e, and A = H L and so a lower bound  on the number  of eigenvalues of 
He .  Since k(b + 2 + ~) = k(b + 2) for b small, by taking L ~ ~ ,  we see that  

k(b + 2) - k(b + 2 - ~) 

~> lira [-1/L number  of blocks on which (7) holds ] 

= Probabi l i ty  a fixed block obeys (7) 

by the law of large numbers .  Thus,  

k(b + 2) - k(b + 2 - e) >~ De(b, b - e)] L~ 

~>exp{d~ 1 / 2 [ l n C - N l n ( e  ~)]} 

which implies (6) in this case. 
As for the case of general v, we look for Lo(e) x .-. x Lo(e) blocks and 

take a product  of the form lq~=l ~P(Ki). The a rgument  is essentially the 
same with L o ( e ) ~  &-1/2  and one gets 

k(b + 2v) - k(b + 2v - e) >>- [~c(b, b - e)] L~ 

~>exp{~/~ v/2[-ln C -  N l n ( e - l ) ] }  | 

4. UPPER B O U N D S  ON THE DENSITY  OF STATES 

In this section, I will bound  f rom above the number  of states near  an 
internal spectral  edge by the corresponding number  of states near  an exter- 
nal edge in a related model.  By appeal ing to the results on the external 
edges, (7) one can then prove  the necessary upper  bound  on k. Let  d~ have 
suppor t  in [a, b ]  w [c, d]  and let ~c I = ~: [" [a, b] ,  ~c 2 = K [" [c, d].  The  d~ 
will be a measure  suppor ted  on [ e , f ]  u [ a , b ]  with f - e = d - c  and 
a - f = 4 v +  1. The d~ is defined by requiring t~ l" [a, b]  =~c [" [a, b] ,  while 

~ [e, f ]  is just  the t ranslat ion of ~c p [c ,  d].  Let  ~ be the integrated den- 
sity of states for ~. 

T h e o r e m  4.1.  k(b + 2v) - k(b + 2v - ~) <~ Tc(b + 2v) - ~-(b + 2v - ~). 

Proof. Fix a volume A and a r a n d o m  potent ial  V distr ibuted 
according to x, and let H A be the corresponding Hamil tonian .  Define 

V(n) = V(n) if a <~ V(n) <~ b 

= V ( n ) - ( c - e )  if c<~ V(n)<~d 



Internal Lifschitz Tails 917 

so that ~" is ditributed according to ~:. I will prove a deterministic result 

number  of e.v. of ilL in (b + 2v - e ,  b + 2v) 

~< number of e.v. o f / l c  in (b + 2v - e, b + 2v) (9) 

from which the theorem follows. 
Break up the sites into two sets, Sl={nla<~V(n)<~b} and 

$2 = {nl c <~ V(n)~ d}. Let C be the matrix of couplings between sites in 
$1 and potentials in $1, and B the matrix of couplings between sites in $2 
and potentials in $2, and let D be the coupling between $1 and $2. Then 

The eigenvalues of B are all larger than c -  2v, while those in B are smaller 
than b + 2v, so Theorem 2.2 applies. Thus, 

number of e.v. o f H  L in (b + 2v - e, b + 2v) 

~< number of e.v. of Hc  e in (b + 2v - e, b + 2v) 

where 

Let 

Then 

Hi = ( B -  ( a -  c)~ 
\ 0 

0) 
C 

number of e.v. of H ~  in (b + 2v - e, b + 2v) 

= number of e.v. o f H  i in (b + 2v - e ,  b + 2v) 

since both are just the number  of eigenvalues of C in (b + 2v - e, b + 2v). 
Now reintroduce the couplings D. Since now the eigenvalues of C lie 

above those of B - ( c - e ) ~ ,  the inequality goes in the opposite direction, 
i.e., by Theorem 2.2, 

number  of e.v. of H i in (b + 2v - ~, b + 2v) 

~< number  of e.v. of HL in (B + 2v -- e, b + 2v) 

as was to be proven. | 
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