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Abstract. A new method is proposed to study supersymmetric quantum mechanics. A basic relation is
derived between Krein’s spectral shift function and the Witten index as a powerful tool for explicit model
investigations. The topological invariance of relevant quantities like the index, the anomaly, the spectral
asymmetry and the spectral shift function is proved. As an illustration, some model calculations are
presented, in particular the two-dimensional magnetic field problem, without assuming the magnetic flux
to be quantized.

There has been considerable interest in fractionally charged stated during the last ten
years [1]. It all started in field theory with the observation that soliton-monopole
systems in the presence of Fermi fields show fractionalization of the soliton fermion
number [2]. Now one knows that these fractionally charged states are phenomenologi-
cally realized in the physics of linearly conjugated polymers such as polyacetylene [3].

One of the approaches to study these phenomena is to build models starting from a
Dirac operator with some external potential with nontrivial spatial asymptotics and to
look at its zero modes [1]. This method is intimately connected with supersymmetry,
an object of current interest in different fields of physics [4]. In this respect the investi-
gation of supersymmetric quantum mechanical models is important. Such models serve
as a laboratory for testing and understanding supersymmetry breakdown in realistic
field theories [4, 5]. Furthermore, they provide a simple recipe for generating partner
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potentials, which can be used successfully in many physical problems, e.g., to sub-
stantially improve the convergence of large-N expansions {6].
In this Letter we propose a new method to study supersymmetric quantum mechanics.

We consider a general supersymmetric quantum mechanical system with Hamiltonian
H and supercharge Q where

(0 a* oo (H O et E o aan
Q—(A 0)’ =0 (0 H,)’ Hy =A™, H, = A4°. W

Two relevant quantities to be investigated are Witten’s (resolvent) regularized index
[7, 8], A, and the axial anomaly [8, 9], </, given by

A= lim A@), o = -lmAG), )

Az)= -zTr[(H, - 2)"' ~(H,-2)"'], Imz#0 3)

assuming that the trace on the r.h.s. of (3) exists. When A is Fredholm [10] we can
immediately show, using the Laurent series around z = 0 for the resolvents appearing
in (3), that the Witten index A equals the Fredholm index i(4) [11]. They both precisely
describe the difference in the number of bosonic and fermionic zero-energy states
counting multiplicity (cf. also [12]).

An interesting question is then what happens if 4 is not Fredholm, e.g., in models
Were zero-energy resonances occur, in two-dimensional magnetic field problems, etc.
(see [1, 9] and references therein). To answer this question in general, we introduce
Krein’s spectral shift function associated with the pair (H,, H,) [13]. In this context one
establishes the existence of a real valued function £, , on R, unique up to a constant, such
that

Tr[(H, -2)7' - (H,-2)7'] = - _[ dié, (@A -2)72. @
R

In the supersymmetric systems we consider, H, and H, are nonnegative. Furthermore,
they have the same nonzero energy bound states with the same multiplicities [ 14].
Finally, the bottoms of the essential spectra of H, and H, coincide. Denoting the latter
by Z we infer that the spectral shift function may be chosen uniquely as

0, Ai>0,

élz('l) = 612(0+) , A>Z, (5)
~-(2m) " 'IndetS,,(A), A>Z,

where S,,(4) is the on-energy-shell S-matrix for the scattering system (H,, H,). (Under
suitable conditions on the interaction V,,, defined by Vi, =H, - H,, ,(4) is
continuous for A> X.)
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If the potential ¥,, can be factorized as V,, = v,,u,, whereby u,,(H, - z) "' v, has
certain analyticity properties in z, then also Fredholm determinants [ 15-17] can be used
to calculate ¢,,(A). In particular, on the basis of (4), especially the connection between
its Lh.s. and Fredholm determinants, and standard properties of the Poisson kernel one
can show that [12]
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We now use these methods to establish some new, general results on supersymmetric
quantum mechanical systems, even when the associated operator 4 is non-Fredholm.
First, let ¢,,(4) be bounded and piecewise continuous in R (see (5)), then one can
prove [12], using (2)-(4), the following basic relations

A= -£50,), o =¢(0). M

Not only are these relations of some theoretical importance, they also turn out to be
effective tools in explicit model calculations, as we will demonstrate later on. If £ > 0
then (—¢&,,(0, )) describes precisely the difference of zero-energy bound states of H, and
H, counting multiplicity. It is thus equal to the Fredholm index i(4), in agreement with
what we have said before. If £ = 0, such that the Fredholm property breaks down, then
¢,5(0.,), and consequently A, can be fractional or even arbitrary real as we will see in
the final examples.

Secondly, one can prove an important invariance property for A(z)!!. Let B be a
relatively compact perturbation of 4 and define A(f) = 4 + fB, freal. If in addition B
fulfills a relative trace-class condition, technically speaking if, e.g., [B exp(—|4])] is
assumed to be trace-class, then we have (with obvious notation)

Az, B) = A(2) . ®)

We emphasize the importance of the additional trace-class condition. For example, in
the case of two-dimensional magnetic fields discussed at the end, perturbations B of 4
which destroy the magnetic flux of the system involved will, in general, be relatively
compact but not relatively trace-class. Hence, the invariance result (8) will fail in general.
It is the relative trace-class condition that distinguishes the distinct physical situations.
The idea of the proof [11] of (8) is based upon the fact that the trace appearing in
(3), but with H,, H, replaced by H,(f), H,(f) is differentiable with respect to f and that,
because of certain commutation formulas [ 14], this derivative can be shown to be zero.
The result (8) yields the topological invariance of the (resolvent) regularized A(z).
Moreover, it proves the topological invariance of A and «/. When 4 is Fredholm, the
invariance of the index i(4) and thus of A under relatively compact perturbations is a
standard result [18]. But the above result also works for A being not Fredholm.
Furthermore, it implies the invariance of Krein’s spectral shift function, viz.

$i2(4 ) = &12(2) . ®
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Indeed, using (8), (3) and the connection between the r.h.s. of (3) and Fredholm
determinants, one shows [ 12] that the Fredholm determinant itself is invariant such that
(6) leads to the result (9). These results can also be used to substantially simplify
supersymmetric model calculations. We further remark that also models of the type

m A* H, + m? 0
= , H,=Q2-= t s
On (A -m) 2 ( 0 H, + m2) meR\(0}  (10)

can be treated analogously. For example, one can prove that the corresponding spectral
asymmetry 7, (see, e.g., [1, 19]) is a topological invariant, and that it can be expressed
directly in terms of &, [11, 12]

N = LD 7, (1) = ~(m/2) f ) di82(A) (A + m*) =32,
4]
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Next, we present a short discussion of some examples illustrating our method. We
start with a one-dimensional model first discussed by Callias [8] and since then
reconsidered by many authors

A=djdx+¢, lim ¢(x)=¢,, ¢> <¢%,
TTEe (12)
;= —d¥dx? + ¢* + (-1Y¢', j=1,2,xeR.

J

Then it is known that

AR =[¢.(97 - 2717 - ¢_(¢2 +2)7'7] 13)
and, e.g., in the case that ¢_ =0, ¢, #0

A = [sgn(9.)]/2.

Here the fractionization of A is due to a zero-energy (threshold) resonance of H,. In
addition one can calculate that [12]

€2(d) = 27 {64 - ¢7 ) arctan [(4 - ¢%)"?/9, ] -

= 04 - ¢2) arctan[(4 - 92 )"/ _1} + (2) [sgn(¢_) - sgn(¢.)}/2
(14)
implying (13). (In (14) 6(x) = 1 for x > 0 and 6(x) = 0 for x < 0 and sgn(x) = + 1 for
x 2 0 and sgn(0) = 0.) Our calculation is efficient in the following respects. It is based
on the use of Fredholm determinants (see(6)) which become simple Wronski
determinants in one dimension, viz.

det{1 - 2|¢'|"* sgn(¢') (H, - 2) 7" |¢'|'”]
= W@, 1 e @NW(-@), L. (]

135)

KREIN'S SPECTRAL SHIFT FUNCTION AND FREDHOLM DETERMINANTS 131

where the f;,, j=1,2 are Jost solutions associated with H, and W denote the

Wronskians [16,20-22]. It exploits explicitly supersymmetry as expressed by the
following relation [20]

W(A4f, ) @), 4f,.) @) = W), /1. (). (16)

This trick avoids, e.g., the use of additional comparison Hamiltonians. (Compare, e.g.,
[22].) We finally remark that, in agreement with our general results, we see that the
quantities given by (13), (14) are topologically invariant since they only depend on the
asymptotic values ¢, of ¢(x) and not on its local properties.

This treatment can be extended to N-dimensional spherically symmetric systems, even
with long-range interactions [12]. In that case, the calculation of the spectral shift
function can be substantially simplified by using its topological invariance, as described
in detail in [12]. This we also see in the last example we study here, i.e., the following
two-dimensional magnetic field model:

A=-(d, +a)+iid,+a), a=9 -0,9),8=3d0x,j=12,

¢(x) = —Fln|x| + C+ O(|x]| %) for x| > o0, FER. amn
Then
11j=[(_iv_a)2_(_l)jb]v ji=12, (18)
b(x) = (9,a, - 8,a;) (x) = —(A¢) (x), xeR?
and the magnetic flux, F, is given by
F=Q2n)! I d%x b(x) . (19)
RZ

These type of models are frequently used in the literature, e.g., in connection with gauge
theories to study the nature of the Dirac spectrum in the presence of localized gauge
vortices. (See, e.g., [1, 9, 23-27].) Here we prove, using only scaling arguments and the
topological invariance of the spectral shift function, that

o) =F&Y), A@@=A=-F, o=F, (20)
even when the flux is not quantized. To see this, we introduce a specific rotationally
symmetric model for the magnetic field by putting [24]
-Fr’/2R?, |x|=r<R,R>0,

-F/2[1 +In(r*/R?)], r=R. @

$(x) = §(r, R) = {

Then it is easy to check the following scaling property for H, (now depending on R)
UH(R)U, ' = HyeR), (U,g)(x)=¢""'g(x/e), &>0 (22)

(U, is the unitary group of dilations in two dimensions, g is a square integrable function).
This immediately implies that

S12(4, R) = S5(e?4, Rfe),  &1(A R) = §12(6°4, Rfe), 2>0. (23)
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Recalling now the topological invariance of £, , (see (9)) we infer that ¢,, cannot depend
on R as long as Fis kept fixed in (21). Therefore, (23) implies that £,, and, consequently,
also A(z) are energy independent. So it suffices to calculate these quantities, e.g., at high
energies, where this calculation is straightforward and can be done in either of two ways:
one way using resolvent equations and trace estimates, the other way using the heat
kernel index theorem type method [ 12]. This gives the results (20). We remark that the
result in (20) for the Witten index A has been obtained in [27] in a path-integral approach
by using certain approximations. Our treatment is the first nonperturbative and rigorous
one and it works for all values of the flux F. For the situation described in Equation (10),
the corresponding regularized spectral asymmetry (cf. Equations (11)) reads

N(0) = sgn(m)F e, meR\{0},1>0 (24)
and, hence,
N = sgn(m)F (25)

in agreement with the result given in [1]. For more details and the discussion of other
models we refer to [12].
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