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A new method is presented to study supersymmetric quantum mechanics. Using relative
scattering techniques, basic relations are derived between Krein’s spectral shift function, the
Witten index, and the anomaly. The topological invariance of the spectral shift function is
discussed. The power of this method is illustrated by treating various models and calculating
explicitly the spectral shift function, the Witten index, and the anomaly. In particular, a
complete treatment of the two-dimensional magnetic field problem is given, without assuming

that the magnetic flux is quantized.

I. INTRODUCTION

Since the first observation of fractionally charged states
in certain field theoretic soliton models,' various techniques
to obtain a more detailed understanding of that phenomenon
have been developed.? Furthermore, the possible phenome-
nological realization of these states in one-dimensional poly-
mers such as polyacetylene strongly stimulated this develop-
ment.>®

Among the different existing approaches” the treatment
of external field problems offers the simplest possibility to
study fractional charge quantum numbers. In this context,
one starts from a Dirac operator with some external poten-
tial with nontrivial asymptotics. For example, in one dimen-
sion this can be realized in the easiest way by considering the
following operator, acting on two-component wave func-
tions:

m A* d

e _(A —m)’ 4= dx +4
where ¢(x) and m(x) are space-dependent “mass” terms.
Nontrivial (solitonlike) asymptotics is then expressed by
lim, , . #(x) =¢,,in comparison with the trivial case
lim,_ , . #(x) = ¢, Since, in a field theoretic context, the
transition from one case to the other corresponds to the pas-
sage from one representation of the canonical anticommuta-
tion relations to an inequivalent one, the relative charge is
usually defined through a regularization procedure. It turns
out that under suitable conditions on the Dirac Hamilto-
nian, the charge is given by half of the associated 7, invar-
iant, %712
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The method described above (for m = 0) is closely con-
nected with supersymmetry, a subject of current interest in
different fields of physics.'*!* Indeed, the Hamiltonian de-
fined as

*
A*A 0 ) (1.2)

—02=
H=0"= ( 0 AA4*
represents two Schrodinger operators, 4 *4 and A4 *, which
are non-negative and which have the same spectrum, except
perhaps for zero modes. The investigation of such supersym-
metric quantum mechanical models is important. They
serve as a laboratory to test and to understand supersym-
metry breakdown in realistic field theories.>'* !¢ Further-
more, they provide a simple recipe for generating partner
potentials, which can be used successfully in many physical
problems. See Ref. 13 and references therein.

To study supersymmetric systems, Witten'® introduced
a quantity A, counting the difference in the number of bo-
sonic and fermionic zero-energy modes of the Hamiltonian.
This quantity, called the Witten index, has to be regularized
if the threshold of the continuous spectrum of 4 *4 (44 *)
extends down to zero (see, e.g., Refs. 2 and 16—-19). Here we
will use the resolvent regularization, viz., Ref. 17,

A=limA(z), (1.3)

A(Z) = —zTr[(A*4 —2) "' — (4A* —2)"'].

When A4 is Fredholm (i.e., if and only if the infimum of

the essential spectrum of 4 *A4 is strictly positive), this index
A equals the Fredholm index i(4)=[dim Ker(4)
— dim Ker(4 *)]. When 4 is not Fredholm, this equality is,

in general, destroyed and A can become noninteger; in fact, it
can be any arbitrary real number,?° due to threshold effects.
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Fractionization of A has been seen explicitly in a number of
examples,>820-25

In this paper, we develop a new method to study super-
symmetric quantum mechanics without assuming the Fred-
holm property for the operator 4. This method, based on
relative scattering techniques (Levinson theorem-type argu-
ments, etc.), has the advantage of being simple and math-
ematically rigorous at the same time. In particular, we derive
a relationship between Krein’s spectral shift function®®-2®
and the Witten index A. Furthermore, we show how the
topological invariance of the (resolvent) regularized Witten
index leads to the corresponding invariance of the spectral
shift function itself. These new results offer a useful tool for
explicit model calculations. To illustrate this, we discuss sev-
eral examples in detail. A short account of this work has
appeared in Ref. 20.

The rest of this paper is organized as follows: In Sec. II,
we recall the basic properties of Krein’s spectral shift func-
tion, £(4), A the energy, and its connection with (modified)
Fredholm determinants.?®! In Sec. III, we consider super-
symmetric quantum mechanical systems. We prove that un-
der certain conditions on the Hamiltonian, the Witten index
A is given as (minus) the jump of the spectral shift function
£(A) at A = 0 and that the axial anomaly & (Refs. 17 and
32) is equal to the limit of £(4) as A - oo. Furthermore, we
use the topological invariance of the resolvent regularized
Witten index under “sufficiently small” perturbations to de-
rive the corresponding invariance of Krein’s spectral shift
function itself. Finally, we discuss the spectral asymmetry
7., associated with Q,, in terms of £(A4). Section IV illus-
trates the power of our method in explicit calculations by
treating a number of models. Using the connection between
Fredholm determinants and Wronskians** or exploiting the
topological invariance discussed in Sec. III, we calculate in a
straightforward way Krein’s spectral shift function, the Wit-
ten index, and the anomaly for various examples on the line
and on the half-line. Furthermore, we analyze the supersym-
metric system describing a particle in a two-dimensional
magnetic field without assuming the magnetic flux to be
quantized. In this case, our method is the first rigorous and
nonperturbative one that shows that the spectral shift func-
tion is piecewise constant, and thus that both the anomaly &
and minus the index A are equal to the flux. Also, the spec-
tral asymmetry for the corresponding two-dimensional Q,,
model is calculated.

We end this introduction with the remark that Secs. III
and IV are completely self-contained, so that they may be
read independently of Sec. II, which offers a full account of
the more technical results needed in the paper.

1. FREDHOLM DETERMINANTS AND KREIN’'S
SPECTRAL SHIFT FUNCTION

In this section, we present a full account of those basic,
more technical results on Krein’s spectral shift function and
its connection with Fredholm determinants that we need in
the rest of the paper. We start by introducing the following
hypotheses. For any result, only some of the hypotheses will
be assumed.
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Hypothesis (i): Let 7 be some (complex, separable)
Hilbert space, let H;, j = 1,2, be two self-adjoint operators
in # such that (H, —z,) ™' — (H, — z,) '€ % ,(F) for
some z,ep (H,) Np(H,).

[Here % ,(5), pell,0) denote the usual trace
ideals®' and p(-) denotes the resolvent set. ]

Hypothesis (ii): In addition to Hypothesis (i), assume
that H;, j= 1,2, are bounded from below. Suppose that
H, = H,+V,, (here + denotes the form sum), where V',
can be split into two parts, V,, =v,,u;, such that
u,(H, — z) " 'v,, is analytic with respect to zep(H,) in the
% (%) topology and such that wu,,(H,—z,)""},
(Hy — z) " '0,,€% ,(#°) for some zyep(H,).

Clearly, Hypothesis (ii) resembles the Rollnik trick of
splitting a self-adjoint multiplication operator V(x) into
V(x) = |V(x)|"?|V(x)]"? sgn V(x).** Next, we introduce
a “high-energy”’ assumption of the following type.

Hypothesis (iii): Assume Hypothesis (ii) and

lim det[1+ ulz(Hz—Z)_lvn] =1.
|z] =

Imz#0

Finally, we introduce two assumptions which will allow
generalizations in the sense that the Fredholm determinant
used later on can be replaced by a modified one. This gener-
alization is critical in higher-dimensional systems where Hy-
pothesis (iii) is known to fail (cf., e.g., Refs. 35 and 36).

Hypothesis (iv): Suppose Hypothesis (ii) is satisfied ex-
cept that u,,(H, —z) ~'v,, is now assumed to be analytic
with respect to zep (H,) in the % ,(#°) norm.

Hypothesis (v): Assume Hypothesis (iv) and

lim det,[1 4 u,(H,—2z)"'v,]=1.

Imz#0
We first recall the following.

Lemma 2. 1: Assume Hypothesis (i). Then there exists a
real-valued measurable function £,, on R (Krein’s spectral
shift function?~2®) unique a.e. up to a constant with

(@) (1+ 1) 7'¢el '(R) ;
(b) Tr[(H, —2) ™' — (Hy—2) ']

2.n

= —J‘d/{glz(i)(i‘z)_zy ZGP(Hl)mP(Hz);
R
(2.2)

(¢) if S, (1) denotes the on-shell scattering operator for the
pair (H,,H,), then
det S;,(4) = e~ =Y for ae. Aeo, (H,)
[0. (-) denotes the absolutely continuous spectrum].
For a proof, see, e.g., Refs. 37 and 38. For an appropri-

ate class of C'(R) functions ® with &(H,)
— ®(H,)e% (), one gets similarly

(2.3)

Tr[®(H,) — O(Hy)] = J dAELP ) (2.4)
R

(cf. Refs. 37-39). Finally, the invariance principle for wave
operators can be used to relate £, associated with (H,,H,)
and £ §, corresponding to (P (H,),P(H,)) by*’

£1p(A) =ET(P(A))sgn(P" (1)) - (2.5)
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IfH;,j = 1,2, are bounded from below, we define £,,(1) =0
to the left of the spectra of H, and H, in order to guarantee
uniqueness for £,,. For connections between Levinson’s
theorem and £,,, see, e.g., Refs. 28, 40, and 41.

Example 2.2: Let H, denote the Friedrichs extension of
(—d¥dx*+ a/x?) |C5.,(R\{o}) inL*(R),a> —}and

d2
Hy= —— ) (2.6)
dx* | g2 (r)
Then the on-shell scattering operator S, (4) in C? reads*?
SIZ(/{) —_ ((1) (l))e—m[(a+ 1/4)'2 + 1/72] , A >0. (2.7)
Thus
0 A<0,
=1 2.8).
£ =Gy pin, 250! @
and, e.g.,
Tr[(H, —2)7' — (H,—2)7"]
=(a+1"%2"", zeC\[0, ). (2.9)

By a Laplace transform, Eq. (2.9) is equivalent to a result of
Ref. 43. If H, equals the Neumann instead of Friedrich’s
extension of ( — d%/dx? + a/x?) ]C;(R\{O}), a> —1, one

obtains*?

0, A<0,
§12(4) —{__ (a+}‘)1/2, 1>0.
Next, we recall*®?* the following.

Lemma 2.3: (a) Let U,GCC be open, AeZ , (F¢) for
somepe[1, ), and 0(4) CUCG, where dU is compact and
consists of a finite number of closed rectifiable Jordan curves
(cf., e.g., Ref. 44) oriented in the positive sense. [Here o'( )
denotes the spectrum and U denotes the boundary of the set
U] Let f£ G-C be analytic with f(0) =0. Then

S(A)YeZR , (7).

(b) Let 4: [a,b] » # |(F°) be continuously differentia-
ble in the #Z;(#°) norm. Let U, ,, ,0(4(#))CG, where
GCCis open. Let £ G- C be analytic with f(0) = 0. Then

d _ , dA(t)
ETr[f(A(t))]~Tr f'4(@®) ik

te(a,b) .
(2.10)

(c) Let GCC be open, and 4: G- Z ,(F°) be analytic
in the # |(#°) norm. Then det[1 + 4 (z)] is analytic with
respect to zeG and

iln det[1 + A(z)]
dz

=Tr[[l+A(z)]_lw], — leo{d(2)),
dz
zeG . (2.11)

Lemma 2.3 immediately implies the following.
Lemma 2.4: Assume Hypothesis (ii). Then
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Tr((H,—2)"' — (H,—2)" ]
= ——d—ln det[l + u,(H, —2) " 'v,,],
dz

2ep(Hy)Np(H,) . (2.12)
Proof: By Lemma 2.3, cyclicity of the trace, and the re-
solvent equation one gets

iln det[1 + u,,(H, —Z)—lvlzl
dz

=Tr{[1 + uy,(H, — 2) " 'v;,] " 'upn(H, — z) " ,,}
=Tr{(H, —z) [l + u,(H, — 2) " ',,] "
Xuy(Hy —2) 7'}
= —-Tr[(H,—2)"'—(H,—2)7'],
zep(H,) Np(H,) . O

In order to connect Krein’s spectral shift function with
Fredholm determinants, we formulate the following.

Lemma 2.5: Assume Hypothesis (iii) and assume that
(1+|-])7'€,,eL "(R). Then

J dA (A (A —2)7!
R

=Indet[1 + u,,(H, — Z)~1v12] , zep(H))Np(H,) .

(2.13)

If, in addition, £, is bounded and piecewise continuous on
R, then

(24 +6.(A2)]72

L. lim In det[1+ u,(H, — A —i€) " 'v,,] ,
2mie-o,  det[l + u,(H, — A +ie) " 'v,,]

AR . (2.14)
Proof- By Lemma 2.4, we have

— L i det[1 + upy(Hy — 2)~"vy3]
dz

=Tr[(H,—2z)"'— (H,—2)""]

d
- ——f dAELA) (A —2)7", zep(H,) Np(H,) .
dz Jr

Thus Eq. (2.13) holds up to a constant. By Hypothesis (iii),
this constant equals zero. Equation (2.14) results from stan-
dard properties of the Poisson kernel (cf., e.g., Ref. 45). O

Without the piecewise continuity of £,,, Eq. (2.14)
holds a.e. in A€R. Hypothesis (iii) is, in general, valid for
one-dimensional systems (cf. Sec. IV) but breaks down in
higher dimensions. Thus we formulate the following.

Lemma 2.6: Let GCC be open, and 4: G- B,(F) be
analytic in % ,(5°) topology. Then the modified Fredholm
determinant det,[1 + A4(z)] is analytic with respect to zeG
and

iln det,[1 + A(2)]
dz

=Tr{([1 FA@] - 1)1&’1]
dz
- —Tr[[1+A(z)1~‘A<z> ﬂz—’-},
dz
— 140(4(2)), 2G. (2.15)
Bollé et a/, 1514
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Proof: Obviously Eq. (2.15) holds for A(z)eZ (7)),
zeG. The general case follows by a limiting argument. [
Lemma 2.7: Assume Hypothesis (iv). Then

Tr[(H, —2)"' — (H,—2)"!
+ (Hz"‘z)_anz(Hz'—‘z)—l]

= —iln detzll + u12(H2__Z)_1012] ’
dz

zep(H,) Np(H,) .
Proof: By Lemma 2.6 one gets

(2.16)

4 1n det,[ 1+t (Hy — 2)~ 1]
dz

=Tr{([1 + u,,(H, —2) "'0py] 7' = 1)
Xun(Hz"‘z)——zvlz}

= —Tr{H, —2)"'— (H,—2)""'
+ (H,—2) W (Hy,—2)7 '},
zep(H,)Np(H,) . a

For related work, see also Ref. 46.
Next, we assume the existence of some 77,,: [Ag,0) >R
such that

Tr{(H, —z) "'V, (H, —2) ']

=J dAn,(A)A —2)7%, zep(Hy), (2.17)
l()
and we define
Z £1(A) —n2(4) A>Ay,
A =[ 2.18
B =220 o (2.18)

Lemma 2.8: Assume Hypothesis (v) and assume that
(1+ H)—1§12€L "(Agyo0). Then

fd/lg”n(/l)(/l—z)_‘
R
=Indet,[1 + u,(H, —z) " 'v,,],

zep(H ) Np(H,) . (2.19)

If, in adddition, &, is piecewise continuous and bounded on
R, then

[E,(AL) + En(A )12

Proof* Similar to that of Lemma 2.5. O

Example 2.9: Let |V,,|'**eL Y (R?), (14 |']))¥),
€L ' (R?) forsomes > 0, respectively, ¥,,eL ' (R*) "R (R the
Rollnik class,> i.e.,

f d3x d3| V||V 1x — |2 < )
"

and define in L*(R*): H,= —A+V,, and H,
= — A|H2_2(R,,) ,n=2,3. Then
Tr[(H, —z) "'V ,(H, —2z)" ']
L d"x V,5(x) (2.21)
47 Jr
X[Z_I’ n=2, C\[O )
ze ,
(ZV_Z)_la n=3’ *
and hence A, = 0 and (cf, e.g., Refs. 35 and 36)
712(4)
0, A<0,
- 1 1’ n=2
—— d™xV x[ * A>0.
47wa 2N T/, n=3,
(2.22)

Finally, assume Hypothesis (i) and define, for some MeR,
Ay(2)= —(z—M)Tr[(H, —2)"' = (H,—2)"'],

zep(H) Np(H,) . (2.23)
Furthermore, define

Ay = lim Ay (2) (2.24)
z—M

|Rez— M |<Cpllm z|
and, if in addition H;, j = 1,2, are bounded from below,

A = — lim

Z— o

{Rez|<C,|Im z|
(C,,C, positive constants). Then one has the following.
Lemma 2.10: Assume Hypothesis (i).
(a) Let MeR and suppose that £, is bounded on R and
piecewise continuous in (M — 28,M + 25) for some 6>0.
Then

Ay =E&,(M_)—§£,(M,). (2.26)

(b) If H;, j= 1,2, are bounded from below and if £, is
bounded and lim,_ , £,,(A) = &,,( =) exists, then

By (2) (2.25)

1 . det,[1 + u,(H, — A —i€) " 'v},]
= 1 1 2 12 2 12 . _
Tt e dety[1 + i (Hy — A 1 i€) 0r,] & =§12(0) . 227
(2.20) Proof: Choose € > 0 sufficiently small,
|
M + €
Ay, (2) = (z — M) dA £, (A)(A —2)"2 4+ Oz — M)
M—€
M+ €
— £ (ML) — £,(M,) + (z— M) f A [£,(A) — £ (ML) (A — 2)=2
M
M
+(z—M) dA [512(/1)—§12(M_)]M-—’Z)_2+0(2-—M).
M—¢€
1515 J. Math. Phys., Vol. 28, No. 7, July 1987 Bollé et al. 1515
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Now

M+ €
f A [En(A) — Eva(M )]z — MY (A — 2)~2

M

M+ €
:J- dA [£1,(A) —ELM ) I{(Rez— M) [(A —Rez)?> — (Imz)?] — 2(4A — Rez)(Imz)?}
M

M+ €

X[(A —Rez)?+ (Imz)2]“2+if

M

+2(1 —Rez)(Rez— M)Imz}[ (1 —Rez)? + (Imz)?] 2.

For example, the real part in Eq. (2.28) yields

dA [£12(A) — &, (M) H{(Im2) [(A — Re z)* — (Imz)?]

(2.28)

R R

|Im z| |Im z|

X [€10(p|Imz| + |Rez — M |)sgn(Rez — M) + M) — &,(M ) 1y (1) =0

IMz)=]—~|Rez—M|/|Imz|,

asz—M and [Rez — M |<C,y|Im z|,

f[esgn(Rez — M) — |Rez — M |]/|Im z|]

by dominated convergence. (Here y, denotes the characteristic function of the interval /CR.) The same analysis applies for
the imaginary part in Eq. (2.28), proving Eq. (2.26). Similarly one proves Eq. (2.27). a

. SUPERSYMMETRY AND KREIN’S SPECTRAL SHIFT
FUNCTION

In this section we consider general supersymmetric
quantum mechanical systems and we establish a basic rela-
tionship betwen Krein’s spectral shift function &£,,(4) and
the Witten index, and between &,,(4) and the axial anoma-
ly. Furthermore, we discuss the topological invariance of the
(regularized) Witten index and the spectral shift function.
Finally, the spectral asymmetry for @,, -type models [cf. Eq.
(1.1)] is related to &,,(A).

Let 4 be a closed, densely defined operator in # and
define the “bosonic,” respectively, “fermionic” Hamilto-
nian H, and H,, by

H =A*4, H,=AA*. (3.1)

The corresponding supercharge @ and the supersymmetric
Hamiltonian H in 7% @ 7 are, respectively,

0 A* H, 0
QZ(A o)’ HZQZz(o1 Hz)'
Assuming Hypothesis (i) throughout this section, Witten’s
(resolvent) regularized index A(z) is defined by’
Az)= —zTr [(H,—2) ' — (H,—2)7'],
2eC\ [0, ), (3.3)
and Witten’s index A (Ref. 16) is given by (cf. Sec. II)

(3.2)

A= lim
z-0
|Re z| < Cy/Im 2|

(for some C,>0) whenever the limit exists. Instead of the
regularization (3.3 ), one could as well consider a (heat ker-
nel) regularization A(s) of the type

A(z2) (3.4)

A(s) =Trle " —e—#:], 530, (3.5)
and define Witten’s index by
A = lim A(s) . (3.6)

S o0

1516 J. Math. Phys., Vol. 28, No. 7, July 1987
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In order to avoid technicalities, we restrict ourselves to Cal-
lias’s regularization (3.3).

As a first result, we try to relate A and the Fredholm
index [(4) of A: We recall an operator is Fredholm*’ iff 4 is a
closed operator with a closed range such that dim Ker(A)
and dim Ker(4 *) are finite. The Fredholm index i(4) is
then given by

i(A) = dim Ker(A4) — dim Ker(4 *) . (3.7)

We remark that 4 is Fredholm iff 4 * (or 4 *4) is.*” In addi-
tion

dim Ker(4) = dim Ker(A4 *4) (3.8)
implying that
i(4) = dim Ker(H,) — dim Ker(H,) . (3.9)

Thus i(A4) describes precisely the difference of bosonic and
fermionic zero-energy states (counting multiplicities).

We emphasize that we shall also use definition (3.7) for
i(A) in case A is not Fredholm. Of course, in this case i(A)
might lose some of the typical properties of an index.

We state the following.

Theorem 3.1: Assume Hypothesis (i) and suppose 4 is
Fredholm. Then

A=1i(4). (3.10)
Proof: We only sketch the major step. The fact that 7},
Jj = 1,2, are Fredholm guarantees an expansion of the type

—z[(H, o (Hz“z)ﬁl]
=P —P,—z S 2[T7+ = T7*) (3.11)
n=20

valid in the % ,(#°) norm. Here P; denotes the projection
onto the eigenvalue zero of H;,j = 1,2, and T is the reduced
resolvent, viz., Ref. 47,

Ty=n—lim (B, -2 '[1-£], j=12. (312)

Bollé et al. 1516

Downloaded 20 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Taking the trace in Eq. (3.11) and observing that
Tr{P-P,] =i(A) (3.13)

completes the proof. O

What happens if 4 is not a Fredholm operator? Before
trying to answer this question, let us consider an equivalent
definition of the Fredholm property of A. Since 4 *4>0 and
A is Fredholm iff 4 *4 is, we get the criterion that 4 is Fred-
holm iff info (4 *4) >0 [o.,(-) denotes the essential
spectrum]. The examples of the next section show that, in
general, equality (3.10) is violated if 4 is not Fredholm. In
fact, A may take on half-interger values in the first four ex-
amples of Sec. IV, whereas in the fifth example it can even
take on arbitrary real values (see also Ref. 20).

To study also these non-Fredholm cases we now intro-
duce Krein’s spectral shift function £,, associated with
(H,,H,) as discussed in Sec. II. We always assume Hypothe-
sis (vi). Assume that £,, (or £,,) is bounded and piecewise
continuous on R and £,,(4) = 0for A <O0.

As can be seen from Lemma 2.5 (Lemma 2.8), this es-
sentially requires continuity of the trace-norm (Hilbert—
Schmidt norm) limits #,,(H, — A Fi0) ~'v,, with respect
to A<R. This can be checked explicitly in concrete examples
(cf, e.g., Sec. IV).

Let us denote the threshold of H; by

S =infou, (H,) = (inf 0. (). (3.14)

We observe that H, and H, are essentially isospectral®® (cf.
also Ref. 50), i.e.,

o(H)\{0} = o(H,)\{0}
and
H,f=Ef, E#0
implies H,(4f) = E(Af), fcY(H)),
Hg=E'g, E'#0
implies H,(4*g) =E'(A*g), geZ(H,), (3.15)

with multiplicities preserved. Under the additional assump-
tion that

> =info, (H;) [ =info, (H,)] (3.16)

and that, e.g., u,(H, — A — i€) "'y, A>Z, has % ,(5)-
valued limits as €0 and that the exceptional set

§={I>3|3 7, f£0

with u,(H, — A —i0) ", f= —f} (3.17)
is discrete (cf., e.g., Refs. 31 and 51), we get
0, A<0,
£12(A) =4£1,(04), 0<A<Z, (3.18)

— (2mi) 'Indet S\, (1), A>Z.

The simple structure in Eq. (3.18) follows from the fact that
the effects of all nonzero bound states of H, and H, cancel
since they occur with the same multiplicity in both H, and
H,.*® Under suitable conditions on ¥,,,>"*! the on-shell .S
matrix S,,(A) is continuous in trace norm in A > 2 [with
det §,,(4) #0], implying continuity of £,, for A>Z. [If
3 =0, then the second line of the rhs of Eq. (3.18) should be
omitted. }
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If we define the axial anomaly & by (cf. Refs. 17 and
32)

A = — lim

Z—

|Re z| <C\{Im z|
(forsome C, > 0) we obtain from Lemma 2.10 the following.
Theorem 3.2: Assume Hypotheses (i) and (vi). Then

A= —£,(0,). (3.20)

If, in addition, lim,_  &,,(A)=¢£,,( ) exists, then

A =§(e0) . (3.21)
If 250, then — £,,(0, ) describes precisely the difference
of zero-energy bound states of H, and H, (counting multi-
plicity) since &),(4) = 0forAd <0. Thus — £,,(0,) =i(4)
in agreement with Theorem 3.1. If £ =0, then £,,(0,)
might be fractional due to threshold resonances or bound
states of H, or H, or due to relative long-range interactions
as shown in Sec. IV.

We also recall that by Lemma 2.5, £,, can be recovered
from the Fredholm determinants by

[§12(/{’+) +§12(/1—)]/2
_ 1 lim In det[1 4 u,(H, — A — i€) " 'v,,]
2mi -0, det[1 4+ u,(H, — A + i) " 'v,,]

(3.22)
assuming Hypotheses (iii) and (vi) and (14 |-])7'&),
€L '(R). Under the same assumptions, A(z) is given by [cf.
Eq. (2.13)]

A(z)= —zTr[(H,—z)"'— (H,—2)7']

A(z) (3.19)

=ziJ A £V (A —2)~!
dz Jr

=z§—1n det[l + up,(H, —2z) " 'v;,], zeC\[0,00) .
'z
(3.23)

We omit the corresponding generalizations based on Hy-
pothesis (v) in terms of modified Fredholm determinants. If
an expansion of the type

det[1 +u,,(H, —z) v} =2°[1 + O(z)] as z-0
(3.24)

holds, then obviously
A=«a. (3.25)

In the same way, a high-energy expansion determines the
anomaly .

Next, we turn to an important invariance property of
A(z) under sufficiently small perturbations of A. Let B be
another closed operator in 7 infinitesimally bounded with
respect to 4, and introduce on & (4),

A, =A+BB, BeR. (3.26)

The quantities H, 5, H, g, U155, V12,5, § 12,5, and A(f3,2) then
result after replacing 4 by 4;. We have*® the following.
Theorem 3.3: Fix z,eC\ [0, o0 } and assume that

(i) (Hyp—20) 7' — (Hyp — 20) " '€RB (F)
for all BeR ;
(ii) B*B(H,—z,)" ", BB*(H,—z,) " '€%# , (5),
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[A*B4+ B*41(H, —2z,)"",
[4B* + BA*1(H, —z,) " '€# (F) ;
(iii) (H;—z,)  'B*B(H, —z,)"",
(H, —z,) " 'BB*(H, —z,) 'eZ (),
(Hy—2)) ' [A*B+B*41(H, —z))"",
(H,— 20) "' [AB* + BA*1(H, — 2,) "€ ,(¥) ;
(iv) (H,—2zy) MB*(H,—2z)) MeRB ()
for some MeN .
[Here % ,(7) and # _ () denote trace class and com-
pact operators in 77, respectively.] Then

A(B,z) =A(2),

i.e., the regularized Witten index is invariant against small
perturbations B of the above type.

Since a more general result (where 4 acts between dif-
ferent Hilbert spaces ##” and &%) has been proven in Ref. 48,
we only formally indicate the proof: By conditions (i)-(iii)
one proves that the function

F(B2)=Tr[(Hp—2)""'— (Hyy—2)""],

zeC\[0,0), PER, (3.27)

zeC\[0,0) , (3.28)

is differentiable with respect to 3 with derivative

ad
— F(p,
% (B.2)

= —Tr{(H,y—2) " [A5B+B*4;](H,; —2)~"

— (Hy3 —2)"'[AgB*+ BA}|(H, ;3 —2z)"'}.
(3.29)

Using the commutation formulas*®
(AJA; —2) T "ARCAK(AgAl —2) 71,

(Agd % —2) " 'Ay CAz(A %4, —2)~", 2eC\[0,00) ,
(3.30)

and cyclicity of the trace, the two terms on the rhs of Eq.
(3.29) cancel. Thus

9 _F(Bz) =0,

B
implying the desired result F( £,z) = F(0,z). Conditions
(iii) and (iv) enter in a rigorous derivation of Eq. (3.31).4®

The result (3.27) yields the topological invariance of
the regularized index A(z) in the concrete examples of Sec.
IV (cf. also Ref. 52). Moreover, it proves the topological
invariance of A and .«# whenever the limitsz—0and z— « of
A(z) exist. In the case where 4 is Fredholm, the invariance
of the Fredholm index /(4) (and thus of A by Theorem 3.1),
ie.,

i(4+BB) =i(4),

BeR, zeC\[0,0), (3.31)

BeR, (3.32)

under relatively compact perturbations B with respect to 4 is
a standard result.*” Equation (3.27) works without assum-
ing A tobe Fredholm, but needs much stronger assumptions
on the “smallness™ of B than just relative compactness.

Another application of Eq. (3.27) concerns the invar-
iance of Krein’s spectral shift function. In fact, we get the
following.

Theorem 3.4: Assume Hypothesis (vi) with A replaced

1518 J. Math. Phys., Vol. 28, No. 7, July 1987

by dg and (1 + [|)7'[£ 12,5 — £12)eL '(R) for all BeR. If
conditions (ii)—(iv) of Theorem 3.3 hold, then
[£12,p(A) —E(A D]+ [€E5(A)—E(A)]=0,

(3.33)
for all B,A€R. In particular if £ , 5, <R, and £, are contin-
uous at a point A€R then

§12,5(/1) =£&,(4), PeR. (3.34)

Proof: Equations (2.2) and (3.27) together with the
Lebesgue dominated convergence theorem imply

0=J A (£ g (D) = Ea(A) ] (4 — 2) 2
R

ZiJ.dA [§l2,/3(/l)'_§lz(/{)](i_z)~l (3.35)
dz Ju

and hence

f QA (£ s (D) — Ex(D](A—2)"" =0
R

by taking |z| - o, Im z#0. Thus Eq. (3.33) results from
standard properties of the Poisson kernel (cf., e.g., Ref.
45). O

In the first four examples of the next section, £, 4 (4)
coincides with a multiple of the relative phase shift between
H, and H, and the Fredholm determinants in Eq. (3.22) are
expressed in terms of Wronski determinants. In these cases
the topological invariance property of A(z) and £,,(4) can
be established by simple and explicit calculations.

Finally, we note that the following family of operators in
Ko

o.=(3 2.

H, + m? 0
H =02 =( ! ), 0},
m=0Qm 0 H, + meR\{0}
(3.36)

can be treated analogously. In order to illustrate a simple
application of the above results, we briefly discuss the invar-
iance of the spectral asymmetry 5,, (Refs. 7 and 9) under
“small” perturbations. Under suitable conditions on H,,
[cf., e.g., Eq. (3.17) ], the (regularized) and spectral asym-
metry can be defined by

7, = lim 7, (), (3.37)

=0,

N (1) =Tr[ Q. H ;%™ """], meR\{0}. (3.38)

(This definition resembles the ones available in the litera-
ture, e.g., in Refs. 2, 8, 12, 53, and 54.) Since

Tr[Q,, (H,, +2)'e” "]
=mTr [(H, + m?+z%) " le"Hi+m)
— (Hy+m? 4 2%) e O]
we can rewrite Eq. (3.38) in the form
N (8) = m Tr[(H, + m?) ~"/%e " Hitm
— (Hy + m?) ~ Y21t m ]

and, using Eq. (2.4),

>0, (3.39)

(3.40)

Bollé et al. 1518

Downloaded 20 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



N (2) = mJ dA £,,(4) ——d— [(4 —|—m2)"1/2e—t(/1+m2)] )
0 dA
(3.41)
This implies

= _%fo dAEnUA +m) 2 (3.4)

Obviously, Eqs. (3.41) and (3.42) imply the invariance of
7.. With respect to the substitution 4 —Ag =A+ BB asa
consequence of Theorem 3.4.

IV. SPECIFIC MODELS

We present a series of examples of explicit model calcu-
lations which illustrate the practical use of the abstract re-
sults of the foregoing section.

Example 4.1: Let 7 = L*(R) and

£12(A) =77 HO(A — ¢% ) arctan[ (A — ¢%, )%/, ]
—60(4 — ¢ ) arctan[ (4 — ¢* )"*/4_]}
+0(A4)[sgn (¢_) —sgn(4,)1/2,
¢_7#0, ¢.+#0,
£12(A) =77'0(4 — ¢% Harctan[ (4 — ¢2, )'%/6 . ]
— 6(4) [sgn(4.,)]/2,
¢_=0, ¢,#0; AeR.
[Here (x) =1 for x>0 and 6(x) =0 for x<0 and
sgn(x) = + 1 for x20 and sgn(0) = 0.] Equations (4.4)—
(4.6) clearly demonstrate the topological invariance of these
quantities as discussed in Sec. III since they only depend on

the asymptotic values ¢ . of ¢(x) and not on its local prop-
erties. In fact, replace ¢ (x) by ¢(x) + By(x), BeR, where

(4.6)

Y'el *(R) are real valued,

d
Ad=—+¢ )l (4.1) (), (x) =0(|x}| =2~ ¢) for some €>0 as |x|— o0 .
dx 4.7
where ¢ fulfills the following requirements: )
$.4°L™ (R) are real valued Then the perturbation B [cf. Eq. (3.26)] given by multipli-
. _ 2 42 cation with ¢ leaves the regularized index invariant since the
xl“;lw $(x) =4, R, ¢_<¢,, hypotheses of Theorem 3.3 are satisfied.
Concerning zero-energy properties of H;, j = 1,2, see
fdx(l + XD’ x| < o, (42)  Taplel ’
® tw These zero-energy results easily follow from the fact
j—_f dx(1+ |x|)|¢(x) —d, | <. that the equations
0
. Af=0, A*g=0 4,
In this case, H, and H, explicitly read 4 & (4.8)
e have the solutions
H-=(——+¢2+<—1>f¢’)l s J=12. g
7 dx> A flx) = f(O)exp( - f dt¢(t))
4.3) o
Then =0(e”**") as x> + o, (4.9)
— 2 —1/2 _ 2 _ 12 x .
A@2) = [¢. (¢ —2) $-(¢~ —2)""]/2, g(x) =g(o)exp(f dt¢(t)) =0(e’*") as x— t oo
zeC\[0,x) , (4.4) 0
and hence In order to derive Eq. (4.4), we introduce Jost solutions
A=[sgn(¢,)—sgn(¢_))/2, & =0, (4.5) [+ (z,x) associated with H, j = 1,2,
TABLE L. Zero-energy properties of H, and H, in example 4.1.
Zero-energy resonance Zero-energy bound state
of H, of H, a, (H,)N{0} o, (H,)N{0} A i(A4)
é_<0<d, no no @ 1 1
¢, <0<¢_ no no {0} -1 -1
$..6_>0
or no no ¢ 0 0
¢,.4_<0
é_=0,¢4,5%0 yes no # %Sgn(¢+)
¢_=¢,=0 yes yes ¢ 0 0
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ik
fiy (@x) =e*"2"

4+ o
—J dx' k 7'sin[k, (x —x")]

X[ (x) — ¢ + (= 1V ()] fi, (2X),
zeC, j=12, (4.10)
where
k, 2)=—¢* )", Imk_>0. (4.11)
The corresponding Fredholm integral equation reads

fiy @x) =T ] f, (2x)

~f dx' g,(zxx")[ — 28" (X)) f1 4 (2.X"),
R

zeC\o, (H,), z#¢> , (4.12)
where
&(zxx) = — [W(f_(2), for ()] 7!
{/2+(z,x)f2_(z,x') , x>x,
o (2,x) fo  (2x"), x<x', (4.13)

zeC\o,(H,), z#4> ,
&(2)=(H,—2)"", zep(H,),

and T,,(z) denotes
T,(z) = W(fa (@), L VW fi_(2), fi.(2)),
zeC\o,(H,), z#¢> . (4.14)
Here
W(F,G), = F(x)G’'(x) — F'(x)G(x) (4.15)

denotes the Wronskian of Fand G. (For more details on one-
dimensional systems with nontrivial spatial asymptotics, cf.
Ref. 23.) As can be seen, e.g., from Eq. (4.12), the relative
interaction ¥, reads
Via(x) = —24'(x) . (4.16)
Our first main step to derive Eq. (4.4) now consists of
the observation that

W(f1~(z)’ﬁ+(z))
W(fa_(2), oy (D)
=det[1—2|¢'|'"* sgn(4")g.(2)|#']'*],

zep (Hy), z#4 , (4.17)
such that (cf. Lemma 2.4)
Te{(H,—2)" '~ (H,~2z)7"]
= L, PA-B4.@) e 10,0).
dZ W(fz—-(Z),f2+(Z))
(4.18)

Equality (4.17) can be proved along the lines of Ref. 33
using Egs. (4.10) and (4.12) (cf. Ref. 23).

Next, we note that Eq. (3.15) also holds for distribu-
tional-type (e.g., Jost) solutions of H, and H,. In fact, as-
sume that f,(z,x), z+#0, is normalized according to Eq.
(4.10), i.e.,

fir @x)=eT " 4o(1) as x— + oo,
then (4f, . ) (z,x) asymptotically fulfills
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Af ) zx)=(xik, +¢,)e" " 10o(1)
as X— + o0 .

Thus

{f;i (zx)

Lr@x)=(xik, +¢ ) A4S, )(zx), z#0,
(4.19)

are correctly normalized Jost solutions for H, and H,. Equa-
tion (4.17) thus becomes
det[1—2]¢'|"* sgn(8")g,(2)[¢'|'"*]
=(—ik_+¢_ )k, +S IW(fi_(2),f,.(2)
X [W((Af,2)(2),(4/i)(2)] 7!, zeC\[0,0) .

(4.20)
Finally, a straightforward computation yields
W((Af)(z) ,(4g)(2)) =zW (f(2).g(2)), zeC,
(4.21)

where f,g are distributional solutions of

(A *4AyY(2))(x) = —¢" (z,x) + [¢°(x) — &' (x) ¥ (z,x)

=zip(z,x), zeC. (4.22)
Consequently, Eq. (4.20) becomes
det[1—2|¢'|'"* sgn(4')g,(2) [¢']'"*]
=(—itk_+¢_ )k, +é,)/z, zeC\[0,0)
(4.23)

and Eq. (4.4) follows from Egs. (3.23) and (4.23).

The result (4.4) was first derived by Callias,'” and since
then by numerous authors,>'%11:18:21.2225.55 While our deri-
vation is close to that in Ref. 22, it seems to be the shortest
one since the trick based on Eq. (4.21) explicitly exploits
supersymmetry and avoids the use of an additional compari-
son Hamiltonian in the approach of Ref. 22.

Next, we discuss an example on the half-line (0, 0 ).

Example 4.2: Let 77 = L (0,0 ) and

d -
4= (~— + r))
dr #
where ¢~5 fulfills the following requirements:
é,4'cL =(0,0) are real valued,

(4.24)

HE'(0,00) ?

lim ¢(r) =d,eR, Lim @(r) = PR,

r— o0 r—04

- i (4.25)
J drr(l+nr)jd'(MNl <o,
(4}

f drr(l+r)|<;5(r)—-—¢z+{<oo.
o

In this case, H, and H, read
H —(—d—2+<32—(ﬁ’)
' dar P

where F denotes the Friedrichs extension of the correspond-
ing operator restricted to C § (0,00 ) and

(4.26)
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2
H=-2_1+34+4¢,
P dr2+¢ +¢

D (H,) ={geL*(0,0)|g,8'€4C,. (0,0) ; (4.27)
g(0,) —gg(0,)=0; g"eL*(0,x)},

With AC . (a,b) the set of locally absolutely continuous

functions on (a,b). Then I

_ |70 — & ) arctan[ (A — 2, )V /B, ] + 0O~ d.), &, 0,
Ep(d) = P

O)/2, é,=0; AcR.

Again, Eqs. (4.28)—(4.30) exhibit the topological invar-
iance of all these quantities since only ¢, enters. [ The argu-
ments in connection with Eq. (4.7) can easily be extended to
the present sitvation.] Concerning zero-energy properties,
see Table I1.

Inorder toderive Eq. (4.28), we introduce the Jost solu-
tions

Jiv (@)
=eiik+’—f dr' k 7' 'sin[k (r—r)]

X[$2(r) — % + (=B f. @),
zeC, j=1.2, (4.31)
where

ki(z)=(z—¢ )",
and the regular solutions

Imk, >0, (4.32)

¥, (z,r) =k 7 'sin k+r+f dr' k 'sin[k (r—7)]
(¢

X [$2(F) —¢% — ' (F)] (),

¥,(z,r) =cosk,r+ dok 7 'sink_r
+J dr k 7'sin[k (r—7r)]
0

X [¢2(r') — 4% +¢'(")] a(zr), zeC.
(4.33)
Using again Eq. (3.15), we assume that f, , (z,7), z#0 is
normalized according to Eq. (4.31), i.e.,

Ji. (zn =eiiki’+o(1) as r— o .
+

Then (Af, , ) (z,r) fulfills

TABLE 11 Zero-energy properties of H, and H, in example 4.2.

Zero-energy
resonance Zero-energy bound state
of H, of H, o,(H)N{0} o, (H)N{0} A i(4)

é,.>0 ne  no P é 0 0
b, <0 no  no é {0} -1 =1
$. = no  yes ¢ ¢ -3 0
1521 J. Math. Phys., Vol. 28, No. 7, July 1987

Az) = @2, —27 [, + (B —2)'2]T,

zeC\[0,0) , (4.28)
and hence
—[I—Sgn($+)]/2, &4—#07
A:[_%’ &+=0, M:%’
(4.29)
(4.30)

[

(Af ) () = (tik, + ¢ )e* " £o(l) as row
such that the Jost functions

{fl + (zn),

fre @) =(xik, + ¢ )" "Af 1, )(zr), z#0,
(4.34)

are correctly normalized. Similarly, we assume that ¥, (z,r),
z#0 fulfills

Pi(zr) =r+o(r)
Then
(49 (zr) =1+ dor + o(r)
and thus
{1/’1 (Z)r) ’
ha(z,r) = (AY)(zr), 2z7#0,
are correctly normalized regular solutions of H, and H,. The

rest is now identical to the treatment of example 4.1. First of
all, one derives, as in Eq. (4.18) (cf, e.g., Ref. 30)

Tr{(H, —z)'— (H,—z)"!]
_d, Wih@).f.(2)

as r-0, .

as r-0_

(4.35)

, 2eC\[0,0) . (4.36)
dz W (2), /1. (2)
Then one calculates, as in Eq. (4.21), that
W((A¢])(Z),(Aﬁ+)(2) )ZZW(¢1(Z)9ﬁ+(Z))’ zeC.
(4.37)

We now consider a generalization of this example which
allows us to discuss n-dimensional spherically symmetric
systems (cf., e.g., Refs. 2 and 13).

Example 4.3: Let % = L (0,0 ) and

d
4= (5+9)
where ¢ fulfills the following requirements:
$(r)=dor™ ' +(r), Go<—14,
é,#'eL> (0,00) are real valued,

(4.38)

C&0,00) ?

r>0,

lim (r) = ¢, eR,

r— o

f dr W, (N(¢' ("] +r7'¢(r) —d. )<=, (439)
0

f dr W, (n)(r) —¢,|< e,
0

and the weight function W, is defined by
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r(l+r) if o< —14,
W, (r)=|r(1+]lnr*), 0<r<i if go= —14,
r(1+r)y, rzi.

(4.40)
Now H, and H, are given by
H.z(_d_2+¢2+(_1)f¢') . j=12. (441
/ dr F

Explicitly, we have
J

A) = .
£i2(4) [—9(,1)/2, . =0; AeR.

The topological invariance in Egs. (4.43)—-(4.45) is obvious.
(See Table I11.) If ¢ = 0, the result A = i is not due to a
zero-energy (threshold) resonance, but due to the long-
range nature of the relative interaction V¥ ,(r) = 2¢,r?
+0(r7?) as r— «. Since Eq. (4.43) is independent of ¢,
this result holds in any dimension >>2 and for any value of the
angular momentum.

In order to derive Eq. (4.43), one could follow the strat-
egy of example 4.2 step by step since formula (4.36) remains
valid in the present case for suitably normalized Jost and
regular solutions (although we are dealing with a long-range
problem!). To shorten the presentation, we will use instead a
different approach based on the topological invariance prop-
erty of A(z) and £,,(A4) (this approach obviously also works
in example 4.2). Indeed, because of Theorem 3.3, it suffices
to choose ¢(r) = ¢, 7>0 in example 4.3. Then

d 2

=(~L 4 (65—~ 1)

4+ 2¢pp r 4+ F ) , j=12 (4.46)
F

[cf. Eq. (4.42)] and hence®®

MR 427 = 1Y — gy + i(¢0%+/k+))

L™ 427 (= 1Y — ¢y — i($ob /K1)

X2 = (=127 1 4] As@ , j=12
(4.47)

S;(A) =

[k, (1) defined in Eq. (4.32)] implying

TABLE I1. Zero-energy properties of H, and H, in example 4.3.

704 — @, ) arctan[ (A — %, )V¥/$, ] — OO(S,), b.#0,

G(r) FT8'(r) = (82 + do)r 2+ 245 7!
+ & + () — ¢ Fé(n

+24,[¢(r) — g 1r ", r>0. (4.42)
Then
A2) = 2/ (¢~ "*[d, — (§% — 72,
2eC\[0,0) (4.43)
and hence
_ [T +sen(é 0172, ¢,.#0,
A“[;, $.=0, & = —1},
(4.44)
(4.45)

—
S12(/1) =S1(/1)Sz(/{)_1

= (¢, — ik+)/(¢+ +ik,), 4 >¢2+ .
(4.48)

Equation (4.48) proves Eq. (4.45). Now Eq. (4.43) follows
by explicit integration (Ref. 57, p. 556) in Eq. (3.23).

The result (4.43), in the special case &(r) =0, has been
discussed in Ref. 21 by different methods.

Next, we briefly discuss nonlocal interactions.

Example 4.4: Let 7 = L?(0,c0 ) and

d
A :;17 HE (0,00 + B, (4.49)
where
B.A*BAB*# {L*(0,0)) . (4.50)

In this case the assumptions of Theorem 3.3 are trivially
fulfilled, and hence Eqs. (4.28)~-(4.30), in the special case
#(r) =0, hold. In particular

A(z)y=A= —}, zeC\[0,0), & =}. (451)
In order to illustrate the possible complexity of zero-energy
properties of H, and H, in spite of the simplicity of Eq.
(4.51), it suffices to treat the following rank 2 example:

B =a(f")f+B(g )g, apfeR,
f8eCs(0,0), f>0,8>0, f#g. (4.52)
By straightforward calculations, one obtains the informa-

tion contained in Table IV. Here the following case distinc-
tion has been used:

TABLE IV. Zero-energy properties of #, and H, in example 4.4.

Zero-energy

Zero-energy

resonance Zero-energy bound state resonance Zero-energy bound state
of H ofH, o,(H)N{0} o, (H,)N{0} A i(4) of H, ofH, o,(H)N{0} o,(HHIN{0} A  i(4)
$,>0 no no {0} ¢ 1 Case I no yes ¢ & —4 0
b, <0 no no ¢ é 0 Case Il yes no é {0} -1 -1
b= no  no & é ) CaseIII no  yes {0} {0} -1 0
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case I, Y (a,B)#0;
case II, W¥(a,B) =0,

a#2G () {F()[(£G) — (g,F) 1}
case III, W(a,B) =0,

a=2G(){F()(£,G) - (g1}
where

F(x) =f ax' fix'y, G(x) =J dx'g(x"),
0 0

Y(a,B) = [1+al(f)][1+B(g,6G)] —aB(£,G)(g,F) .
(4.53)

Finally, we consider in detail the following two-dimensional
magnetic field problem.
Example 4.5: Let 7 = L *(R?) and

A= [(—id,—a,) +i(i0;+ @)oo, » (454)
where
a=(Gp -3, G=, j=12, (459
Ox;
and ¢ fulfills the following requirements:
#cC?(R?) is real valued,
#(x) = — Flnlx| + C+ O(|x]) ¢,
(Vo) (x) = —F|x| >+ O0(]x] ' 79, (4.56)

C,FeR,
(A®)' 2, (14 ||°) (Ad)eL '(R?)

€>0 as |x|-> o,

for some 6>0.

Then
H=[(—iV—a)—(=1Yb]|yum,, j=12,
(4.57)
where
b(x) = (da, — d,a))(x) = — (AP)(x) . (4.58)
Introducing the magnetic flux F by
F=02m™'| d*b(x) (4.59)
-
we obtain
A(z)=A= —F, zeC\[0,0), & =F, (4.60)
£,(1) =FO(1), AeR. (4.61)
Moreover, we have
i(A)sgn(F)
= @( — F)dim Ker(4) — 6(F)dim Ker(4 *)
—Nif |[F|=N+¢€, O<e<l,
B [ ~ (N—ll)| if tFT:N, <N:N. (4.62)

Since Eq. (4.62) has been derived in Ref. 58 (cf. also Refs. 8,
24, and 59-62), we concentrate on Eqs. (4.60) and (4.61).
For this purpose we first study a special example (treated in
Ref. 63). Let

— (Fr*/2R*), r<R,

¢(R,r)={_ (F/2)[1 +1In (#/R*],

r>R, R>0,
(4.63)
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and denote the corresponding Hamiltonian in (4.57) by
H;(R), j=1,2. Next, define U,, €>0, to be the unitary
group of dilations in L *(R?), viz.,

(U.g)(x) =€ 'g(x/€), €>0, geL?*(R?).
Then a simple calculation yields

UHR)U;'=€¢H (eR), ¢R>0, j=12.
(4.65)

If we denote by S,,(R), the scattering operator in L *(R?)
associated with the pair (H,(R),H,(R)), then S|,(R) is de-
composable with respect to the spectral representation of
H,(R)P,.(H,(R)) [P,. () is the projection onto the abso-
lutely continuous spectral subspace]. Let S,,(4,R) in
L2(S") denote the fibers of S;,(R ), then Eq. (4.65) implies

S1,(AR) =S8,(€4,R /€) ,
§12(A’R)=§12(62}‘,R/€), A>0.

Applying now Theorem 3.4, we infer that £,,(4) cannot
depend on R > O as long as Fis kept fixed in Eq. (4.63). Thus
Eq. (4.63) implies £,,(1) = £,,(€°4), A >0, which in turn
implies that £, is energy independent.

We will give two methods of computing this constant
value of &,,, the first using heat kernels, the second, resol-
vents.

Method 1: By Eq. (2.4)

(4.64)

(4.66)

Trie H — e~ ) = —tf e "¢, (A)dA
0

= —£,,. (4.67)
Let Hy= — Ay, . We will prove that
lim [Tr(e=* — e~ )] = ~IF. (4.68)
110
This, with the analogous calculation for H,, yields
E=F. (4.69)

—tH,

To prove (4.68), we expand e perturbatively (Du Ha-

mel expansion) and obtain

Tr(e H —e Wy =g + 8, (4.70)
a= —tTr(e ™ Hob),
¢ 4.71)
B= J s Tr(e ~sHope — ¢~ 9 by ds |
0
Since (e ~ ) (x,x) = (4mt) ™, we have
a= —z(47rt)“f b(x)dx = —\F (4.72)
Rz
so we need only show that
IimB=0. (4.73)
t10
By the Schwarz inequality
Tr(e = *Hobe — ' ~9Hip)y < y'/28'/2 (4.74)

y="Tr(e *%pb?) = (87rs)_lf b%dix,
RZ
5= Tr(e~2(t—s)H.b 2)<e2(:—s)|lbnm Tr(e‘z("s”’ob 2)

:e2(t—s)||b||,;(8ﬂ,(t_s))—lf b2d2x, (475)
R’

Bollé et al. 1523

Downloaded 20 Sep 2007 to 131.215.108.54. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



where we have used the diamagnetic inequalities (see Ref. 59
and references therein). Thus

ﬁ<( b2d2x)e+21|yb|lm(877_)~1fsl/z(t__s)——llzds
Rr? (]
(4.76)

goes to zero as 0.

Method 2: This is essentially the Laplace transform of
method 1. Since A(z) = A is independent of z, we can calcu-
late it in the z— oo limit. To do this, we infer from the proof
of Lemma 2.7 that
A(2)=zTr [(H,—z) "V, (H, —2)7 "]

—zTr{[1 + up,(Hy, —2) "o,]  upy(Hy —2) !
XUlzulz(Hz“Z)”zvlz}, zeC\[0,0) . (4.77)
Next, we employ the resolvent equation giving
(Hy—2) "W, (H, —2) ' = (Hy—2) "'V, (Hy — 2) ™"
—(H, —2) "W, (Hy—2z) "Wy, (Hy —2) 7!
—(Hy—2) W (Hy—2) Wy (H, —2) "}
+(Hy—z) "W, (Hy—2)""!
KV (Hy—2) " Wo(Hy, —2)7', zeC\[0,0),

(4.78)
where
Hy= — Aoy, Vin(x) =2b(x),
V,=2iaV +i(Va) +a*—b. 4.79)
Then estimates of the type*”
lw(Hy —2) T 3<C llwll312[ ",
Imz'/?*>0, weL?*(R?), (4.80)
and, e.g.,
|(Hy —2) "'V (Hy — 2) 7V (Hy — 2) 7],
<||(H; _Z)_I/ZH | (H, “Z)_l/zVZH
XN (Ho —2) " Yugy|l; Jv12(He — 2) 7 M,
<Clz| YImz[~"%, |Rez|<C,|Im¢z| (4.81)

imply {cf. Eq. (2.21)] that

lim  zTr[(H, —2) "V, (H,—2z)""]
|z| = o

[Re z|<C,|Im 2|

= lim
1z —

|Re z|<C,|Im z|

zTr [(Hy—2) " '"Wip(Hy—2)7")
= — (27)‘1f2d2x b(x)= —F. (4.82)
Similarly, we get )
M+ u,(Hy,—2) "] (Hy, —2) 7!
Xvptp(Hyp —2) 720,
<Clluy(Hy —2) 7oyl | (Ho — 2) (H, —2) 7'
XMur2(Ho —2) M, |(Hy — 2) 7',
<C'lz| " Yfu(Hy — 2) " 'oy,|| = o(|2] ")
as |z| > o0,

|Rez|<Cy[Im z| . (4.83)

Inequality (4.83) follows from the fact that

1524 J. Math. Phys., Vol. 28, No. 7, July 1987

e
|Re z| <C;|Im z|
which in turn is a consequence of the Hankel function esti-
mate

|H§" (Vzlx —y])|?
<d,+d, (Injx —y))*, Imyz>u>0, (4.85)

and dominated convergence. Relation (4.80) then shows

luyo(Hy — 2) " 'vy5ll, 0,  (4.84)

e
IRe z]<C,|Im z|
where we have again used the resolvent equation and Eq.
(4.84). Thus we have shown that A(xw ) = — & = — F,
which completes the derivation of Eq. (4.60).

The result of Aharonov—Casher®® implies that
dim Ker(H,) — dim Ker(H,) differs from A by at most 1.
It would be nice to know why this is true.

We remark that the result (4.60) has been obtained in
Ref. 24 by using certain approximations in a path integral
approach. The above treatment seems to be the first rigorous
and nonperturbative one.

To complete this discussion, we still mention that the
(regularized) spectral asymmetry, 7,, (), associated with
this magnetic field example (4.5) after replacing H; by
H; + m*>[Qby Q,,, cf. Eq. (3.36) ] can be calculated using
the result (4.61) and Eq. (3.41). One easily gets

meR\{0}, (4.87)

containing in the limit /- 0_ the known result for 7,, (cf,,
e.g., Ref. 2).

N2 (H, — 2) "o, 0, (4.36)

N, (£) = sgn(m)Fe "™, t>0,
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