
JOURNAL OF FUNCTIONAL ANALYSIS 79, 91-102 (1988) 

Topological Invariance of the Witten Index 

F. GESZTESY 

Institute for Theoretical Physics, University of Graz, 
A-8010 Graz. Austria 

AND 

B. SIMON* 

Division of Physics, Mathematics and Astronomy, 
California Institute of Technology, Pasadena, California 91125 

Communicated hy L. Gross 

Received May 21, 1987 

We discuss the Witten index in terms of Krein’s spectral shift function, and prove 
invariance of the Witten index under suitable relative trace class hypotheses. 
0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Let A be a bounded operator from one Hilbert space, Z, to another, 
Z’. A is Fredholm if and only if there are finite-dimensional subspaces, K 
in S and K’ in X’, so that A = 0 on K, A * = 0 on K’, and A r KL is an 
invertible map from KL to (K’)l. The index of such an operator is defined 
by 

ind(A) = dim(K) -dim(K) = dim(Ker(A)) - dim(Ker(A*)). 

It is classical that ind(A) is invariant under compact perturbations, i.e., 

ind(A + C) = ind(A) (1) 

if C is compact. Equation (1) is often called “topological invariance of the 
index.” 

It is often useful to extend this notion to unbounded A’s which are closed 
operators, in which case we need only add Kc D(A), R c D(A*). One can 
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then prove (1) under the weaker hypothesis that C is relatively A-compact, 
i.e., C(A -z))’ is compact for all z in the resolvent set of A. 

A rich class of such unbounded A’s includes those with exp( - tA*A) and 
exp( - tAA*) both trace class, in which case one can prove [7] that, for 
any t>O, 

ind(A) = tr(e-‘A*A) - tr(eBfAa*). (2) 

In the Fredholm case, (2) is independent of t. 
If A is not Fredholm and 2 #X’, there does not appear to be any 

reasonable definition of ind(A), but if %’ = S’, it might happen that while 
neither ePtAA* nor e-‘A*a are trace class, their difference (which one can 
only consider if 2 = 2’) might be trace class, in which case one defines 
the regularized Witten index [13] by 

ind,(A) = tr(eP’A*A - ePrAA*). 

Our main goal in this note is to prove that 

(3) 

ind,(A + C) = ind,(A) (4) 

for a large (but not,too large) class of C. That this is a subtle problem can 
be seen by noting first that ind,(A) is now t dependent and non-integral, 
and by looking at an interesting example: 

EXAMPLE 1.1. Let B(x) be a magnetic field in two dimensions, and let 

a(x)= (a,(x), a2(x)) 

be a gauge potential for B, i.e., B = curl a = 8, a2 - a,a, . Define X on 
L*( R*, d*x; @*) by 

where 

A = (P, -a,) - 4172 - a21 

on X = L*(R*, d*x). Then 

A*A=(p-a)*+B 

AA*=(p-a)*-B. 

If B decays suitably at infinity, e.g., if B has compact support, then 
e - zA*A 

-e --IAA* is trace class. The proper “topological” invariance for 
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ind,(A) is that ind,(A) only depends on (271)-l s Bd*x, the total flux, 
which is precisely what we will prove. (To be more precise, ind,(A) = 
- (2n)-’ JR2 B d*x [S, 63.) However, if B, B are any two B’s (of compact 
support), one can choose a, a” so that (A - A”)(A*A + l))“* is compact; 
thus one cannot hope to prove invariance under relatively compact pertur- 
bations. The key is to prove invariance under suitable relative trace class 
conditions. For mathematical background on trace class theory, see [12]. 

The above example shows the inadequacy of previous proofs of the 
topological invariance of ind, in the physics literature (e.g., [3]) which are 
formal and don’t make precise the conditions on C for (4) to hold. 

In Section 2, we discuss the connection between the regularized index 
and Krein’s spectral shift function. In Section 3, we prove the topological 
invariance. In Section 4, we discuss some open questions. Examples are 
discussed in [6, S]. 

2. KREIN’S SPECTRAL SHIFT FUNCTION AND THE REGULARIZED 
WITTEN INDEX 

There is an intimate connection between the regularized Witten index 
and Krein’s spectral shift function, developed by Birman and Krein [4, 111 
over 25 years ago. To describe Krein’s spectral shift function, we first treat 
the case of bounded self-adjoint operators. We must single out a special 
class of functions. 

DEFINITION. 3 = {f: Iw --, Iw 1 j:oo ((pi + 1) IAJJ)I dp < cx) >. 
Anyf~YisC’.Ifa>landRisfinite,thereisagEYwith 

‘Y(X) = x0, Odx<R. 

THEOREM 2.1 [2, lo]. Let X, Y be bounded self-adjoint operators on a 
Hilbert space so that X- Y is trace class. Then there is a real valued, 
measurable function C(A) on 04 so that 

0) jR It(A)I M < IX- VI,, tr(X- Y) = JR t(A) dA; 
(ii) iff ~3, thenf(A)-f(B) is trace class, and 

(5) 

(iii) {(A) =0 on the complement of the largest interval containing 
fT( X) u a( Y). 

Moreover, < is uniquely determined (a.e.) by (ii) and (iii). 
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Formally, if 5 is continuous from above at A,,, 

W. + 0) = tr IX, - m,iol(W - EC- m,lol( Y)l (formal), 

and if it is continuous from below, 

t(n, - 0) = WE,- ,,~~W) - EC- dJ VI (formal) 

in the sense that there are trace class operators Z, + Et-,,A,I(X) - 
EC- m,b1( Y) strongly with tr(Z,) + ((A, + 0), but these formulae are only 
formal; the examples in [6] yield situations where both sides are well 
deftned but equality fails. 

Y arise naturally since 

f(X) -f( Y) = (27r-‘I2 jR dpf(p)[eipx- eipy] 

and 

so 

eW -e ipY,iP 

I 
‘da e~~~X(X-yY)ei(l-")PY 

0 

Ilf(m-f(y)lll 4(27v2 IlJf- YIl1 [/P IPI IfWl. 

It is easy to now extend this to the unbounded case. 

THEOREM 2.2. Let H, Ho be positive, self-adjoint operators. Suppose that 
e --rH -e -‘no is trace class for some t z=- 0. Then there exists a real-valued, 
measurable function r(A) on (- 00, co) so that <(A) = 0 for A< 0 and 

(i) t jr dA l<(A)1 e-‘” < IleerH - e-‘HoII1, Tr(e-‘H - e-“‘0) = 
- t j? dA <(A) e-“. 

(ii) iff is a function on ( - 00, 03) so that f vanishes for I very negative 
and so that f( -In A) = g(A) lies in ‘9, then (5) holds. 

Moreover, 5 is uniquely determined by (5) and the property that <(A) = 0 
for A < 0. In particular, ePsH - eesHo is trace class ifs > t. 

THJDREM 2.3. Let H, Ho be positive, self-adjoint operators. Suppose that 
(H + 1) Pa - (H, + 1 )--a is trace class for some a > 0. Then there exists a 
real-valued, measurable function <(A) on ( - co, a)) so that ((,I) = 0 for 3, < 0 
and 

(i) a j; dA It(A)I (A+ l)-“-‘S ll(H+ I)-“-(Ho + l)-al(l, 
(ii) zf f is a function on (- co, co) so that f’ vanishes for A very 

negative, and so that g(A) = f (A - “Or - 1) lies in 3, then (5) holds. 
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Moreover, 5 is uniquely determined by (5) and the property that [(I) = 0 
for A c 0. 

Sketch of Theorems 2.2 and 2.3. These are essentially translations of 
Theorem 2.1 using a change of variables. For example, for Theorem 2.2 
with t = 1, take X= eeH, Y=ePH O. By Theorem 2.1, there is a function q 
supported on [0, l] with j: d2 Iq(A)l < cc and 

‘MN’) - g( VI = I,’ W(4 ~(4 (6) 

as long as g lies in 9. Now, define 

5(l) = -de-“) 

and, given f, define 

and one finds that (6) yields (5) for the pair (H, H,). 1 

The uniqueness shows that if the hypotheses of Theorem 2.3 hold (and 
thus those of Theorem 2.2), both r’s are equal. 

In particuar, if A is a closed map from X to S so that e-rA*A - ePtAa* 
is trace class for all t > 0, we can write the regularized Witten index in 
terms of Krein’s spectral shift function by 

ind,(A) = tr(e-‘A*A - e-lAA* ) = -t lam e-‘“<(A) d,l. 

The invariance statement we will prove is an invariance statement for the 
full Krein’s function <(A). 

The Witten index is defined as [13] 

lim ind,(A) = W(A). 
t-m 

If it exists, the Krein formalism lets us relate different regularizations if 5 
has a regularity property. 

THEOREM 2.4. If ((2) is continuous from above at A=O, then W(A) 
exists and 

W(A)= -[(O+). (7) 

Zf (A *A + 1) - ’ - (AA * - 1) - ’ is also trace class, then 

W(A)=Fzctr[(A*A+c)-‘-(AA*+c)-‘1. (8) 

580/79/l-7 
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Remark. Instead of taking c to zero, one can replace c by -z and take 
z + 0 in the complex plane as long as arg z stays bounded away from 0 
(mod 27t). 

Proof: By hypothesis and Theorem 2.2, 

so that for any 6 > 0 

lim t s O” die-” It(n)I = 0. 
I--tot 6 

Since j? d;lte-‘” = 1, continuity implies (7). The same argument using 

tr[(A*A+c)-l-(AA*+c)-l]= -j”d1(i+~)-~Qi) 
0 

proves (8). 1 

Of course, formally 

which explains why - &j(O + ) is a reasonable notion of “index,” but we 
emphasize that there are examples where both sides of this last relation are 
defined but unequal. However, in the case where A is a Fredholm operator, 
we have 

THEOREM 2.5. Let epfA*A - e-*AA* be trace class for some t = to > 0 (and 
hence for ail t > to) and assume A be Fredholm. Then 

ind(A)= W(A)= -QO+). 

Proof. Since A Fredholm is equivalent to A *A Fredholm, we know 
that 

inf aess(A*A) = 6 > 0. 

Our foregoing results imply 

tr(e-rA*A _ ,-IAA l ) = I,’ dlt,(A) = -t f: d1e-“<(2). (9) 

Moreover, we have, for a.e. 1 E R [lo], 

~,(l)=n~‘~~Imlndet[l+(e~‘A’A-e-‘AA’)(e~’AA*-~-iE)-1] 
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and 
Tr[(e-‘A*A-Z)-‘-(e-~AA*-z)-‘] 

The last two equalities, together with the fact that A*,4 and AA* have the 
same eigenvalues including multiplicity, imply that 

t,(A)= t,(iL)=ind(A) for I. E (e-6’, 1). 

Hence {(A) = - tl(e-“‘) stays constant near zero and 

((A) = ((0,) = ind(A) for A E (0,6). 

The rest now trivially follows by splitting the integral on the right-hand 
side of (9) into (0, 6/2) and (d/2, co). 1 

3. TOPOLOGICAL INVARIANCE OF THE REGULARIZED WI-I-TEN INDEX 

Our main goal in this section is to prove the following: 

THEOREM 3.1. Let A be a closed operator from 2’ to W and let C be a 
closed operator from X to 2’ with D(A) c D(C), D(A*) c D(C*). Suppose 
that for some T 2 0: 

(i) C is A-bounded and C* is A*-bounded, each with relative bound 
zero (i.e., C(A*A+u)-‘I2 and C*(AA* +p)-l12 are bounded with norms 
going to zero as u -+ 00). 

(ii) Ce-IAeA and C*e-lAA* are trace class for all t > T. 

(iii) Forsomea<fandO<t<l, 

IICe-‘A*A(I <ctta; IIC *eerAA*I( < ct-‘, 

andforsome l<p<co, /3>0, andO<t<l, 

(ICe-‘A’Al(p < ctPB; IIC *em-IAA*llp < ctpB, 

where II . (IP is the YP -norm [ 123. 

Let A” = A + C. Then, for all t sufficiently large (and for all t > 0 if T= 0), 

(a) exp(-ta*a)-exp(-tA*A) and exp(-taA”*)-exp(-tAA*) 
are trace class, 

(b) tr [exp( - tA”*A”) - exp( - tA*A)] 
=tr[exp(-tA”J*)-exp(-tAA*)]. 
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The point of this theorem is that if X = 2’ and e-‘A*A - e-rAA* is trace 
class, the index is invariant, i.e., the following is immediate from 
Theorem 3.1: 

COROLLARY 3.2. Zf A, C obey hypotheses of Theorem 3.1 with S = 2’ 
and 

a 

(iv) e-rA*A _ e-lAA* . IS trace class for all t > 0, then 

(c) exp( -td*A”) - exp( - tA”A”*) is trace class, 

(d) ind,(A + C) = ind,(A). 

For simplicity, we only describe the proof when T = 0. 
Before beginning the proof of Theorem 3.1, we want to reformulate it in 
supersymmetric way. Introduce the Hilbert space 2 0 .W and operators 

Q=[P, ;*I, s=[“C ;*I, P=[:, ol]. 

By von Neumann’s theorem, Q is self-adjoint and S is symmetric on 9(Q). 
Let Q(n) = Q + IS so Q = Q( 1). One can reformulate hypotheses (i)-(iii), 
which say 

(i’) S is Q-bounded with relative bound zero, 
(ii’) S exp( - tQz) is trace class, 

(iii’) ~JSe-@*~~ < ct-‘; llSe-‘Qzllp < ctp8. 

The conclusions now read 

(a’) exp( - ta’) - exp( - tQ2) is trace class, 
(b’) tr(P[exp( - tQ’) -exp( - tQ2)]) = 0. 

Here is the formal calculation for the key equality (b’): 

$ tr(p[e-‘Q(~)’ - e-lQ*]) 

= _ 
s 

‘tr(pe-“Q(l)’ [Q(l)S+ SQ(A.)] e-(‘-s)Q(A)2) ds. (10) 
0 

But Q commutes with Q2 and anti-commutes with P, so 

tr[Pe-“o*QSe- (t-s)QZ] = -tr[pe-sQZSQe-(‘-s)Q2] (11) 

by using the commutation properties and the cyclicity of the trace to bring 
the Q “around.” This argument is not a proof because one must use some 
care in invoking cyclicity of the trace with unbounded operators, or even if 
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the operators are merely on an infinite-dimensional space. For example, if 
A is the operator on l2 with Ae, = e, +, , then tr(A*A -AA*) = 1. Thus, we 
will need to take care that certain operators are trace class. A key fact 
about cyclicity is the following (see, e.g., Simon [12]). 

LEMMA 3.3. If X and Y are bounded operators with both XY and YX 
trace class, then 

tr(XY) = tr( YX). 

First, we need a technical result to prove that ePrQ2 - erQ2 is trace class: 

~OPOSITION 3.4. Under the hypotheses of (if)-(iii’), 

(a) eC@ - e-IQ2 is trace class for all t > 0, 

(b) Se-tQ(ztZ is trace class for all t > 0. 

Proof By complex interpolation between p = co and the initial p, we 
can increase p and suppose that /l< f. Let 

S,Q = ASQ + AQS + A2S2 = Q(l)2 - Q’. 

Formally 

e-rQU)2-e-rQ2- 
- f' A,(A) 

n=l 

A.(A)=Jhe -‘oQ’(&Q) e-r~Q2 . ..(6.Q)ePfnQ2dtl ..=dt,, (12b) 

where R is the region { ti > 0, i= 1, . . . . n; 0 6 tl + ... + t, < t} and t, = 
t-C;= 1 ti. It is very easy to see that if 

I d [A IISe-uQ2Qll + 1 IIQe-“Q2Sll + A2 IISe-UQ211] du < 1, (13) 

the series converges and gives e-rQ(1)2- ePfQ2. By the hypotheses on 
II Se -UQ211 each integrand in ( 13) bounded by Cu -‘- “2 is integrable, and 
thus (13) holds for t small. Thus, for any 1, (12) holds for t sufficiently 
small. 

We are reduced to showing that each A,(I) and each SA,(I) is trace 
class with C IIA,(n)ll, < 03, C IlSA,(2)l11 < co. We need only do this for 
small t since the results then automatically hold for all t > 0 (for 
se-“+WQ2= (s~-‘Q~)~-~‘Q~ and Theorem 2.1 implies that ( tIePro - em’@ 
trace class} is a half-infinite interval). 
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By hypothesis 

is O(u-‘L-8 ) at u = 0, and so is integrable if p is picked with fi < 4. Pick n, 
so HOP -’ > 1. Then, for n 2 no, one can estimate IIA,(A)jl I and IlSA,(A)ll r. 
Using Holder’s inequality and using (13) proves that 

For n < no, we can break up the region of integration into n + 1 pieces, 
so that on Rj, 
hypothesis, 

tj>t/n+l (take Rj={tilmaxiXp ,,,,,” (ti)=tj}). By 
1 IISe-~Q2Qll r + 3, llQe~‘@*SJI, + 1’ JISe-GQ SII r is bounded 

uniformly in tj 2 t/n + 1, and by (13), the integral of the operator norms 
over the other t’s is finite. Thus, the required result is proven. 1 

Proof of Theorem 3.1. We can write 

p[,-rQO)* _ e-rQ(&)2 ] = - 1: Pe-“Qci’2[(I - A,) Q(A.,)S 

+ (A - lo) SQ(A,) + (A - Ao)2 S2]e-(*-s)Q(~)2 ds. 

By the last proposition, the right side, and so the left, is trace class. From 
the equation it is easy to see that the left side is differentiable at A = lo, and 
so we conclude that (10) holds. Thus, we need only prove (11). 

Define Qa = Q(1 + se*)-l, S, = (1 + sQ*)-’ S. Then we claim that 

tr[pe-"Q2Q,S,e-('-")Q2] = -tr[Pe-"Q2S,QBe-(f--S)Q2]. (14) 

For PQ, = -Q,P, all operators are bounded, the products are trace class, 
and so we can use cyclicity by Lemma 3.3. By taking E to 0, one obtains 
(11) and so completes the proof of the theorem. m 

When to the basic conditions (ik(iii) hold? Here is a sufficient con- 
dition: 

PROPOSITION 3.5. If, for some y < 1, 

C(A*A + l))? and C*(AA* + l)-y 

are bounded and for some q> 0 

C(A*A + 1))” and C*(AA* + l)-V 

are trace class, then the hypotheses of Theorem 3.1 hold. 
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Prooj For any positive operator B, and 0 < t < 1, 

Ile-‘qB+ 1)“jl <cl-‘. 

From this, one immediately sees that 

(a) IICe-‘A*AII <cl-?, 
(b) IICeP’A*AII, dct-“, 

which implies (i)-(iii). 1 

With a little more effort, one needs only suppose (AA * + l))Y~C(A *A + l)-y2 
is bounded for some y, +yz<i and (AA* + 1))“’ C(A*A + 1)-q* is trace 
class to obtain the results of (but not the hypotheses of) Theorem 3.1. 

4. OPEN PROBLEMS 

We have shown in [6] that Krein’s spectral shift function is independent 
of the energy in the example of a two-dimensional magnetic field discussed 
in Section 1. The proof relies on the topological invariance, and the fact 
that scaling transformations yield equivalent Hamiltonians in the sense of 
the operators before and after scaling related by a relatively trace class 
perturbation. Is there any general condition that implies that Krein’s 
function is energy independent? 

It is a result of Aharanov and Casher [l] that in the magnetic field case 
the integral part of QO,) (suitably defined for negative numbers on strict 
integers) is precisely dim Ker(A *) - dim Ker(A). Is there any general 
situation (different from the one considered in [9]) in which this is the 
case? Can one find a proof of the Aharanov-Casher theorem that 
“explains” why the topological index doesn’t differ by more than it does 
from the analytic index? 
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