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1. Introduction 

It is our goal in this paper to give a precise mathematical definition of 
the notion of "resonance" in a class of n-body non-relativistic quantum 
systems and to begin a systematic development of the theory of such 
resonances. While this class of n-body systems is rather small when viewed 
in relation to the class of systems [54] for which most of the  standard quantum 
mechanical lore can be developed, i t  is large enough to include systems with 
two-body Coulomb, Yukawa or Yukawian interactions. The class thus  
includes the systems of greatest importance to physics and, in particular, i t  
includes the  standard non-relativistic model of the  atom. 

The principal line of development in this paper and the major new 
results which we wish to prove concern the  so-called "time-dependent per- 
turbation theory", one of the  two standard perturbation theories developed 
during the earliest days of quantum mechanics. The other standard theory, 
known as  "time-independent" or Rayleigh-Schrodinger perturbation theory, 
has been on a firm mathematical footing since the work of Rellich [46]. 
(Important refinements of Rellich's theory are due to Kato [35] and Sz-Nagy 
[59].) The time-dependent theory on the  other hand has resisted a general 
mathematical formulation for over forty years although there has been some 
partly successful work on the  subject which we will review later in this 
introduction. To avoid the natural confusion between "time-dependent" and 
"time-independent" we will generally avoid the use of the latter term, em- 
ploying "Rayleigh-Schrodinger" and "Kato-Rellich" instead. 

The lowest order terms in the time-dependent pert.urbation series were 
developed in the 1920's as  a means of computing radiative lifetimes of 
excited states of atoms. The quantity which is supposed to be approximated 
by this series is the inverse of the  lifetime, I-, which was assumed to be 
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related to the  observed width, r, of spectral lines by the uncertainty 
principle relation r = &/T (if I? is measured in energy units using the  formula 
E = kw). The most famous later use of lowest order terms in the series is 
probably the  computations of lifetimes in Fermi's theory of p-decay. The 
second order term for the width, which is the  lowest order non-vanishing 
term in the power series, is often known as  "Fermi's Golden Rule" and is a 
standard tool in modern physics. I t  is an  often discussed fact in the physics 
literature that  the usual "textbook derivation" of the  time-dependent series 
is internally inconsistent and there is not universal agreement among 
physicists concerning either the higher order terms in the series or the 
precise quantity which is being approximated. 

We will not discuss either radiative or p-decay lifetimes in this article. 
The dynamics which control the perturbed systems in these cases are believed 
to be those of interacting quantum fields: While there has been important 
recent progress on the  mathematical formulation of quantum field models 
(reviewed in [20]), one is still far  from a precise theory of quantum electro- 
dynamics or of weak interactions to which a perturbation series can be 
compared. Instead we will study a physically realistic model which can be 
phrased completely within the  framework of non-relativistic quantum 
mechanics. In order to describe the mathematical problems and the physical 
ideas involved in time-dependent perturbation theory, let u s  briefly describe 
this model to which we will return in 9 5. 

Let H, be the Hamiltonian of a model helium atom in which we ignore 
the electron-electron repulsion (and also relativistic corrections, corrections 
due to the finite mass of the nucleus and corrections due to electron spin). 
Specifically, H, is an operator on X = L2(R6, 8%).  We write r E R6 as  
r = (r,, r,) with r,, r, E R3 and write -A, for the usual operator (-A, f = 
VA 
k: f on L2(R0), where is the Fourier transform, " is the inverse Fourier A 

transform and lc,, k, are the variables dual to r,, r,). Then (in units with k2 = 

2m = e2= I) ,  

H, = -Al  - 2/r1 - A2 - 2/r2. 
In terms of the natural tensor product decomposition L2(R6) =L2(R3)@ L2(R3), 
H, has the form Ho = h, 01+ 1@ ho where h, is - A  - 2/r on L2(R3). 
The spectrum of h, is well known to be {-l/n";=, U [0, m). Thus the 
spectrum of H, is easy to describe. I t  has eigenvalues a t  { - l /n2- l/m2}~,,=, 
and continuous spectrum in [-I ,  m). Write E,,, for -n-" mm-' with 
m > 12. The eigenvalues El,, are discrete, but the  eigenvalues {E,,,},,, are 
embedded in the  continuum. 



TIME-DEPENDENT PERTURBATION THEORY 249 

Now consider Hamiltonians H(p) = Ho+ p W where W = l/rr, - r, 1 
is the electron-electron repulsion and p is small and real. We are interested 
in the behavior of the eigenvalues E,,, under this perturbation. The Kato- 
Rellich theory deals with the  discrete unperturbed eigenvalues El,,. It assures 
us tha t  there is a function E,,,(p)analytic near p=O, so tha t  El,, (0) =El, ,  and 
so tha t  E,,,(p)is an eigenvalue of Ho+ pW for p small. The Taylor coeffi- 
cients of E,,,(p)are precisely those given by the  Rayleigh-Schrodinger series. 
For m > 1, El,, is a degenerate eigenvalue of Ho so the  situation is more 
complicated but i t  is still completely understood [36, pp. 81-83]. 

The time-dependent perturbation theory is supposed to  describe what 
happened to the  eigenvalues {E,,,},,, embedded in the continuum. For physi- 
cal reasons which we will describe shortly, one expects these eigenvalues to  
"dissolve"; that  is, one expects that  for fixed n, m 2 2, there is an E > 0 
and a B > 0 so tha t  Ho+ pW has no eigenvalues in (E,,, - E ,  E,,, + E )  if 
0 < p < B. Proving this is clearly a fairly subtle problem in the  theory of 
spectra of partial differential operators. The situation is complicated by 
symmetry considerations which we discuss in 3 5, but modulo these consider- 
ations, the  proof tha t  these eigenvalues do dissolve will be reduced t o  quadra- 
t u r e ~ ,i.e. to  proving certain explicit integrals are non-zero (see Theorem V. 1). 

The goals of the  time-dependent theory are much more ambitious than 
merely proving certain eigenvalues dissolve. Consider what we expect to 
happen if we t r y  to  solve the  perturbed time-dependent Schrodinger equation 
$(t) = -iH+(t) with initial condition + ( O )  = Q,,, where Q,,, is one of the  
continuum embedded eigenfunctions of Howith Ho@,,,=E,,,Q,,,. @,,, describes 
a state of the  Helium atom in which both electrons are in excited states. 
Because of the  repulsion, W, between the electrons, one expects +(t) to 
describe a state as t - where asymptotically one of the  electrons is 3 3 ,  

moving freely and the other is bound in a Helium ion. For obvious reasons, 
the states {Q,,,},,, are called autoionixing states. The time-dependent theory 
is supposed to  compute a characteristic lifetime, z, for the  decay of a s ta te  
like @,,, into an  ion plus a free electron. It turns  out to  be a very hard 
problem to  define the  lifetime directly. The textbooks usually assume 
1 (+(t),g,,,) I q a s  an  exponential behavior of the  form exp (- t/z) and derive 
formulae from such a n  ansatz but it is known tha t  such behavior is im- 
possible in an  exact sense and cannot be even approximately accurate for t 
very small or very large. 

A more devious method for defining z goes back to a fundamental 
paper of Weisskopf and Wigner [65]. Their idea involves the  notion of 
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resonance. Suppose we consider the scattering of electrons off Helium ions 
in their ground state a t  a total energy near E,,,. We expect tha t  one possible 
occurrence will involve "capture" of the  electron into the almost bound state 
+,,, which will then decay. Therefore we expect that  as  a function of total 
energy, the scattering, o ,  of electrons off Helium ions (written e + He+-
e + He+) will have a "bump" near E,,,. Such bumps are actually observed 
in this process and in the related electromagnetic processes of photoemission: 
e + He+-He +photon (called an Auger process) and photoionization: photon + 
He -e + He+ (some recent experimental data on autoionizing states may 
be found in [18, 40, 48, 49, 581). The width, I?, of the bump (or "resonance") 
is heuristically just "the uncertainty in the energy of the autoionizing 
state" which should be related to the lifetime, T, by I? = h/z. The bumps 
are actually well approximated by a "Lorentzian line shape", a ( E )  --
c2[(E- E,), + (1/4)r2]-1. The factor of 114 is included so tha t  I? is the width of 
the bump a t  half its maximum height, i.e. so that  o(E, + r/2) = (1/2)o(E,). 
Differential cross-sections also exhibit such Lorentzian line shapes. I t  is 
known tha t  do/dQ is the square of 'a complex transition amplitude (the scatter- 
ing amplitude), f ,  so Weisskopf and Wigner suggest that  a resonance might 
correspond to  a term c[(E -E,)+ (i/2)r]-' in f ,  i.e. to a pole in an analytic 
continuation off  to complex energies. Thus up to a factor of 2, we expect 
the time-dependent series to give the imaginary part of the position of a 
pole in the scattering amplitude. Since the real part of the position of the  
pole also shifts, one would expect there to be a perturbation series for this 
real part also. Physicists often lump the  series for Eoand (1/2)r together as  
natural real and imaginary parts of a single series, also called the time- 
dependent series. 

We will take a still simpler definition of Eoand I? which is one step 
further removed from the physical notion of lifetime. We will follow the 
suggestion of several authors [22, 39, 511 who propose that  one look a t  poles 
in an analytically continued resolvent rather than a t  poles in the scattering 
operator; that  is, we seek poles of (+, (H- E)-'+) in some simple dense 
set of states. Of course we will have to discuss why these poles should be 
thought of as  "intrinsically" associated to  H rather than with the  choice of 

+. Physically, the connection between poles in the resolvent and poles in 
the scattering amplitude is expected on the  basis of certain formal expres- 
sions relating the two [21]. In any event, an  important question, warranting 
further study, is the development of a scattering theory for the systems 
which we will study. Such a theory should be developed to the point where 
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the resonances we will define can be shown to be the only possible poles of 
the  scattering amplitude. For a class of two-body systems, we will accomplish 
this goal in $7.  

Having concluded our discussion of the  basic problem tha t  we wish to 
consider, let us briefly describe previous approaches to the  problem and 
present the plan of this paper. There seem to be two main lines of approach 
that  have been used. One involves the s tudy of simple models where the 
perturbation, W, is of finite rank or compact. Such an approach was initiated 
by Friedrichs [I91 and developed by a variety of authors, most notably 
Howland in a series of papers [24, 25, 26, 281. The Friedrichs-Howland 
approach involves viewing the resonance energy, Eo- (i/2)r a s  the  pole of a 
resolvent. The second main approach involves introducing resonance energies 
as eigenvalues of a non-self-adjoint operator which is associated in some 
manner with the self-adjoint operator Ho+ PV of direct interest. Notable 
examples of this method are the work of Livsic [38] and Grossman [22]; there 
is a summary of the  literature relevant to this approach in [16]. 

Our basic attack involves the  synthesis of these two approaches. Re-
cently, Balslev and Combes [5] have developed a technique invented in the  

study of Regge theory [7, 9, 391 to give a rigorous proof of absence of 
singular continuous spectra in certain n-body Schrijdinger systems. Their 
technique automatically associates a family of non-self-adjoint operators 
with H, and W. Eigenvalues of the  associated operators are poles of a n  
analytically continued resolvent. We review the basic definitionsand theorems 
in the Balslev-Combes theory in 3 2. Once one has the  machinery of Balslev- 
Combes, the theory of perturbations of resonances will be reduced to the  
Kato-Rellich theory and in fact our major convergence results in 3 3 will be 
fairly effortless mergings of the  ideas of Balslev-Combes and those of Kato- 
Rellich. In  3 4, we will verify t h a t  the  lowest order terms in our convergent 
series are precisely those of the  Fermi Golden Rule. We return to  the  
example of autoionizing states in 3 5, thereby presenting explicit examples 
of certain phenomena left open by Balslev and Combes. In  3 6, we use ideas 

of Howland [26] to relate the  phenomena of a n  embedded eigenvalue dis- 
solving to the notion of spectral concentration [36, pp. 471-4761. Finally, 

in 9 7, we discuss some special aspects of the theory in the  two-body case. 

After the  appearance of an  announcement of our major results [56] and 
the preparation of an  earlier version of this manuscript, HowIand [29, 301 
independently arrived a t  some of our results by extending his earlier work. 
While his theory does not appear to  be able to control Coulomb forces (and 
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thus autoionizing states), he answered one question left open in the original 
version of this manuscript. We have decided in this revised version to point 
out to the reader the analogues of our results in [30] and to rewrite those 
sections which involve the question answered in [30]. We have also incor- 
porated some new work of our own 1571 on extending the Balslev-Combes 
techniques. 

I t  is a pleasure to thank E. Nelson and A. S. Wightman for a careful 
reading of the manuscript, and J. Howland for useful correspondence and 
for making his work available to me before publication. 

2. The Balslev-Combes theorems and the definition of resonance 

In this section we will review Combes' definition [12] of dilatation 
analytic potentials and the major technical results of Balslev and Combes 
[5]. This will enable us to standardize notation and also to present the main 
results of their theory unencumbered by the proofs which tend to be a little 
complicated. 

Let To be the free Hamiltonian, - A ,  on L2(R3). Introduce, in the 
standard way, the Sobolev spaces, XI,={+ E D(T,") I 1 1  + - I l l , =  1 (To+1)mi2+-11) 
if m = 0 ,1 ,  2, . . . and X-, as  the completion of X in the norm 1 1  l;r 11-, = 

1 1  (To+ 1)-"I2+ 1 1 .  We will use u(0) to stand for the one parameter family of 
unitary dilatations on L2(R3): 

We will primarily discuss the following class of operators on L2(R3) 
introduced by Combes and which we denote by C,: 

DeJinition. Let a be a positive real number. An unbounded operator V 
on L2(R3) is said to be in C, if and only if: 

(i) D(V) = D(To) and Vis  symmetric. 
(ii) The induced operator V:XI, = D(To)-X is (bounded and) compact. 
(iii) The operators V(B): X+,--X given by V(0) = u(0) Vu(0)-' for B 

real have an analytic continuation (with values in 9 (X+ , ,  "X),the bounded 
operators from 3C+, to X) to the strip {B j j Im 0 j < a). 

In [57] Simon introduced a "form analogue" 3,, of C,. Condition (i) was 
replaced with the requirement tha t  V be a symmetric quadratic form with 
Q(V) = &(To), and 9(X+, ,  X) in conditions (ii) and (iii) was replaced with 
9 ( X + , ,  X-,). C, is a subset of 3,, by a "duality and interpolation argument". 
We will state all our results below for potentials in C,. If one replaces 
operator sums by form sums and "perturbation theory of type (A)" by 
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"perturbation theory of type (B)", all our results extend to Y,. 
We note that  C, contains power potentials, [r-"(0 < a < 312) including 

the Coulomb potential], Yukawa potentials [r-'e-{"(p > O)], and Yukawian 

potentials [r-llWe-"'dp(m)(mo > 0); \ d p  < m]. In Appendix 1,  we precisely 

characterize th::e operators V E  C, which are multiplication by some spheri-
cally symmetric function v(r). 

By (ii), any VE C, is a small perturbation of To in the sense of Kato 
and Rellich [36], so To+ V is self-adjoint on D(To). More generally, let 
Tobe the free Hamiltonian of an n-body system with center of mass, removed, 
i.e. To= -CyillAi on L2(R3n-3).Let V = ~ o , i < j s n - l  Vij(rij) where rij= 

f i  - Fj with ro= 0. Suppose that  when viewed as an  operator on L2(R3,d3rij) 
each Vij is in some fixed C,. Then H = To+ V is a self-adjoint operator on 
D(To). Balslev and Combes have found a beautiful way of continuing certain 
matrix elements of (H- E)-' onto second sheets. 

Let U(0) be the group of dilatations on R3n-3 

(U(0)f)( r )  = e(3n-.3'012f(eor). 
By the hypothesis that  each Vij E C,, V(0) 3 U(0)VU(B)-l = Vij(0) 
has a continuation into a strip {0 1 1 Im 0 I < a}and thus 

has a continuation from the real axis to the strip 1 Im 0 1 < a. In this strip, 
H(0) is an analytic family of type (A). 

Balslev and Combes first of all study the  spectrum of H(0). Let D = 

{Dl, .. a ,  D,} be a decomposition of {0, a ,  n - 1)into k 2 2 clusters, i.e. 
Di n D j  = 0 if i # j;UL1Di = {O, ,n -1). Let HD,be the Hamiltonian 
for the cluster Di i.e. H D ,  = To,,, + VD, where To,,, is the kinetic energy 
of the particles in Di with center of mass removed and VDjis the set  of inter-
actions between particles in Di. A bound state energy of C HDj, i.e. a sum 
of energies E D ,  + + E D ,  with EDian eigenenergy of HDj, is called a 
k-body threshold. The family of all these is denoted 2. Similarly we define 
thresholds of H(0) and denote them as  C(0). Then: 

THEFIRSTBALSLEV-COMBESTHEOREM[5]. Under the assumptions that 
al l  the two-body pote?ztials Vij are i n  C,, the spectrum of H(B)[O < Im 0 < a ]  
i s  explicitly given as (see Figure 1): 

(a) { x  + ec2*r1 al l  x E X(0); r E R+). 
(b) A set oj(0) of isolated points of the spectrum which are eigenvalues 

of finite (geometric and algebraic) multiplicity. Moreover: 
(1) The real eigenvalues and thresholds of H(0) are precisely those of H. 
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FIGUREI. The Spectrum of H(6) 

(a) Discrete eigenvalue of H 
(b) Continuum-embedded eigenvalues 
(c) Thresholds of H 
(d) Resonance eigenvalues 
(e) Complex thresholds 

(2 )  A l l  non-real  e igenvalues  a n d  thresholds (hencefor th  called resonance 
eigenvalues a n d  complex  thresholds) of H ( 8 )  l ie  in the  sector 

where  

Em,, = inf { x  I x E C n R), 

a n d  are  o n l y  dependen t  o n  Im 8 (i.e. t hey  are  i n d e p e n d e n t  o f  Re 8).  
(3) Complex  thresholds a n d  e igenvalues  of  H ( 8 )  wh ich  are  isolated f r o m  

other par t s  of the essential  s p e c t r u m  of  H ( 8 )  are  in o ( H ( 8 ' ) )  i f  Im 0' i s  
s u f i c i e n t l y  n e a r  Im 8. 

R e m a r k s  1. Balslev and Combes only proved the above theorem for 
a < n/4. In [57], the result was extended to arbitrary a. 

2. There is an interesting mathematical problem associated with the  
proof of this theorem. One needs to know tha t  o(A@ I+I @B) = a(A)+o(B) 
for certain unbounded non-normal operators A, B. This is not easy to prove 
even when A and B are bounded [8, 501 and has only recently been proven 
for large classes of unbounded operators [32, 431. 

Thus, one has the following picture of what happens to spec ( H ) as  Im 8 
increases. For Im 8 = 0, there is essential spectrum beginning a t  the  lowest 
threshold of H [31, 671 and a set of bound states some below the continuum, 
some that  may be imbedded in the continuum. It is useful to think of the 
continuous spectrum, not merely as  a half line emanating from the lowest 
threshold, but as  a union of half lines, [k, CQ)for each k E 2.  

As I m 8  "turned up" from 0, the bound states stay fixed but the  con- 
tinuous spectrum swings out into the lower half plane. As i t  swings out, i t  
can "uncover" some complex eigenvalues and thresholds which stay fixed 
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unless they happen to get covered again (see Figure 3). In particular, 
eigenvalues imbedded in the continuum become isolated points of the spectrum 
of H(8). 

FIGURE2b 


FIGURE Behavior of ($, e - iHt$) 
2. 

Combes original discussion of dilatation analytic potentials in the two- 
body case [12, 21 included the idea of analytically continuing matrix elements 
of the resolvent between dilatation analytic vectors onto the second sheet. 
This idea was extended by Balslev and Combes to the n-body case. A 
dilatation analytic vector is a vector, +, for which U(B)$- has an analytic 
continuation into a strip I Im 8 I < a. These are precisely the analytic vectors 
(in the language of Nelson [42]) for the generator D = (1/2)(i.? + ?.;) of 
the dilations. Any vector + = e-lD1up (with p e L2)has an analytic conti- 
nuation to the strip so the dilatation analytic vectors are dense. Let Nu be the 
vector space of all vectors, p, for which CF='=,((i8)"/n!)Dng has radius of con- 
vergence a or more (these are precisely the vectors for which U(8)p has a 
continuation to the strip [42]). 

The second main theorem of Balslev and Combes (which follows easily 
from the first!) is: 

THE SECOND BALSLEV-COMBES Let + E N,.THEOREM. Let Hbe a n  n-body 
system with two-body potentials i n  C,. Then (+, (H- x)-'+) =f(x) originally 
deJined for x e C\spec (H) has a (many-sheeted) continuation onto the union 
of the complements of the spectra of all H(8) with / Im 8 / < a. 

Thus on a dense set, the resolvent has an analytic continuation with 
singularities only a t  real (or complex) eigenvalues (poles) and thresholds 
(branch points). We deJine a resonance energy as a complex eigenvalue, E, 
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of H(0) for some 0 i n  the str ip {e / I Im 0 I < a). The width, F, of the re- 
sonance i s  dejined by F = 2 / Im E /. 

Remarks 1. In the two-body case, this definition was already suggested 
by Aguilar and Combes [2]. 

2. na>,NB with the norm / /  + II", / / /i / / "  + / eaD/i l / V s  a pre-Hilbert 
space, whose completion N;, is a subset of L" If all the potentials are in 
Up,, CB, then To+ V is a densely defined operator on N;; and the resonance 
theory of Grossman [22] based on the scale of spaces N;;c L 2 c  N,* is applicable. 
His definition of resonance energy is identical to ours, although our choices 
of "eigenvector" differ from his. 

Our definition of resonance seems to associate certain complex eigenvalues 
to H = To+ V; one can ask whether they are intrinsic to H alone. The 
answer is clearly no; they are associated to the pair (H, U(0)) of H together 
with the unitary group. The interesting fact is that  these resonance 
eigenvalues can be associated with a pair (H, Ho) in a t  least two distinct 
ways: 

(1) Howland [30] has remarked that  resonances which arise by the 
mechanism of $$3, 4 are intrinsic to the family of operators Ho+ p V, where 
Ho= Tof W has eigenvalues embedded in the continuum and both V and 
W are sums of C, potentials. As we will see in $ 3, Ho+ p V  typically has 
resonances E(P) near these embedded eigenvalues which for p real, (P # 0) 
are complex and thus not eigenvalues of Ho+ pV. What Howland remarks 
is that  for some p complex E(p) will be an actual eigenvalue of Ho+ p V  
and that  the resonance eigenvalues E(p) ( p  real) can thus be thought of as  
analytic continuations of functions which are actual eigenvalues of Ho+ p V  
when p is complex. We return to Howland's interpretation a t  the end of $3.  

(2) In the two-body case, we will prove tha t  these resonances are poles 
of the analytic continuations of a scattering amplitude. Since scattering in 
the two-body case is associated with the pair (H, To), the physical picture 
of $ 1 gives resonance a meaning intrinsic to a pair of operators. A major 
open question involves extending this "scattering pole interpretation" to the 
n-body case. 

Finally, we should mention a few words about resonances in relation to 
characteristic lifetimes in time decay phenomena. Our discussion will be 
formal on this point. Let $- be a state "close" to a resonant state in the 
sense that  (i) $- E N,,, (ii) H(ia) has an eigenvector po and a resonance 
energy E = Eo- iF/2 (iii) +(ia), the analytic continuation of U(e)+ to e = 
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i a ,  is close to  6, in norm. If + is our state a t  time t = 0, then, P(t), the  
"probability of still being on +" a t  time t is the square of 

If + is a sufficiently nice vector in the sense that  d(+, El+) falls off ex-
ponentially where dEl is the spectral measure associated to H, then 

where C is a contour going around o(H) as in Figure 2a. We can now simul- 
taneously rotate Cand replace (+, (H- x)-l+) with ( U(8)+, (H(8) -A)-' U(8)+) 
(Figure 2b) to find 

where r(t) represents contributions from the other poles and the cuts. Thus 

where c is close to 1and R is "small". Here we can see explicitly tha t  P(t) 
is not exponential for large times (because any contribution to R(t) from 
real energy poles or from the  cuts will fall off more slowly than e-rt). And 
since ci(0) is purely imaginary and a(0) = 1, we see P(O) = 0, so P(t) is not 
exponential for small times. But for times neither too small or too large, 
P(t) falls off with a characteristic lifetime .r = I'-'. 

3. Perturbation theory for resonances 

Suppose tha t  V is a sum of two-body potentials in C, for some a > 0, 
and tha t  W is also a sum of two-body potentials in C, for some a > 0. Con-
sider perturbing To+ V by adding pW. It is natural to  want to know if 
the position of resonances of To+ V + p W  are analytic in p for p small. 
That they are is an elementary exercise in Kato's perturbation theory [36]. 
First  we define: 

Dejinition. Suppose Eois a resonance energy for To+ V, i.e. Eois a 
discrete eigenvalue of H(0) for some 8. We say Eois a simple (or non- 
degenerate) resonance if and only if Eois a simple eigenvalue of H(8). 

By the techniques of Balslev-Combes, this definition is independent of 
the choice of Im 8 as long as there isn't a change of sheet (see Figure 3). 
Since W(8) is a Kato small (type A) perturbation of H(0) i t  follows tha t  
[36, pp. 366-3791: 
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( c )  

FIGURE3. Resonance Uncovered and Recovered as Im O Varies 

THEOREM3.1. Let V and W be sums of two-body potentials i n  C,. Let 
Eobe a nowdegenerate resonance of To+ V. Then for p small, there i s  
exactly one resonance of To+ V + p W  near Eo; i t  is  simple also, and i ts  
position, E(p),  i s  analytic near p = 0. I n  particular, the width r ( p )  = -
i[E(p)- E(p)] is  analytic i n  p also. 

Remark. This theorem remains true if "resonance" is replaced with 
"resonance or embedded eigenvalue" in both places where "resonance"appears. 
The interesting phenomenon is tha t  the embedded eigenvalues can become 
resonances. This is the situation we discuss more fully in 53 4, 5. 

We are now able to describe Howland's interpretation of "resonance" 
[30], an interpretation to which we alluded in the last section. Suppose Eo 
is a non-degenerate real eigenvalue of Hoand hence of Ho(0), but that  E(P) 
is a non-real eigenvalue of Ho(0) + p W(0) when p is real; i.e. Im E(p)  < 0 
for ( p 1 small and real. Then for suitable non-real values of p ,  Im E(p)  > 0, 
i.e. Ho(0)+ p W(0) has an eigenvalue E(P) near Eowith Im 0 > 0, and 
Im E(p)>0. Taking Im 0 to 0, E(p) remains a complex eigenvalue of Ho+,B W. 
Thus, Eois an embedded real eigenvalue of Ho. For certain non-real values of 
p ,  with I p 1 small, there is a unique (discrete) eigenvalue, E(p), of Ho+p W 
near E,. The resonance eigenvalue are just the values of the analytic con- 
tinuations of E(p) to the real p axis. Thus, following Howland, one has a 
characterization of resonance eigenvalues in terms of the pair (H,, W). 

Let us return to the general perturbation theory for resonance. In 
general, Eois an eigenvalue of H(0) of multiplicity k, there are exactly k 
eigenvalues of H(0) + p W(0) near Eo(counting degenerate eigenvalues a 
number of times equal to their degeneracy) and their positions are all 
the values of one or more multivalued functions analytic in multisheeted 
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punctured neighborhoods of p = 0 with algebraic singularities of order 
m S k a t p = O .  

In a simplified model of the form Ho+ p W  where Hois self-adjoint 
with a multiplicity two eigenvalue embedded in the continuum and where W 
is a finite rank self-adjoint (bounded) perturbation, Howland [29, 301 has 
shown that  non-integral powers of p can actually occur in the Puiseux series 
for the resonance eigenvalue, E(p), resulting from the embedded eigenvalue. 
This is in sharp distinction to the case of perturbation of a discrete eigen-
value (Rayleigh-Schrodinger theory). In the discrete case, i t  is a theorem of 
Rellich [46] (see also [ l l ,  661) that  if Hoand W are self-adjoint and W is a 
regular perturbation of Ho, then all discrete eigenvalues of Hobecome eigen-
values, E(p), of Ho+ p W, which are analytic a t  p = 0. This result is not 
applicable to Ho(0)+ p W(0) (Im0 # 0) since Ho(0) and W(0) are not self-
adjoint. Howland's example shows that  one can have non-analytic (but 
algebraic) singularities of E(p) a t  p = 0 in degenerate time dependent 
perturbation theory even if Hoand W are self-adjoint. This interesting 
distinction between the time-dependent and the time-independent theories 
seems to have never been noticed in the physics literature. One probable 
reason for this is that  if non-analyticity does occur, i t  occurs only in a fairly 
high order: 

THEOREM3.2. Let E, be a non-threshold, non-isolated real eigenvalue of 
To+ V where V i s  a sum of self-adjoi,nt two-body dilatation analytic po-
tentials. Let W also be a sum oj. self-adjoint two-body dilatation analytic 
potentials. Let E(p) be any resonance energy of To+ V + p W going to Eo 
as  p -0. Then 

E(p) = Eo+ alp -t asp2+ o(pz); a, real; Im a, < 0 . 
Proof. By the general theory, E(p) is an eigenvalue of To(0)+ V(0) + 

p W(0) and is one of several branches E")(p), a ,  Elg)(p)with 

The crucial fact is that  Im E(k)(p)  0 for a11 real p and all branches (by 
the first Balslev-Combes theorem). I t  follows that  a,-1, a ,  a,-I,,-,) = 0; 
a, is real; al,g-l, , al+g-l!p-l)= 0, Im a, S 0. 

Remarks 1. A result of this genre has been proven independently by 
Howland (Theorem 1.2 of [30]). 

2. Howland [30] has examined in detail how the different branches of 

E(k)(p)(dubbed by him a "cluster of resonances") act in concert to produce 
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a resolvent (H(0) + pV(0) - 2)-' analytic a t  p = 0 despite the occurrence 
of non-analytic polar terms (E(k)(p)- 2)-'Plk)(p). 

3. Because of Theorem 3.2, the generic behavior a t  p= 0 of the  resonance 
eigenvalues E(k)(p)for self-adjoint Hoand V with a degenerate unperturbed 
embedded eigenvalue is quite different from the  generic behavior in the 
case where Hoand V are  non-self-adjoint and the  unperturbed eigenvalue is 
discrete and degenerate (which is the other case where non-analyticity at, 
p = 0 can occur). In  the discrete non-self-adjoint, degenerate case, the 
generic behavior is non-analyticity a t  = 0; in fact generically fractional 
powers p"  with 0 < a < 1 occur. However, if no terms of fractional order 
p", 0 < a < 1 occur, there is a simple mechanism for "removing the  de-
generacy in first order" [36, pp. 81-83]. For those non-self-adjoint Hoand 
V where no p" (0 < a < 1) terms occur, the  generic situation is to  have all 
degeneracies removed to  first order. Since Theorem 3.2 prevents fractional 
powers from appearing before order 1 ,  the  generic situation in the degenerate 
time-dependent theory is to have analyticity a t  p = 0. This is illustrated 
in Howland's example where there is a free parameter E in (0, 1). Non-
analyticity only occurs for a single value of E.  

4. The Fermi Golden Rule 

It has been clear for many years tha t  the  Fermi Golden Rule is the right 
answer; what has been unclear is the right question! In the last section, we 
showed tha t  an eigenvalue embedded in the continuum can turn  into a 
resonance (Figure 4) when a suitable perturbation is turned on. If the 
eigenvalue is a t  non-threshold and is non-degenerate, the  width F(p) = 

+i[E(p) - E(P)] is given by an analytic function. Our goal is to  show tha t  
the lowest possible non-zero term for F(p) = b,p" -, is given by the 
Fermi Golden Rule or more precisely by an exact mathematical formula 
which is heuristically equal to the (rather imprecisely defined) physics text  
book version of the Golden Rule. 

THEOREM4.1. Let V and W be sums of two-body potentials i n  C,. Let 
Eobe a non-degenerate non-threshold eigenvalue of To+ V with eigenvector 

+,. For I p 1 small, let E(p) be the resonance of To+ V + p W near Eo; 
E(p) = Eo+ a l p  + a,p2 + . . a .  Let p, be the spectral projection for To+ V 
with the projection onto +, removed (i.e. p, =Paif Eo@ Q;  pa=P, - (llro,.)+, 
if EoE 9). Then 

(a) f (E)  = (Wllro,p!,o-s,E)W+,) i s  C" near E = E,. 
(b) Im a, = n(df /dE)  I,=,,. 
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(a) Continuum embedded eigenvalue 

(b) H(O) rotation 

(c) H(O) + F W(O): Resonance appears 

4.FIGURE A Continuum Eigenvalue Turns into a Resonance 

Proof. For Im B # 0, define 

Let +(B) = P(B)+,. By a result of Balslev and Combes [5; see also 21, +(B) 
has an analytic continuation to the strip / ImB / < a with +(B) = U(B)+, 
for B real, i.e. +, E N,. Since W E  C, and W: D(T,)n N, -+ N,, W?lroe N,. 
[( W+,)(B) = W(B)+(B)]. By the second Balslev-Combes theorem, (m, 
( H  - 2)-' W+,) has an analytic continuation onto a second sheet neighborhood -
of Eoexcept for a pole term (W+,, PoW+,)/(E, - x) a t  E = Eo. Here Po= 
(go, By Stone's formula, 

Thus f is C" as the integral of the imaginary part of an analytic function. 
To compute a, pick Im B > 0 but small. Then (Figure 4b) [36, pp. 77-80]: 

a, = - (2ni)-l f d E  
- E(m),;E-E,I=EE, w(B)(H(B) - E)-'w(B)+(B)). 

Now 

= (m),W(e)(H(e) - E)-'w(e)+(e)) 
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has a pole term (a),W(B)P(B) W(B)q(B))/(E, - E) a t  E = E,, SO a,, which 
is the residue of g,(E)/(E, - E )  a t  E = E,, is given by 

a, = lim,,,, [(?;r(B), W(B)(H(B)- E)-'W(B)+(6)) - Pole term] 
= lim,, ,[(+,, W(H - E, - is)-'+,) - Pole term] 

where we have used the fact that  if Im E > 0, (+(B), W(B)(H(B) - E)-I x 
W(B)+(B)) can be continued to B = 0. I t  thus follows that  

Remarks 1. Howland [29, 301 has proven a similar result for a different 
class of interactions (which includes Yukawa but not Coulomb potentials). If 
E, is degenerate, but the degeneracy is removed a t  first order, he has shown 
that  a simple modified Golden Rule holds where +, in (a) of Theorem 4.1 is 
replaced with the various eigenvectors of PoVPo. A similar result holds in 
our situation and can be proved by using the formula for a, from degenerate 
Kato-Rellich theory [36]. 

2. There is a formal connection between the formula Ima ,  = 

n(d f/dE)I,,,, and the more usual statements of the Fermi Golden Rule. 
If To-t- V has "continuum eigenfunctions" +,(E), then 

so that  formally the second order term for r is 

which is the usual statement of the Golden Rule. 
3. Since I? is analytic a t  p = 0, we have shown that  for small perturba- 

tion, the width of the resonance is given by a convergent perturbation series. 
4. One would like to say that  the higher order terms in our series agree 

with the "usual" terms in the physicists time-dependent perturbation series. 
There is unfortunately great confusion in the physics literature concerning 
the "correct" higher order terms. There seems to be two sources of this 
confusion: first to lowest order in pZ, the imaginary part of the position of a 
pole in the scattering amplitude and the residue of the pole agree in the 
two-body case; many authors are unclear about the object for which they 
are finding a series. Secondly the Fermi Golden Rule is so simple that  many 
authors have attempted to guess the correct high order terms to preserve 
this simplicity; the usual textbook derivation of the Fermi Golden Rule is 
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unfortunately so vague that  if one has one's heart set  on particular higher 
order terms, then one can "justify" them within the vague framework. Of 
course the higher order terms of the real convergent series are complicated 
just as the higher order terms in the Rayleigh-SchrGdinger series are com-
plicated. Our higher order terms agree with those obtained by the physicists 
who have found the correct series! 

5. Autoionizing states in a Helium atom model 

In this section, we apply the  general theory of §§  3, 4 to the case of 
autoionizing states of the Helium atom in the model discussed in 8 1. The 
additional complication in this Helium model where X = LYR" d3r1,d3r2) 
and 

is that  the embedded eigenvalues of H, are degenerate. In fact Em,,= 

-%-2 - m-' has degeneracy (nm)'. There is a venerable technique in the 
physical literature to reduce a highly degenerate eigenvalue perturbation 
problem to a set  of less degenerate problems: namely the use of symmetries. 

In abstraction, suppose A and B are self-adjoint operators on some 
Hilbert space X. Let G be a compact topological group represented by 
unitary operators {U(g)),,,. Suppose A commutes with U(g) (in the sense 
tha t  edtU(g) = Ufg)eilf for all t E R, g E G) and that  similarly B commutes 
with U(g). Let R, be an index set labeling all the irreducible representa-
tions of G. For each a E R, let X, c "X be the maximal subspace of X 
which is left invariant by U(g) and on which U(g) 1 X ,  is a direct sum of 
representations equivalent to the representation, D,, indexed by a. Then 
X = @,,, 3C, and both A and B leave each "X, invariant by Schur's 
lemma. Pick a maximal commutative subgroup M c G. For each a E R, let 
m,"', ..., 112,^,, denote the sets of distinct sets of eigenvalues of the operators 
{D,(g)),, ,[. Let X, ,= {l;~E X, I U(g)q = m,"'(g)q). A and B leave each 
X,,, invariant and the families A + ,k?Br "X,,, are unitarily equivalent for 
i = 1, , k(a). Notice if G is a connected semi-simple Lie group, we can 
replace M with a Cartan subalgebra of the Lie algebra of G, and that  since 
elements of the center of G are constant on "X,, we can look a t  Micent (G) 
rather than M. 

In the concrete situation G = O(3) x Z, where (R, +1) acts on L"R6) 
by ( f 1 ,) = f 1 r l ,  R ; a ( l , - l f l ,  ) = f Irreducible 
representations of O(3) are specified by the eigenvalue, p = +I, of the 
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inversion and a non-negative integer j with dim D, = 2 j  + 1. Thus a E R, 
is specified by a triple (j, p, n) where j = 0,1, is called the total angular 
momenta, p = +I is called the parity, and n = +1 is the eigenvalue of 
r ,  -- r, symmetry. For reasons connected with the total electron spin 
when both electron spin and the Pauli principle are taken into account, 
vectors I) E X, = ej,,X(j,p,-,,are called triplet states and I/P E X, = "Xt= 

ej,,X,j,p,i,,are called singlet states. The maximal abelian group, M, 
modulo the center of G can be chosen to be rotation about the x-axis. The 
Lie algebra of M is just the single operator J, and the eigenvalues of J, on 
3C(j,,,,) are m(j)= -j, - j  + 1, ...,j - 1,j. The spaces X,j,,,,, ,(, ,, and the 
associated indices (a,  m'")) are called channels and the eigenvalues E,,, are 
said to appear in a channel, (a, m("))if Em,,is an eigenvalue of Hor X,,,,,. 
To study the behavior of E,,, under perturbation it  is sufficient to study 
the eigenvalue on each channel in which i t  appears. Since the behavior is 
independent of the eigenvalue of J,, i t  is customary to use a alone as 
shorthand. Channels fall into three classes: 

(i) Non-degenerate resonant channels. While Em,,is a degenerate eigen-
value, i t  will be non-degenerate and embedded in certain channels. This 
always occurs for example when j = n + m - 2. The simple theory of 5 3 
applies here. To prove that  Em,,"dissolves" in such a channel one need 
only prove that the Fermi Golden Rule term is non-zero. Since Hois known 
to have an eigenfunction expansion, this is equivalent to proving certain 
integrals of hypergeometric functions are non-vanishing (see Theorem 5.1 
below). 

(ii) Non-resonant channels. It can happen that  E is an embedded 
eigenvalue of Ho, i.e. a,,,,(H0) = [C, m) with E > 2 ,  but that  E is not 
embedded in certain channels i.e. that  a,,,,(H, 1 X,) = [Z,, m) with Z< 
E < 2,. This actually happens in this autoionizing model. If a =  ( j ,  (- l)j3, 
k l ) ,  then C, = -114, Z= -1 and eigenvalues E,,, with 2 = n 5 m are 
discrete eigenvalues of Hor X, in those channels a in which they occur. 
These channels with p(-l)j  = -1 are called channels of unnatural parity. 
It is known [68, 41 that even a t  the physical value ,8 = 1, there are infinitely 
many eigenvalues with Z= -114 as limit point in these unnatural parity 
channels. 

(iii) Degenerate resonant channels. Finally, there are channels in which 
E,,, is still an embedded degenerate eigenvalue after the reduction due to 
symmetry. In this context, let us be more specific about our claim (in 
Remark 3 following Theorem 3.2) that analyticity a t  ,8 = 0 is the generic 
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situation even for degenerate eigenvalues. Let us fix n,  m and some 
channel (a,m'"') in which E,,, appears as a degenerate embedded eigen- 
value. Let P be the projection (in X',) onto the eigenspace of H, associated 
with the eigenvalue E,,,. Since D(H,) cD( W); Wp -= PWP is an everywhere 
defined self-adjoint operator on the finite dimensional space Ran P. If W, 
has distinct eigenvalues, then the resonance energies E@)will all be analytic 
a t  p = 0. In fact, if +,, . . .,+, are the eigenvectors of Wp, then the lowest 
order terms in -2 Im E,(p) will be ri = 2n(dfi/dE)IE=E,,m with 

Even in the nonigeneric situation where W, has a degenerate eigenvalue, 
there is a well-defined reduction procedure [36, pp. 81-83] whereby the 
degeneracy can still be removed in order 2. 

As an example, consider n = m = 2. There are five channels: 

The channel (1, 1, -1) is non-resonant since (-1)jp = -1, E,,,= -112 and 

The channels (2, 1, 1)and (1, -1, 2 1 )  are non-degenerate. Finally (0, 1,  1) 
is doubly degenerate (this comes from coupling either two p-electrons or 
two s-electrons to j = 0). We expect that this degeneracy is broken in lowest 
order and that Im a, > 0 in all channels other than the non-resonant 
(1, 1, -1)channel. 

Let us summarize the arguments we have just given in an explicit 
theorem which is one of a class of results: 

THEOREM5.1. Let H be the Hamiltonian -A, - A, - 2/r, - 2/r, on 
L2(R" restricted to the invariant subspace X,,,,,,, of functions f E L 2  
obeying: 

(i) The orbit off under rotations ( U,f)(rl, r,)=f(R-'r,, R-'r,) generates 
a subspace on which SO(3) is represented by its Jive-dimensional irreducible 
representation. 

(ii) f(-;,, -;,)
 = f(G,, ;,) = f(G,, G,). Let P be the operator I;, - ;, 1-I 

also restricted to X,,,,,,,.Let +(GI) be an  eigenfunction of h, = -Al - 2/r, 
with ho+ = (- 1/4)+ and with +(;,) = RG,) Y:(8, 9) [R is  a Laguerre function, 
Y: is  a spherical harmonic]. Let be the eigenfunction of h, with h,$ = 

- p  and let 7 be a continuum eigenfunction of h with energy 112 (7 is  a 
confluent hypergeometric function, see e.g. [14, 151). Let 
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I f  I # 0,  then  for all real p su f ic ien t ly  near but not equal to 0 ,  the eigen- 
value of H0 at -112 "dissolves", i.e. for some E, H0+ pP has n o  eigenvalue 
in the interval (- 112 - E, -112 + E). 

Remark.  In physics parlance, + is a 2p  state and g is a I s  state. 

Proof. has an explicit eigenfunction expansion since H, does [14]. 
A simple argument proves that  if we look a t  the subspace X,,,,,,,,,of 
X,,,,,,, on which J, = +2, H0 has continuous spectrum of multiplicity 1 in 
the interval [ - I ,  -114) and an unnormalized continuum eigenfunction a t  
energy, E ,  is P($ @ 7) where P is the projection onto "X,,,,,,,,, and 7 has 
energy E + 1. Since I = (+ @ +, V ( g 7 ) )  and + @ Q E "X,,,,,,,,, the result 
follows from Theorem 4.1. 

Remark.  One might expect tha t  I had been calculated in the physics 
literature but a search of the relevant literature has not yielded an explicit 
calculation showing that  I # 0. This is because the physical value 6 = 1 is 
sufficiently far from p = 0 that  various ad hoc attempts of estimating 
higher order corrections are included (see [ lo]  for a recent theoretical cal- 
culation). In [37],an integral similar to I is calculated (in place of 7 ,  71" a 
continuum eigenfunction of -A - llr, is used; the replacement of 7 by 71" is 
an attempt to estimate "in a physical way" the higher order terms in the 
perturbation series which can be interpreted physical as "corrections" due 
to the electron-electron repulsion). This similar integral is non-zero. The 
methods of [37]could be used to compute I. 

Our analysis in this section can be carried over to atoms with more than 
two electrons. The symmetry group O(3)x Z, is then replaced with O(3)x S, 
where S, is the permutation group on the number of electrons. Channels 
are labeled by ( j ,p, n) where n is now a Young tableau. Only those tableaux 
with two or one rows are relevant to physics since only those channels persist 
when electron spin together with the demand of total antisymmetry are 
added to the problem. 

6. Spectral concentration 

The theory of spectral concentration was originally formulated [60] 
to discuss the Stark effect where isolated levels dissolve in a continuum. 
The theory was further developed by various authors [13, 35, 36, 44, 45, 47, 
61, 621. Applications to a case where an eigenvalue embedded in the con- 
tinuum is removed by a finite rank perturbation have been made by Howland 
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[25, 26, 301. Our Theorem 6.1 is of the genre of his results on spectral con- 
centration and such a result appears in [30]. We state Theorem 6.1 in terms 
of non-degenerate unperturbed eigenvalues but i t  generalizes easily to the 
degenerate case. 

THEOREM Let  V and W be sums  of dilatation analytic potentials. 6.1. 
Let Eo be a non-threshold, non-degenerate eigenvalue of To+ V embedded 
in the continuum. For p small,  and real, let E ( p )  = E.(p) - ir(,k?)/2 be 
the resonance energy of Ho+ V + ,k? W near E. Let  PI@) be the spectral 
projections of Ho+ V + p W ( p  real). Suppose I'(p) = I'zmp2"+ o(pZni1);
r 2# 0 Let I J,1 be a f a m i l y  of intervals centered about E,(p) so that 
I Jp I +0 and limp,, I J p  l/I',,p2" exists and equals a (a  m a y  be inf ini te) .  Let  
Po = PO({Eo}) .Then  

~ - l i m ~ , ~  .Pa(JB)= [ (2 /n)Arctan (a)]Po 

I n  particular, i f  a = m, PB(JI)-+ Po strongly as p +0. 

Proof. Let Q E N,. We will show that 

and conclude the theorem by the density of N, in L2(R3"-3).Let 6 be chosen 
purely imaginary with 0 < Im 6 < a. Then (Ho(0)+ V(6)+ p W ( 0 )- x)-' 
is norm analytic near z = Eo except for a pole a t  E ( p ) .  Thus A(0; P; x) = 

(Ho(6)+ V(6)+ p W ( 6 )  - x)-I - ( E ( p )- x)-'P(6; ,k?) is analytic in ,B and z a t  
p = 0,  z = Eo,and in particular bounded near x = Eo. ,k? = 0. Writing 

using I J p I -0 and the boundedness of A(0;  p,  z)  we see that  

But 

Thus 

Finally (4(6) ,  P(0, 0)4(0))  = ( 4 ,  Po$). This proves the theorem. 

In the language of spectral concentration Ho+ V + ,k? W has spectrum 
concentrated to order 2 n  - 1 if r ( p )  = o(p") and to no higher (integral) 
order. In a natural extension of the language Ho + V + W has spectrum 



268 BARRY SIMON 

concentrated to order p2"-" for any a > 0. This agrees with one's intuition 
viz-a-viz the relation of width and concentration. 

7 .  The two-body case 

In this final section we wish to establish three facts about two-body 
systems with dilatation analytic potentials: (i) If the potentials are "local", 
we wish to prove embedded eigenvalues are not possible. (ii) We wish to 
point out that there still exist local systems with resonances. (iii) For the 
case of local potentials which fall off exponentially, we establish the con-
nection between resonances and poles in the scattering amplitude. 

A multiplication operator, V, is called a local potential. An operator 
V+(x) = \ v ( ~ ,y)+(y)dy with some Hilbert Schmidt kernel, V, is called a 

non-local potential. This terminology is borrowed from the physics literature. 

THEOREM7.1. Let V be a central, local potential i n  some C,(a > 0). 
Then -A + V has no eigenvalues i n  (0, m ). 

Proof. By a result we prove in the Appendix, V is multiplication by a 
function, v, analytic in a sector {x I 0 < I a rg x I < a)with 

lim,,,, I v(x) I = 0 . 
a r g  z < a - r  

Let Y< cos a. Then for z real v(w) is analytic in {w I I w - z I <y I x I}. Thus 

as I x I -m . We conclude r(dv/ar) and v -0 a t  m. The result then follows 
from a theorem of Agmon and Simon [I, 531. 

Remarks 1. Since o,,,,(-A+ V) = [0, m), -A +V has no non-threshold 
eigenvalues in the continuum. 

2. For non-local C, potentials, the analogue of Theorem 7.1 is false. 
For pick + E N , ~ D ( H , )with I I + l I  = 1. Let E =  (+,(-A)+). Let V =  
- ( + , . ) ( - A - a + + ( ( - A - E ) + ,  .)+. T h e n V ~ C , a n d ( - A + V ) + = E + .  

3. We conjecture that  n-body systems with two-body central, local, 
dilatation analytic potentials have no bound states in (0, m) for any n. 
Such results are known in several special cases [3, 63, 641. The best way of 
going about proving this conjecture would seem to be to find a proof in the 
two-body case that  depends more directly on the analyticity in scaling. 

One can still construct two-body systems with resonances by using 
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suitable Bargmann potentials [6]. Let V be a central local two-body potential 
in C,. Any solution of the radial SchrGdinger equation extends to the sector 
{ x  / / arg z I < a}by Poincar6's theorem. If the Jost function vanishes a t  some 
point k with Im k2< 0, i t  is not hard to see tha t  the regular solution, f(x) 

of energy k2 has the property that  1 f(re'9 I2dr < w so long as / arg k2 1 < 
0 


p < a. In particular k2 is an eigenvalue of -e-"A + V(0) if a > Im 0 > 
1 arg k2 1 .  In this way, Bargmann's construction yields two-body systems 
with resonances in the sense defined in $2.  

Finally, let us consider resonances in two-body systems as  poles of an 
analytically continued scattering amplitude. We will suppose our potential 
falls off exponentially. Under such assumptions, second sheet continuations 
of the scattering amplitude has been discussed by a variety of authors 
[17, 23, 27, 41, 52, 541. 

We note first that  under the condition tha t  V = e-"'W with W E L2, 
one can rigorously prove the connection between the "T-matrix" and scatter- 
ing 133, 34, 541: 

(a) I f f ,  g are in a suitable dense set  
.-

(f, Sg) = (f ,  g) - 2s i  \dkdkr ~ ( k ,  k')6(k2- kr2)f(k)$(k'). 

+ 

- lim,,, 1 eik*'V(r)G(r, r', kt' + i ~ )  -1V(Y' )~-~~ . '  

where G(r, r', E) is the kernel of the Carleman integral operator (H- E)-'. 
Thus: 

THEOREM7.2. Suppose V = e-"'W where W(r) is  a two-body central 
dilatation analytic potential i n  Cg. Then the forward T-matrix T(k, k) = 

F(k) has a ?.ileromorphic colztinuation into the region 

R = {k I m k  > 0) U 1 1k / a r g k  < -,P 
2 

I m k  < a 

The only possible positions for poles of F i n  R are a t  resonance energies as 
defined i n  92. 

Proof. The theorem follows by a simple superposition of the method of 
Grossman-Wu 1231 and the continuation techniques of Balslev-Combes [5]. 

APPENDIX.Two-body central dilatation analytic potentials 

Our goal here is to characterize central, local dilatation analytic two- 
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body potentials. The possibility of two-body potentials other than those 
allowed by Theorem A.1 was left open by Balslev and Combes. 

THEOREMA.1. Let  v be a funct ion of 1;
 I 
=r so that the operator of mul t i -  
plication by v on L2(R3)i s  in C, for some a > 0. Then  v i s  equal, a.e., to 
the restriction to [0, W )  of a funct ion,  v, analytic in {x 1 I arg  x / < a} w i t h  
v(x)-0 as / x / - w u n i f o r m l y  in a n y  sector arg x 5 p < a. 

LEMMAA.1. Let f e L2(R3)w i t h  f E D(TO).Suppose f i s  central and that 
( T o+ 1)U(0)f  has a n  analytic continuation to { B  1 Im 0 / < a} w i t h  a < n/4. 
Then  f i s  equal, a.e., to a funct ion,  F, analytic in {x / 1 a rg x 1 < a}. 

Proof. Let g, = ( T o+ l )U(B) f .  Then ( T o+ 1)-'g, e D(Ho)  and thus is 
a bounded continuous function [36, pp. 301-3021. Let 

F(x )  = [(To+ l)-'gln,](x0) 

where xo = (1,0,  0)  E R3. F is analytic in {x I 1 arg z 1 <a} since F ( z )  = 

( 2 ~ ) - ~ "1 eip'.o((p + 1)-'g^,(p)d3p where 8, is the Fourier transform of go. 

Since f is continuous and bounded, F(x )  = ( U(1nx) f ) ( xo )  = f (xx,) = f ( x )  for 
almost all real x. 

LEMMAA.2. Let  h e L2(R3)SO that h i s  central and h E N, w i t h  a < n/4.  
Then  h i s  equal a.e. to  a func t ion  H analytic in { z  I I arg  x 1 < a}. 

Proof. Let f = ( T o+ 1)-'h. Then 

is analytic in { O  1 I Im 0 1 < a}. By Lemma 1 ,  f is analytic in the sector 
{z  I 1 a r gz  1 < B}.  Since f is C" in R3\{O},h is given as ~ - ~ ( a x ~ / a x ) ( a f / a z )if 
x f 0. Thus h has an analytic continuation into the sector. 

LEMMAA.3. Let  v obey the conditions of the theorem. Then  v i s  analytic 
in { z  1 Iargx I < a}. 

Proof. (r2+ I)-' E L2 and in D ( T o )cD ( V ) .  Let h( r )  = v(r ) (r2+ I)-'. 
h e L h n d  U(0)h= V(B)[e2er+ I]-' is analytic in { B  I I arg 0 1 < a}. By Lemma 
A.2, h has an analytic continuation to {r 1 I a r g r  1 < a} so v = (r2+ 1 ) h  has 
a continuation also. 

LEMMAA.4. Let 3 be a f ami l y  of C" funct ions of compact support 
w i t h  common support and w i t h  sup,,^ 1 1  ( - A  + l ) f  ] I 2  < m. Then  for a n y  
a < n /4 ,  ( T o  + 1)U ( 0 ) - y-0 weakly as Re 0 -+ rn u n i f o r m l y  o n  3 and 
un i fo rmly  in { B  I I Im 0 1 < a}. 

Proof. An elementary computation. 
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LEMMAA.5. Let F be as i n  Lemma A.4. Let V e  C, and let p < a < 
n/4. Then 

uniformly for f E F and / I m 6  < a. 

Proof. V(ir)(T0+ I)-' is compact and uniformly continuous for Y E 

[ - B, 61. Since (To+ 1)U(6)-Y -0 uniformly in f is 6 -- oo (6 real), 

6, real, goes to 0 uniformly in f and Y. But then since U(6') is unitary, 
U(B)V(ir)U(B)-tf- 0 in norm uniformly in f and Y. We conclude tha t  
V(6)f -- 0 in norm. 

Proof of Theorem A.1. Analyticity is proven in Lemma A.3. To prove 
v(z) -0 as  z / - uniformly in sectors, let 0 < p < a be given. Pick a 
closed disk about w = 1 inside the sector {w 1 a rg  w / < a - p}, say of 
radius r,. Then for any function f analytic in the sector 

where g1/?s positive, C", with support in (r0/2, r) obeying I g(l w - 1I)rdr = 

1. In particular 

Writing w = re is  z 1 = z'eis 

Thus v is an integral- of expectation values of V(ln 1 z 1 + i6' + i$). By 
Lemma A.5, I v(z) / 0 uniformly in the sector in question. 
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