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Constructing Solutions of the mKdV-Equation 
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Using commutation methods (i.e., N = 1 supersymmetry) underlying Miura’s 
transformation, an explicit construction of solutions of the modified Korteweg- 
de Vries equation, given a solution of the (ordinary) Korteweg-de Vries equation, 
is provided. 0 1990 Academic Press, Inc. 

Under the hypothesis 

V, 4 E Coo(R2) real-valued, 8: V, a;+ E L”(R’), n=O, 1 (H.l) 

we are interested in-constructing solutions 4 of the modified Korteweg-. 
de Vries (mKdV-) equation 

mKdV(~) := #r - 6$2+X + $,, = 0, (t, x) E w (1) 

given a solution V of the Korteweg-de Vries (KdV-) equation 

KdV( V) := V, - 6VVx + Vxxs = 0, (I, x) E w. (2) 

A key step in our analysis is Miura’s transformation [14] 

and his identity 

KdV( Vj) = [2# + (- l)‘a,] m~dV(#), j= 1, 2. (4) 
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As is o3vious from (4), whenever (b satisfies the &Ml/-equation (1 ), then 
P’, = 4’ + ( - 1)’ &.,, j= 1, 2, will satisfy the K&‘-equation (2). Our main 
objective in this paper is to reverse this process, i.e., given a solution V, of 
(2), coitstruct 4 and I’, that satisfy (l), (2), and (3), respectively. As will 
turn 01 t later, Eq. (3), being a Riccati-type equation for 4 given V,, will 
have rumsingular solutions 4 only if the associated Schrodinger operators 
Hi(t)= - Jt+ Vj(l,.), j= I, 2, are nonnegative. We first recall [12, 171 

THEOREM 1. (i) Assume V satis$es (H.l), Vt(t,.)~Lm(R), t~lR and 
the Kdl’-equation (2). Then the SchrBdinger operator H(t) in L2(R) 

H(t)= -a;+ V(t,.), 22qH(t))=P(R), tc?lW (5) 

is un~ta~~~y equivalent to H(0) for all t E R; i.e., there exists a family of 
unitary o~erfftors U(t), t E R, U(0) = 1 in L’(R) s.t. 

U(t)-‘H(t)U(t)=H(O), tEEa (6) 

(ii) Assume 4 satisfies (H.l), ~,EL~((W~), gi,(t,.), 4,(t,.)ELm(R), 
t E IR a,zd the m~dV-equation ( 1). Then the Dirac operator Q,(t) in 
LZ(~}~~~Z 

Q,z(t)=[~t, ‘AT], ~(Q,(t))=H’(~)O@‘, (m, t)ER2, (7) 

~‘(t)=J.r+#(t,-), g(A(t)) = H’(R), tER (8) 

is unitu.~~y equ~vaient to Qm(0) for all t E IR; i.e., there exists a family of 
unitary 9perutors W,(t), tE US, W,(O) = 1 in L’(R) @ C* s.t. 

K,(t)-’ CL(t) f+‘,(t) = Q,(O), (m, t)E R*. (9) 

Prooj’ It is well known, that the Lax pair 

L(f) = ff(t), 

B,(t)= -48:+6V(t,@,+3V,(t,.), 9(B,(t))=H3(R), tfi?lR (lo) 

togethet with 

; at) = rBv(Q, UGI, f U(t) = Gus, WI = 1, tf?iR (11) 

proves (6) (see, e.g., [7, 12, 131). In the Dirac case, By(t) in (10) goes into 
Cl71 

B (02-(br)(t)~t3~~z+),)(t), tE[W (12) 

and L(r I into Q,(t). 1 
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Remark 2. The fact that 

Q,(t)2 = H1(tb+ 
m2 0 

H,(t)+m* 1 on H*(R)@@*, PER, (13) 

where 

zf,(t)=A(t)*Fl(t)= -a;+ V1(t,-) on H*(R), t E R, 

H*(t)=A(t)A(t)*= -a;+ V*(t,.) on H*(R), te:[W 
(14) 

and Vj, j= 1,2, are defined in (3), together with Theorem l(ii) explains 
why commutation (or N = 1 supersymmetry) underlies Miura’s transforma- 
tion (3). This has first been exploited in [ 1,6]. Commutation for one- 
dimensional systems; i.e., the factorization into A(t), A(t)* in (14), has a 
long history (see, e.g., [6,9] and the references therein) and has recently 
become popular again in connection with supersymmetric quantum 
mechanics (cf., e.g., [2-5, 8, 11, 181 and the references therein). Equa- 
tion 13 also explains the direct sum in (12). 

In order to start with our analysis we assume from now on that V and 
H(t) defined in (5) satisfy the hypothesis 

(i) V satisfies (H.l) and the K&‘-equation (2). 

(ii) H(t) >O for some (and hence for all) TV R. 
W.2) 

(H.2) (ii) is motivated by (3) (13), and (14) since obviously H,(t) 20, 
j= 1,2, t E R. As discussed in [9], one can deal with semibounded 
Schrodinger operators H(t) 2 c, c E R, by changing (3) into Vj = 4’ + 
(- 1)’ 4, - c, j= 1, 2, and using an additional Galilei transformation 
(t, x) --f (t, x - 6ct), c E [w in V( t, x). 

By Theorem l(i) or Lemma 3 below 

inf[a(a(t))] = inf[o(H(O))] > 0, tER. (15) 

A prominent role in our construction of solutions 4 of (I) is played by 
distributional, zero-energy solutions $(t) of H(t) 

(H(t)ti(t))(x) = 03 (t, x) E [w* (16) 

(i.e., $(t,.), +,(t,-)EAC,,,([W), tEIW). We start with 

LEMMA 3. Suppose (H.2) and let $,,E Cm(R) be a real-valued, distribu- 
tional solution of H(O) +,, = 0. Then H(t)+(t) = 0, t E Iw, has a unique, 
real-valued, distributional solution $ E C m ( W*) that satisfies 

ICl,(t, xl = -41L,,,(t, xl + 6T/(t, xl ICl,(t, x) + 3V,(t, x)$(t, x), (17a) 
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or equ valently, by using Ic/,. = V+, 

944 xl = 2vtt, xf $J,tt, x) - vxtt, x)$(4 xl, (t, x) E R2, (17b) 

with 

iHO% xl = $%AX)~ XE R. f17c) 

In particular, if #(t), q(t), t E R, are two such zero-energy solutions of H(t), 
thepl their Wronskian 

W$(t), i&t)) = W($%> 5;d (18) 

is indel kendent of (t, x) E Iw’. 

Proc. f: Consider the following Volterra-type integral equation 

$(i,x)=c(t)+d(t)x+/;dx’(x-x’)V(t,x’)$(t,x’), tt, xl E R2, 

c, d E C”(R) real-valued. (19) 

Iteratirg (19) one infers ilf~Ccn(R2), ~(t)~(t)=O, and 

~tx.x- wt = Vd- (20) 

Similarly, Y defined by 

ytt> xl := 2vt4 xl $,(t, xl- V,(t, x)$(4 x), (f,X)EuP (21) 

also sai i&es 

Y/,, - VY = v*$l. (22) 

Thus h(t)[ Y - @,I = 0. From 

$A4 0) = i(t), $t,(& 0) = 4th 

ytf, 0) = 2f’(f, 0) d(t) - V.xtf, 0) c(t), (23) 

!‘/,(t,O)= V,(t,O)d(t)+ [2V(t,0)2- V,,(t,O)]c(t); te[W 

we finally infer $, = Y (and hence (17)) iff 

i(f) [ I[ - VA& 0) 2vt, 0) c(t) 
d(t) = 2V(t, 012 - Vx,(t, 0) Vx(t, 0) I[ 1 d(t) ’ 

teO;Q. (24) 

Equation (18) finally follows by a simple calculation using ( 17), 
N(t)$(t)=O, H(t)J)(t)=O, tE88, and (2). 1 
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Next we state 

LEMMA 4. Assume V satisfies (H.l) and suppose there exists a 
O<~EC~(R*) with H(t)$(t)=O, tE[W. Define 

44 x) := -$x(4 xYll/(t, x), (t, x) E [w*. (25) 

Then 4 and v := 4’+ 4, satisfy (H.l). 

Proof. As shown in Corollary X1.6.5 of [lo], VE L”( lR*) implies 

qkLyR*). 

Since V= d2 -d,, we infer #x E L”(lR*). The rest is trivial. 1 

Concerning positive, zero-energy solutions of H(t) we recall 

LEMMA 5 [13]. Suppose (H.2) and assume $E Cm(R2) 
H(t)ll/(t)=O, tE[W, and (17). Zf+(t,x(t))=O, tE[W, then x solves 

i= -2V(t, x), tER. 

Conversely, if Ic/( t,, x0) = 0 for some (t,, x0) 6 lR*, solve 

i= -2V(t, x), t E R, x( to) = xg 

to get Il/(t, x(t)) = 0, t E IR. In particular, if 

t/+(0, x) > 0, x E IR then $(r,x)>O, (t,x)ER*. 

Proof: Equation (27) is obvious from d$ = 0. On the other 
x(t), t E R, is the unique solution of (28), then 

d$=$,dt+$,dx= -V,t,bdt 

(26) 

satisfies 

(27) 

(28) 

(29) 

hand, if 

(30) 

yields $( t, x(t)) = 0, t E R, since $( t,,, x,,) = 0. Finally, if $(O, x) > 0, x E R, 
assume that $(to, x,,) = 0 for some (to, x0) E R*. Then, propagating $ from 
to to 0 in time, +(O, x(0)) would be zero as discussed above. This 
contradiction proves the last statement. 1 

Before we state our main theorem we would like to mention a classifica- 
tion of Schriidinger operators originally introduced in [ 161 (see also [ 151). 
In the special case of one-dimensional, nonnegative Schrodinger operators 
this classification reads as follows: H(0) > 0 is called subcritical iff there are 
two linearly independent, positive, distributional zero-energy solutions 
Iclo, f of WO), i.e., 
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H(0) is called critical iff H(0) > 0 and there are not two linearly independ- 
ent, po:;itive zero-energy solutions of H(0); i.e., H(0) is critical iff H(0) has 
a unique (up to multiples of constants) positive, distributional zero-energy 
solutior I. 

Corn ,ining this classification and Lemma 5 we get 

LEM~ A 6. Suppose (H.2). Then H(t) is subcritical (resp. critical) for all 
t E Iw 12 H(0) is. Now we are ready to state our main result. 

THEOREM 7. Assume V satisfies (H.l) and the KdV-equation (2). Sup- 
poseH(O)~OandassumeO<II/.EC”([W2)tosatisfyH(t)~,(t)=O,tEIW, 
and ( 17). Define 

$,(t, x) :=2-W -a(t)] I/-(t, x)+2-Q +a(t)] $+(t, x), 

4,(t, xl := -$c7,,(4 x)N,(t, x)5 (32) 

c,ct, x) := 4,(t, xl2 + d,,,(t, xl; (t, x) E R2, 

where o Iw + [ - 1, 11, ok Cm(rW). Then 4, and P, satisfy (H.l). In addition, 

mKdV(+4,)=0, KdV(rO)=O iff b=O or W($-,II/+)=O. (33) 

Proof Let #:=--$,/+, O<$EC~(~W~), H(t)$(t)=O. Then a 
straighttorward calculation yields the identity 

Taking b = tiO in (34) and taking into account (17) for II/ * , finally gives 

mKdV(d,)= -$,‘tiW($-, $+)/2. (35) 

In particular, if mKdV(4,) =0 then KdV( rc) = 0 since V and r0 are 
connectt d via commutation and hence (4) applies with V, = V, V, = vg,, 
4=4r I 

Remark 8. Iff H(0) is subcritical, Theorem 7 yields a one-parameter 
family o’ solutions 4,, cry [- 1, l] of the mKdV-equation (1) (choose $+ 
s.t. W($ _, $+) ~0). Iff H(0) is critical, we necessarily have W($- , $+) 
= 0 and hence (32) yields a unique solution of (1) (since 4, in (32) is then 
actually independent of G). Moreover, since 4, = - $b,X/$0, u E [ - 1, l] is 
the genel,al solution of the Riccati equation 4, - 4’ = - V on Iw, the explicit 
construe ion (32) yields all smooth solutions 4 of (1) related to V via 
v=qi2-q5x. 
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Remark 9. Given 4, in (32), H(t) is recovered from $0 via 

H(t)= -a;+ V(t,.)=A,(t)*A,(t), tfs[W, 

AT(t) = 8, + 4,(4.), tER, (36) 

ut, xl = 4,(t, xl’- do,x(t> x), (t, x) E UP. 

Similarly, A,(t) := -8; + VJt, .), t E R, is recovered from 4, via 

ii,(t)= -aS,+ V&)=A,(t)A,(t)*, tER, 

m x) = ti,(t, xJ2 + d,,,(t, xl, (t, x) E w 
(37) 

illustrating again the role that commutation plays in our approach. 

Remark 10. As shown in [9], Theorem 7 actually applies to the entire 
hierarchy of higher-order (m) K&-equations. 

Theorem 7 has been applied to soliton-like solutions in [9] in full 
details. Special cases of finite-zone, periodic solutions and solitons relative 
to such a periodic background together with an extension of the above 
framework to certain singular solutions of (1) resp. (2) are also contained 
in [9]. A complete treatment of these cases is in preparation. 
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