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Relativistic Schrodinger Operators: 
Asymptotic Behavior of the Eigenfunctions 

RENA CARMONA* AND WEN CHEN MASTERS* 

BARRY SIMON+ 

Nonrelativistic SchrGdinger operators are perturbations of the negative Laplacian 
and the connection with stochastic processes (and Brnwnian motion in particular) 
is well known and usually goes under the name of Feynman and Kac. We present 
a similar connection between a class of relativistic SchrGdinger operators and a 
class of processes with stationary independent increments. In particular, we 
investigate the decay of the eigenfunctions of these operators and we show that not 
only exponential decay hut also polynomial decay can OCCII~. 1 Iu40 Ac.Kirmc 
Prcr\. Inc 

1. INTROT)UCTJON 

The motivation for the present study is to be found in the desire of a 
better understanding of the spectral properties of some pseudo-differential 
operators which occur naturally when one tries to include relativistic 
corrections to the mathematical theory based on the SchrGdinger operator, 

where 

H = H,, + V, 

H,, = ~~ A 

(I.1 1 

(1.2) 
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and where V is the operator of multiplication by a function V. The latter 
corresponds to the quantization of the potential energy. For example, in 
the case of the N-body problem one has 

where Z is the charge of the nuclei, N is the number of electrons, M is the 
number of nuclei, ~3, , . . . . .rIr are the positions of the M nuclei in R’, 
.Y , , . ..1 .y.v are the positions of the N electrons also in R’, and 
.Y = (I’, , . . . . y,\, , 9 , , . . . . s,~). Most of the mathematical treatments deal with 
the case of nuclei at rest (or with infinite mass). In this case, one uses 
x = (s,, . . . . x,,) and one thinks of J’, , . . . . J’,, as parameters. 

The operator H,, corresponds to the quantization of the kinetic energy 
and is usually called the free Hamiltonian. It is the sum of the kinetic 
energies of the various electrons, but for all mathematical purposes we can 
assume that it is the negative Laplacian in n dimensions where n = 3N. The 
operators H and H, are well defined on the space of smooth functions with 
compact supports and they are investigated as unbounded operators in the 
Hilbert space L”(R”). The classical form of the kinetic energy of a particle 
is p2/2m, where p denotes the momentum of the particle in question and nr 
its mass. The quantization procedure takes the classical momentum p into 
the differential operator -iV. This explains why the Laplacian is, up to a 
multiplicative constant. the quantum analog of the kinetic energy. In other 
words, H,=F(-rV)=F(p) with F(p)=$=pT+ ... +pz. Relativity 
theory tells us that such a choice for the kinetic energy is appropriate at 
low energies only. Moreover, the kinetic energy should be proportional to 
the modulus of p rather than its square for high energies. Actually, the 
classical energy for a relativistic particle of mass m is 

and this justifies the choice: 

H,,=~~-m=~~-n+mZ-nl, (1.4) 

for its quantum analog. The point of the subtraction of the constant m is 
to make sure that the spectrum of the operator H,, is [0, XI). This explains 
the terminology of relativistic Schrtidinger operators for the operators of the 
form (1.1) with H, given by (1.4). Note that we will abuse this convention 
and use this terminology for operators given by functions F more general 
than the one we just discussed. 
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There exists an important literature on the spectral properties of such 
relativistic Hamiltonians. Most of it has been strongly influenced by Lieb’s 
investigations on the stability of matter. See, for example, Lieb [21], 
Weder [33,34], Herbst [ 171, Daubechies and Lieb [ 131, Conlon [lo], 
Daubechies [ 121. Fefferman [ 1.51, Fefferman and de la Llave [ 141, and 
also Lieb and Yau 122 1. 

One of the fundamental mathematical problems in proving the stability 
(or instability) of matter is to estimate the intimum of the spectrum of the 
operator H when the numbers N and/or A4 become large. In this 
asymptotic regime, the free Hamiltonian H,, = F(p) given by (1.4) can be 
abandoned and replaced by H, = IpI. Indeed, the difference between these 
two operators remains bounded and the asymptotic result needed to prove 
the stability of matter can be proved using either one of these free 
Hamiltonians. Obviously, the scaling properties of the function F(p) = 1 pi 
attracted early investigations of the corresponding pseudo-differential 
operator H,,, especially because its scaling is related to the scaling of the 
Coulomb potential. Also, very fine estimates on its Green’s function are 
available. See, for example, Stein 1321. These are the technical reasons why 
E(p) = lp( is preferred to V/1$2 + 112 7 - ix 

A deep understanding of the mathematical properties of the operator H 
for N and M fixed is of crucial importance in proving the estimates relevant 
to the stability of matter. But it is also a very interesting mathematical 
problem of its own. In this respect, if one is ready to ignore temporarily the 
important scaling property, the operator H, = Jp’+ uz2 -m is in many 
ways more regular and more attractive than the operator Ho = IpI. Indeed. 
its Green’s function decays exponentially instead of polynomially, and 
as we are about to demonstrate in this paper, the eigenfunctions of the 
corresponding Schrodinger operator (1.1) decay exponentially instead of 
polynomially. 

In fact the exponential decay of the eigenfunctions corresponding to 
isolated eigenvalues played a crucial role in many of the investigations of 
the spectral properties of the nonrelativistic Schrodinger operators (I. 1). 
(1.2) and one expects the same to happen for its relativistic counterpart 
(1.1 ), (1.4). Surprisingly enough, except for the isolated work of Nardini. 
the problem of the decay of the eigenfunctions of these operators has not 
been investigated. See Nardini [23, 241. One of the goals of the present 
study is to fill this gap. 

We now describe the connection of the above problems and the theory 
of stochastic processes. The notations and the terminology we use 
throughout the paper are introduced along the way. As explained above. 
there are functions F(p) which are natural candidate for the definition of 
the quantum analog of the classical kinetic energy. But it is very interesting 
from a mathematical point of view to investigate the largest possible class 
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of such functions F(p). See for example Herbst and Sloan [ 1 S] for a func- 
tional analytic study in this spirit. A natural requirement that one should 
have on a free Hamiltonian H, = F(p) is that it generates a semigroup 

(e ‘H(r; t 3 0) of positivity preserving operators on L2(R”). See, for exam- 
ple, Reed and Simon 1271. It is proven in Appendix 2 of Section 12 of 
Chapter XIII that F(p) is such a function if and only if for each cut-off 
function h: R” 4 R” with compact support and which satisfies h(x) = .Y in a 
neighborhood of the origin one has the representation: 

F(p)=a+ih.p+p.C,,- ( [e!” ‘- 1 -ip.h(x)] V(d.Y), (I.51 _ R” 

for some real constant u, some vector h in R”, some nonnegative definite 
matrix C, and some nonnegative measure v satisfying JR” min( 1, 1.~1’) v(~/.Y) 
< x. Note that if F(p) has a representation of the above type for some 
cut-off function h, it has a similar representation for any other cut-off 
function. The choice of the cut-off function only affects the constant u and 
the vector h. The latter is called the drift, C is called the covariance, and 
the measure I’ is called the Levy measure. Formula (1.5) is the famous 
L&y-Kintchine ftirrnulu and the function F is called the exponent function 
by probabilists because of (1.8) below. Well-known examples are 

F(p) = @-G7 - 111. 

for m > 0 which we already encountered and the stable case of 

(I.61 

(1.7) 

for 0 < c( d 2. The additive constant a will be chosen to be equal to zero. 
This normalization is very convenient for it implies the existence of a con- 
volution semigroup {p, ; t 3 0) of (infinitely divisible) probability measures 
on R” such that 

C,(P) = p “,(l’), (I.81 

for all t > 0 and p in R”. In other words, the free semigroup {e “‘O; t 3 0) 
is a convolution semigroup given by 

But it is well known that such semigroups are generated by stochastic 
processes with stationary independent increments which we will call LPPJ~ 
processes from now on. More precisely, on the canonical path space 
Q = D( [0, xl), R”) of right continuous functions with left limits from 
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[0, z) into R” endowed with the smallest a-field .P for which all the 
coordinate functions A’, : R 3 tr) -+ X, (w) = o(t) E R” are measurable, one 
can define for each .Y E R” a probability measure P, such that 

P,(x,,=.Y) = 1, (1.10) 

and the random variables X,, -X ,,,, . . . . X,,, - A’,,, , are independent with 
distributions ,u,, f,,, “‘3 p 13, I,, I ’ respectively, whenever 0 = t,, < t, < < 
t,, < ‘J,. Note that each probability measure P, is the image of the 
unique probability PO under the mapping (D( ‘) 4 s + w( .) and that all the 
probabilistic quantities could be written in terms of the single measure 
P = P,. If we use the notation E, for the expectation with respect to the 
probability P, (we will also use the notation E for the expectation with 
respect to the measure P), the formula (1.9) can be rewritten as 

Ce ‘“‘~f](.~)=E,j.f(X,)~. (1.11) 

We will explain in Section III below how the semigroup [e lH; t 3 0) 
generated by the full Hamiltonian (1.1) is given by the Feynman-Kac 
formula: 

We will use the idea introduced in Carmona [6] and extended in Carmona 
and Simon [S] to extract the decay of the eigenfunctions of H from this 
formula. Note that the case r = 2 corresponds to the nonrelativistic 
Hamiltonians and, up to a variance multiplicative factor, to the process 
of Brownian motion. The latter is essentially the only Levy process with 
continuous sample paths, and consequently the space .Q = C( [0, ~8 ), R”) 
can be used as the canonical path space in this case. 

The technical properties of Levy processes which we need are recalled in 
Section II below. We prove only those for which we could not find a proof 
in print. There is an immense literature on the subject of Levy processes, 
but unfortunately we do not know a self contained easy text to refer the 
reader to. We will simply single out the survey paper Fridstedt [ 161 and 
the forthcoming monograph Carmona [9] for reference purposes. 

The Levy processes corresponding to the Hamiltonian function (1.7) are 
the symmetric stable processes and their properties are well known. The 
fundamentals of their potential theory has been worked out in the works 
of Port and Stone [25] and we will refer to the above mentionned paper 
of Fridstedt for a comprehensive survey of their properties. Surprisingly 
enough, the process corresponding to our relativstic Hamiltonian (1.6) has 
been basically ignored by the probabilists. The very recent works of Bakry 
[2, 31 are the only ones we could locate. In particular, it is shown that, like 
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the symmetric stable processes, the process can be obtained by a time 
change of Brownian motion and that. like in the case cx = 1, the time 
change can be explicitly given as the first time a one-dimensional Brownian 
motion hits a certain level. But now the Brownian motion has a drift 171. 
This simple generalization of the classical argument due to Levy gives an 
explicit formula for the transition density of the process. See (111.7) below. 

Section III contains the extension to a very large class of rdutizlistir, 

Schriidingrr operators of the characterization of the relevent family of 
potentials given in Aizenman and Simon [l] for the usual nonrelativistic 
Schrodinger operators. From a probabilistic point of view, this family of 
potentials has a very natural definition in terms of expectations of additive 
functionals of the process. One of the results of Aizenman and Simon was 
to find an equivalent analytic form and to show that it was natural as well. 
They called this family the Kato class because T. Kato was the first to use 
successfully this assumption. We will follow this terminology. Section IV 
contains the results on the decay of the eigenfunctions which we annnoun- 
ted above. They give both upper and lower bounds. We recover Nardini’s 
result and we show that exponential decay does not hold in general. In par- 
ticular, we prove that the eigenfunctions decay polynomially in the stable 
case of F’“‘(/>) = I/J/‘. 

Finally, we would like to make a remark about the nature of the proofs. 
As we already pointed out, they follow the lines of Carmona [6] and 
Carmona and Simon [S]. Nevertheless they are embarrassingly simpler. 
Indeed, we use a cleaner stopping argument and a formula from 
probabilistic potential theory and we reduce the proofs to the estimation of 
the free Green’s function. This fact corroborates a simple remark made to 
one of us (R.C.) by S. Agmon: the decay of the free Green’s function should 
govern the decay of the bound states in the regions where the potential can 
be shown to be negligeable. This statement is obviously correct when the 
free Hamiltonian H,, is a local operator. Unfortunately, the usual Laplacian 
is the only free relativistic Hamiltonian being local. Our proofs actually 
provide an indirect justification of Agmon’s remark. 

In the last section we show the equivalence between the recurrence of the 
Levy process and the existence of bound states for all the possible choices 
of negative square wells. This connection is thoroughly discussed in Simon 
1301 in the nonrelativistic case of the Laplacian and the process of 
Brownian motion, and a more probabilistic but more complicated proof 
was later given in Ruelle [28]. While we are extending this equivalence to 
the more general setting of relativistic Schrodinger operators and Levy 
processes, we at the same time simplify them. 
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II. PRELIMINARIES ON LEVY PROCESSES 

We assume that a triplet (h, C, V) is fixed once for all and we consider 
the corresponding function F(p) defined by (1.5). The following assumption 
will be made throughout the paper: 

e fFtpJ d/7 < x. t > 0. (A) ” R” 

Under this assumption, for each t > 0 the function 

(11.1) 

is the density of the measure p, defined by (1.9). Note that p, is a bounded 
continuous function such that lim,,, _ I p,(x) = 0. Note also that, for each 
fixed x E R”, p,(x) is an analytic function of t on (0, w). Consequently, the 
transition probability p,(.~, r1~~) of the Levy process introduced in Section1 
above has a density P[(.Y, ~3) = p,(.r - I,) which is jointly continuous in I 
and J’ for each t > 0. Moreover, it is easy to see that 0 < p,(x, J) d 
/j,(O, 0) < cc. See, for example, Carmona [9]. 

We will need sharp estimates of the transition probability P,(X). In the 
stable case corresponding to F’“‘(p) = IpI’ one can use the scaling relation 

pj”‘(x) = t ‘I “p\“‘(t ’ “.Y) (11.2) 

to reduce the problem to estimating p,(.v), and then use the existence of 
positive constants L’, and cZ such that 

if ‘3 # 2. See, for example, Blumenthal and Getoor [4]. The exponential 
bounds of the case x = 2 are well known and are not recalled here. In the 
case of the relativistic Hamiltonian F”‘(p) = Jp’ + rn’ - m, the transition 
density has the expression 

p)“(X)= (271) ‘z t 1 e”“e \ (~\I’+r’l(/J~+nl’) 
&YI’ + t* R” 

& (11.4) 

see Herbst and Sloan [ 181. This gives 

pj”(.r) 3 (27r) ‘I e “II\1 

(11.5) 
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for some positive constant c,,. One can also remark that the density p:“(.v) 
can be evaluated in closed form in terms of a Bessel function. See Eq. (2.13) 
of Lieb and Yau [22]. On the other hand, the density p)“(.u) is subor- 
dinated to the classical Brownian motion density and as explained in Bakry 
[2, 31 one has 

where pjl’(r) = (47rl) ” ’ exp( ~ l.u1’/4t) is the transition density of Brow- 
nian motion and where: 

O,(d) = 71 ’ ‘tu 3 * exp( ~ t’/4u) rfu. (11.7) 

The above formulae and estimates will be extremely useful in the par- 
ticular cases of the Hamiltonians given by the functions F”’ and F’“‘. The 
situation is more difficult for general Levy processes. Nevertheless, we will 
be able to obtain similar results whenever we are able to connect the decay 
properties of the Levy measure to the integrability of the paths of the pro- 
cess. This explains our motivation for the following results culminating in 
Proposition II.5 below. We believe that the idea is very classical in nature 
but we could not find this result in the published literature. 

PROPOSITION 11.1. Let F(p) he givcw hy (1.5). Then, the ,jollolz,ing uw 
equivalent : 

(i) F(p) has an unulytic continuation to u strip (; E C”; c = p + iv, 
) q 1 < u ) for sonze u > 0 ,cith the property, that for each t > 0, ruch q E R” bcith 
/VI <a, e “‘I +“I’E L*(R”) and,for my hi (0, u), 

sup llCJ ‘f.” + j’/ ) 11 * < I,, (11.8) 
I ‘, I < b 

(ii) v is exponential!,~ localized in the sen.w that ehl ‘?\I E L’Jbr cl11 h < u. 

Proof: We first notice that for each t > 0 the exponential decay of the 
Levy measure v is equivalent to the exponential decay of the transition 
probability pt (i.e., the Fourier transform of the function c “( I). See, for 
example, Jurek and Smalarala [ 191. 

(i) 3 (ii) If F(p) has an analytic continuation to a strip so does e “‘(I” 
for each t. Assumption (A) and Theorem IX. 13 of Reed and Simon 1261 
imply that p, decays exponentially. So does v according to our first remark. 

(ii)*(i) The exponential localization of v implies the exponential 
decay of p, for each t >O, and this implies (A) and the existence of an 
analytic continuation for (1 ““/” because of the same Theorem IX.1 3 of 
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Reed and Simon [26]. The fact that F(p) has an analytic continuation to 
a strip, can be seen directly. It is obvious that it is sufficient to show that 

[ [ &” ’ - 1 - ip ./1(-Y) J 4jtl.r). 
d R” 

has an analytic continuation to a strip. One has 

=? Le”)‘- 
1 - ip . .Y + ip .Y - i/l. h(x)] L’(d.\Y) 

R” 

which is obviously analytic for (~1 < r for some Y > 0 because v decays 
exponentially. In fact the above argument gives analyticity in any ball 
Ip - pOl < r as long as p. E R” and this concludes the proof. 1 

Our interest in the above result lies in the following: 

COROLLARY 11.2. The L&J, nleasure corresponding to the cyponent 
F(p)=\-- nl is e.uponentiall~~ loculixd. 

Next we relate the exponential localization of the Levy measure to the 
existence of exponential moments for the position of the Levy process. The 
ideas used below, and especially Lemma 11.3, are well known. We 
nevertheless give detailed proofs because we could not find the results we 
need in the published literature. 

LEMMA 11.3. Let us assume that the L&J> process X = {X,; t 3 0) has 
jumps qf size no greater than one. Then there exist constunts 6, > 0 und 
c, > 0 such that 

E(r ~)wlr,,\,/.4,l; <(.,t,f, (11.10) 

,f& all 6 6 (0, 6,,). 

Proof: Let us define the stopping times T,, by T, = inf( t > 0; /A’,1 > 1 ) 
and TX = inf{ t > T, ,; IX,-A’,, ,J>lj for k&2. and let us set 
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u = E{ P ” }. Notice that T, > 0 P-ax by the right continuity of the paths 
and this implies that u < 1. Moreover, 

because of the strong Markov property. Notice also that 
j for each SUP0 GrS7i IX,/ d2k P-a.s. so that {supUS,-, /X,1 >2k 

t > 0. Hence, 

Pi sup 1X,J>2/?1<P{t>T,; 
os,s-I 

< eq i p 7.i ) 

= (‘I() 1 

because of (II.1 I ) and, consequently, 

(11.12) 

6 e” + 1 c2(’ l ““Pi sup (A’,1 > 2k) 
I=, OC\<, 

< p 
L 

&(, p12n + lop C’,k] e’ 

because of (11.12). This gives the desired result provided 8 > 0 is small 
enough, i.e., 26 +log~1<0. 1 

LEMMA 11.4. With the ahovc~ notations, thr fbllon~ing h&As: 

E(,~~\“PO~ >it/.k’si \ } <c,r f, I + J,\, , (P ’ I Illd\)J (11.13) 

Prooj: For each time t we denote by AX, = X, - X, the possible jump 
of the process. Then we let Y, = C,,, , ~ I (AX,) 1 I ,-,, 1,, , , I be the sum of the 
jumps of size larger than one and Xi = X, - Y,. It is well known that 
jY,;t>O} and [A’:; t 3 0 i are independent Ltvy processes. Consequently 
we have 
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Moreover the jumps of A’: are not greater than one and according to Lem- 
ma II.3 above this implies that the first factor in the right-hand side of 
(11.14) is bounded above by c’,P’. In order to control the second factor we 
rewrite the process Y in a more convenient way. For each Bore1 set A 
whose closure does not contain the origin we define the stopping times SX 
as the nth instant of a jump with amplitude in A. More precisely we set 

Sl =inf{r>O: IX(r)-X(r-)/ E A] 

and 

whenever 112 2. The quantity 

is the number of jumps of amplitude in A before time t. It is well known 
that it is a Poisson random measure on R”\jOi with intensity dt v(tf.r). 
Y has the representation: 

Note that for each f > 0, one has 

I Ix/ N,(d.y), 
I :I,/> I I 

(11.15) 

P-a.s. because N, is a monotone increasing function of S. Consequently, 
(11.15) implies that 

which completes the proof of (II.1 3). 1 

The following is now an immediate consequence of formula (11.13) 
above. 
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PROPOSITION 11.5. Let us assume that the LPvy measure v qf’ the Lkv~’ 
process X = {A’,; t 3 0) is esponentiallJ> localized. Then there exist positive 
constants c, , c2, and 6, such that 

Eie” ~uP,r. >~,l~,l) <(.,(,‘!I, (11.16) 

lr,henever 0 < 6 < (z,, 

We will also use the n-potentials of the process for i, > 0. The J.-potential 
kernel is defined as the function: 

K;.(.Y) = j(,’ e L’~,(.~) dt. (11.17) 

In the stable case given by F’“‘(p) = IpI’ one can use the scaling property 
to see that 

and then the estimate (11.3) to obtain easily the existence for each A > 0 of 
positive constants c,,~. and cl,;. such that 

(11.18) 

This estimate will play a crucial role in the sequel. In the case of the 
relativistic Hamiltonian F(p) = ,e - m one can use estimate (11.5) 
and obtain 

= c,,$(lxl) e -m’rJ, (11.19)’ 

for some positive constant c, > 0 and all X, where d(x) is a function which 
is equivalent to 1x1 -‘I when x -+ co. Moreover, this lower bound can be 
improved in the case ;1 <m; using formulae (11.6) and (11.7), one can show 
that 

g,(x) 3 r,,f$( Irl ) (7 \ *m; j21,1, (11.19)’ 
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for some positive constant c,, > 0 and all .Y where $(x) is a function which 
is equivalent to /xl ‘I when x -+ ~8. Also, using only (11.6) and (11.7) it is 
very easy to derive the upper bound. 

if E. < rn; 
otherwise, 

(11.20) 

holds for some constant c:, > 0 and all s E R” for which 1.~1 2 1. 
For each Bore1 subset B of R” we use the notation 

T,=infjr>O;X,EB), (11.21) 

for the first hitting time of B. We will be particularly interested in estimates 
of the Laplace transform of this stopping time. In particular, we will use 
the classical formula from the potential theory of Markov processes (see, 
for example, Blumenthal and Getoor [S, p. 2851, 

for some nonnegative measure ~6 called the R-capacitory measure of B. 
This measure is concentrated on the closure of B and its total mass is the 
i.-capacity of the set B. In particular, it is finite when B is compact. 

III. THE KATU CLASS FOR RELATIVISTIC 
SCHR~DINGER OPERATORS 

This section is devoted to the introduction of the Schrodinger operators 
and to the discussion of the hypotheses we make on the potential function. 

We assume that H, is the nonnegative self-adjoint operator on L2(R”) 
generating a convolution semigroup (P,; t > 0} satisfying the assumption 
(A) of the preceding section. We perturb this operator by the multiplication 
operator by a locally integrable function V such that 

lim sup E, 
rho y-tR” 

(111.1) 

and such that the positive part V+ satisfies locally the same assumption, 
In other words (111.1) holds with VI,, instead of V , for each compact 
subset K of R”. These assumptions imply that the operator H = H, + V is 
essentially self-adjoint on the space CcX(R”) of C L-functions with compact 
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supports in R” and that the corresponding semigroup can be expressed by 
the FeynmanKac formula, 

[Cl ‘“I’](X)=E,(,f‘(X,)t, l;,i”y,lc’,), (111.2) 

where here and throughout the paper we use the convention e ’ = 0 and 
where (X,; t 3 0) is the Levy process associated with the convolution semi- 
group 1~~; f >O}. It is easy to prove using this formula that the function 
em Iryf is a bounded continuous function whenever t > 0 and f’ is in some 
L/‘-space. See, for example, Carmona 171, Simon 1311, or Carmona 191. 
In particular, this implies that all the eigenfunctions of the operator H are 
bounded and continuous. In fact, we will make a crucial use of the inter- 
action between the operator H and the Levy process at the level of the 
eigenfunctions. Indeed, if e E L2( R”) is an eigenfunction of the operator H 
with eigenvalue E, then the process [M,; t 3 0 j, defined by 

M, = $(X,) pt, c, I( \dc’,, (111.3) 

is a martingale. The estimates proven later in this paper are extracted from 
relations obtained by stopping such martingales at appropriate first-hitting 
times. 

But before we get to the investigation of the decay properties of the 
eigenfunctions, we give an analytic equivalent to the fundamental assump- 
tion (III.1 ) on the potentials. 

DEFINITION 111.1. A measurable function f‘on R” is said to be in /‘(L ’ ) 
if 

Il.f’ll I’(/ * ) = c sup If( < =, (111.4) 
1 F %‘I 1 t t.2 

where C, denotes the cube centered at c( E Z” with sides of length 1. 

Let us assume that, instead of the partition {C,; ‘Y E R”} by cubes of side 
1, we have another partition {C: ; r E I}, where I is a countable index set and 
the cells C’: are bounded subsets of R” such that there exist two integers n, 
and n2 such that each of the cells C, is covered by at most n, cells C: and, 
conversely, each of the cells C: is covered by at most n2 cells C,. Then it 
is easy (though cumbersome) to see that the norm 11 ./I ;I~~., ), defined by 

(111.5) 

is equivalent to the norm 11. /I ,1(LLj defined by (111.4), in the sense that there 
exists a constant c > 0 such that 

(’ ’ II f’ll;f(, ’ ) G ll.1’ll /I(/.’ ) c 4 I’ll;l,, ’ ,, (111.6) 
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for all the functions,fi This simple remark will give us a convenient device 
to show that some density functions are of the /i(Y)-class. Also, the 
following two lemmas show how appropriate this class is. 

LEMMA 111.1. JEWELS andf~l’(L”), then g*,fEI’(L*) and 

Proof 1 its *f)(s)1 = XL,2 I,- 
x 

” c 7 E Z” (! (‘x 
and, consequently, 

LEMMA 111.2. For each 6 > 0 there exists a constant Cci > 0 such that 

II 1 ~~,,~,,i~.flli~~~~~~~“:llfllL~r (111.X) 

for any spherically symmetric,function f (i.e., jbr which f (x) = f (x’) Ir,henecer 
1.~1 = lx’1 ) nlhose modulus is radially nonincreasing in the sense thut for ull 
XE R” the,function rq if( is nonincreusing on [0, xl). 

Notice that this result implies, in particular, that any such function is of 
the I ‘(L x )-class. 

Proof: The proof is trivial for n = 1 if one chooses the covering formed 
by the C; = (IS, r(S + l)] when I E Z, because the function x 4 (J’(x)1 is even 
and nonincreasing on [0, a). In the general case II > 1 one chooses a 
covering by cells C: = C:,,L., where C,, = /-YE R”; IsI < 6) and where 
for each fixed integer n 3 1, the C:,,, form when k varies from 0 to k,,, 
a partition of the annulus {XE R”; n6 d 1x1 < (n + 1)6), by solid blocks 
having a volume approximately equal to 6”. The proof then mimics the 
one-dimensional case. 1 

The following result follows immediately from the above lemma. 

COROLLARY. If for each fixed t > 0, the transition density p,( .) is 
sphericall~~ symmetric and radially nonincreasing, then it is of the 1 ‘(Lx )- 
class and, moreover, for each fixed 6 > 0 one has 

sup Ill :,,,,<s; Prll,l(LI, < =. 
f>O 

(111.9) 
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This result is of great importance to us because most of the transition 
densities of the LCvy processes we are interested in actually satisfy the 
above assumptions. Indeed, the spherical symmetry is implied by the fact 
that we are dealing with exponent functions F(p) which depend only on the 
norm 1 pj of p, and the radial nonincrease can be checked by inspection in 
the case of the process of Brownian motion corresponding to the exponent 
function F’” and in the relativistic case of F”’ as well. Moreover, the 
results of Kanter [20] and Wolfe [35] imply that it is also true for all the 
symmetric stable cases F(‘) and more generally for all the L6vy processes 
of the so-called class L. See, for example, Wolfe [35] for the definition of 
the class L. 

The next lemma gives another technical result which we will need. It 
concerns the divergence at the origin of the Green’s function at different 
energies (i.e., of the resolvent kernel g,, for various values of /?). 

LEMMA 111.3. [f 

lim ga,(.u) = xl, 
/\.I -0 

(111.10) 

,for some fixed j0 > 0, then ,for ull /I > 0 one has 

g,(-x) -= 1. 
, !Yo g,,(x) 

(III.1 1 ) 

Proojl Let us fix fl> 0. We notice that, for each fixed to > 0 one has 

I 
sup e m”‘p,(x) dt d J e “‘p,(o) dt < m, 
Y E R” - 1” Rl 

because of the analyticity in t of the function p,(O) on (0, x). Conse- 
quently, the ratio g,(x)/gp(-u) will have the same limit (if any) as the limit 
of the ratio, 

{S e-‘p,(x) dt 
j: epP’p,(x) dt’ 

(111.12) 

We prove only the result in the case fl> 1 because the proof in the case 
/3 < 1 is similar. In this case fl> 1, the ratio in (111.12) is always larger than 
or equal to one. On the other hand, this ratio is also less than or equal to 
ecBp ‘)Q independently of x. This concludes the proof because the choice of 
to > 0 was arbitrary. 1 

Note that the above lemma covers the case n 3 2. The situation is easier 
in the one-dimensional case where the resolvent densities g,,(.u) are defined 
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and continuous at the origin x = 0. In this case, the limit (111.10) exists and 
is equal to a finite number. The main result of this section is the following: 

THEOREM 111.1. Let us assume that V is a nonnegative function on R” 
which is uniformly locall~~ integrable and let us assume that the assumption 
(A) and the condition (111.9) are satisfied by the LPcy process. Then, the 
following three conditions are equivalent: 

(i) lim,., SUP.~R~S~E,~V(X,)}~S=~, 

(ii) limil+ x SUP.EJwO+P)-' Vlb)=O, 
(iii) lim,.,sup,...,,~,.~~,,,,g,(s-?,)V(?,)d,~=O. 

Proof: The assumption on the function V means that the constant c(V), 
defined by 

c(V) = sup V(Y) d.v, 

is finite. This assumption implies that, for each fixed t > 0, we have 

SUP SUP (P, * W-x) d 4 V) sup IIP.,ll,I(r.~ )> 
,>r ritl” IS, 

which is finite because of our assumption (111.9). Indeed, 

(P, * V)(x) = s,. PAY) V(.r- Y) dJ 

G C sup p,(y) ^ V(x- y) dy 
1 E Z” .I‘ E (‘2 J cz 

G 4 VI II P,/l ,l(L’) 

Next we notice that for each t > 0, b > 0 and for each x E R” we have 

! { “‘E, V(X,)} ds4e”‘J‘x e “T,{ V(X,)j ds 
0 0 

so that, 

E,{ V(X,)} ds 6 ep’ sup C(Ho+B) 1 VI t-y). (111.13) 
\ER” 
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Now, if we assume (ii) and if E > 0, we can choose p > 0 large enough so 
that 

sup C(H,,+p) ~’ W.~)<@, 
Y E R” 

(111.14) 

and then choose t small enough so that rii’ < 2 and (i) follows easily from 
(111.13). 

Conversely, let us assume (i). Now, if F >O, we can choose t > 0 small 
enough so that 

E,j I’(X,)i ds < 42, 

and, consequently. 

SUp[(ff,,+b)-’ v] (x)<E/2+ sup i“ e “‘E,{I’(X,,)} ds 
I F R” \ ER” 1 

< ~,‘2 + sup sup (p, * I’)(X) i‘ X e p’ ds 
,>,r \tR” I 

~E/~+~~~~s~pllP.,ll,l(,.‘)Ij ‘c ‘jr, 
,2r 

which can be made arbitrarily small provided b is chosen large enough. 
This completes the proof of the equivalence of properties (i) and (ii). 

Let us assume (ii) once more. As before, if E > 0 is arbitrary, one can 
choose fi > 0 large enough so that (111.14) holds. Then, using Lemma III.3 
if n > 2 and the remark following it in the one-dimensional case, one finds 
constants 6 >O and c>O such that 

(=I 6 6 =F- gl(z) < q/j(:). 

Consequently, we have 

because of our choice of 0. This proves that (ii) implies (iii). Finally, 
we prove that (iii) implies (ii). If e >O is‘tixed, assumption (iii) gives the 
existence of a number 6 > 0 sufficiently small so that 

sup ! g,(s- y) V(.r) dr< 42. 
reR” I\ i 1 s d 



RELATIVISTIC SCHR6DINGER OPERATORS 135 

Then, for any fi 3 1, one also has 

sup J gp(x - J-1 V(y) dy < C/2, (111.15) 
\tR” I\ / I c <) 

because the function fl4 gp(;) is nonincreasing for each fixed I E R”. 
Moreover, for this fixed (5, one also has 

sup 
,FR’~-/\ 

< C/2, (111.16) 

provided fl is large enough because of the assumption (111.9). The proof is 
now complete because we have 

sup [(H,,+j) I V](.X)dE. 
\ i R” 

by putting together (111.15) and (111.16). 1 

A potential function V = V + - V will be said to be of the Kato class 
whenever for each compact subset K of R” the functions 1, V + and V 
satisfy any one of the three equivalent conditions of the above theorem. As 
we already pointed out, this is the right kind of assumption. This fact was 
demonstrated in Simon [31] in the nonrelativistic case. Most of the 
abstract results discussed in his Section A.2 are still valid in the present 
situation. In particular, this is the case for the paragraph (2) on page 459. 
It is argued there that condition (ii) of the above theorem implies that V 
is H,-form bounded with relative bound 0 and that, consequently, H(, + V 
can be defined in the sense of quadratic forms if V is in the Kato class. 

We close this section with the following elementary consequence of 
Theorem III. I. 

Remark. The definition of the Kato class depends only on the 
behaviour of the exponent function F(p) when p -+ X. Indeed the above 
equivalence shows that it depends only on the behaviour of the Green’s 
kernel [Ho + 1 ] ’ (.Y, y) at small distances, and since one has the explicit 
formula, 

[H,+ 11 ’ (X, J’)=g,(.r-.V), 



136 

with 

CARMONA, MASTERS. AND SIMON 

the behaviour of g, at the origin is determined by the behaviour of F(p) at 
CC. In particular, this implies that the Kate class is the same whether one 
deals with F”‘(p)= IpI or F”‘(~)=JIPI~+“~~-‘“. 

IV. THE EIGENFLJNCTION FALL-OFF 

IV. 1. The cuse V(.u) + 0 

Throughout the rest of the paper we will use the notation T,. for the first 
hitting time T,(,,,,., of the ball of radius Y centered at the origin. We study 
the decay properties of a L2-eigenfunction Ic/ corresponding to a negative 
eigenvalue E. The strategy for proving upper bounds is the following. Since 
M, defined by (111.3) is a martingale, we have 

I$(sy)I = (E($(X, A T,) eE’n ‘rp !;I“’ k,(X-t}l 

6 II,/11 , E,jrt’” T,,l‘b” L ‘Xs’“) 

because the function $ is bounded and, consequently, 

whenever, for F > 0 fixed, r is chosen large enough so that V (1,) < E for 
1~1 > Y. We will choose c small enough so that j? s -(E + E) > 0. By the 
monotone convergence theorem we have 

and, hence, 

I+(x)1 d llrc/ll , E, (0 “7;). (IV.1) 

We are now ready to prove the easy 

PROPOSITION IV.l. If F’“‘(p) = lp(’ M,ith x < 2 there exists a constunt 
c>O such that 

(IV.2) 
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.for all x E R”. For F”‘(p) = ,/m - m, for each E > 0, there exists a 
constant c, > 0 such that 

I$(.\-)1 < c,e +‘-“, (IV.31 

,for all x E R”, M-here m, = m [f lEl > m and ,,/2%lEl -El- F: ,cheneret 
IEl d m. 

Proof: The above estimates trivially follow Eq. (IV.1 ), the potential 
theory formula (11.22) and the estimates (11.18) and (X20), respec- 
tively. i 

Remark. The above argument also gives a proof of the well-known 
result for the classical case of F”‘(p) = lpi ‘. 

In the general case of a Levy process with an exponentially localized 
Levy measure, one has the same result as in the case of the relativistic 
Hamiltonian, namely: 

PROPOSITION IV.2. Assume that the LPvy measure 11 decays exponen- 
tially. Then there exist positive constants c,, cl, such that 

,for all s E R”. 

(IV.4) 

The strategy for proving lower bounds is the following. We consider only 
the case of the ground state eigenfunction; i.e., we assume that E is the 
inlimum of the spectrum of H. The ground state eigenfunction is positive 
everywhere and continuous, hence locally bounded away from zero. Conse- 
quently, once more using the martingale M, defined by (111.3) we obtain 

where we used the usual convention e ~ r = 0 and Fatou’s lemma to take 
the limit t -+ co and where we assume that E > 0 is small enough so that 
p- -(E-c)>0 and if r is large enough so that P’+(x)<& for 1x1 >r. 
Consequently, one has 

I)(X) 2 cst E,je mirrr), (IV.5) 

for some positive constant est. As above, one easily proves the following: 
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PROPOSITION IV.3. In the case F”‘(p) = 1~1% there exists a constant 
c’ > 0 such that 

(IV.6) 

I 
,for all x E R”. In the case F ’ (p) = Jp’ + rn’ - m, ,for each c: > 0 there exists 
a constant ci>O such that ‘-’ 

I)(.Y) 3 ci.e-“‘,I”, (IV.7) 

,for all x E R”, tchere nolv m, = m if 1 E( > m and Jw - E kvhenruer 
IEl6m. 

ProoJ The above estimates trivially follow Eq. (IV.5) the potential 
theory formula (11.22), and the estimate (11.18) and (11.19) respectively. 1 

Remark. The assumption lim , ,, _ I V(x) = 0 is slightly stronger than 
what we actually need. An inspection of the above proofs shows that 
one only needs lim,.,, ._ % V’(x) = 0 to obtain the lower bound and the 
assumption lim, ,, _ ,~ V (.u) = 0 in order to prove the upper bound. 

IV.2. The Case V(.u) -+ x 

PROPOSITION IV.4. Let us assume that lim,.,, ~~ ,x V(x) = z and that the 
LPoy measure v is exponentially% localized (i.e., 3h> 0, such that 
j e”“v(dx) < m). TI Ien or ever)) positive constant 6, there exists a positicr ,f 
constant 6’. such that 

Iti( <6’e~m”“‘, (IV.8) 

,for ull x E R”. 

Proof If one uses again the martingale M, defined in (111.3) and if for 
each r>O we set r=inf{t>O; /X,-v\ >r}, we have 

$(x) = E,{ ,)(X, h ,) e’ A 72 e -.c r WJd.~} (IV.9) 

and, consequently 
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for any Y > 0. By Lemmas II.3 and 11.5, choose 0 <z < min(h, - l/2 log u), 
a as in Lemma 11.3. We thus have 

1$(x)1 d lll/ll, [e-'l‘ A)l+tj~ xrC,ecq (IV.10) 

where C, is as in Lemma II.3 and c2 = 1 + 1 (@‘I - 1 ) \I(&). Take y = p, 1.~1, 
pl E (0, l), t= ~~1.~1, pz >O small enough such that czpr< p,x. We now 
have the result. 1 

V. RECURRENCE AND THE EXISTENCE OF BOUND STATES 

Nonrelativistic Schrodinger operators with a negative potential have 
been known for a long time to always have bound states (i.e., negative 
eigenvalues) in one and two dimensions, a fact which is no longer true in 
higher dimensions. The purpose of this section is to give a general criterion 
to compute the critical dimension above which a general Schrodinger 
operator, of the type we discussed so far, need not have a bound state if 
the negative potential is not deep enough. Theorem V.l below implies that 
this critical dimension is also two for the relativistic case corresponding 
to the exponent function F (I’ but that it is one for the stable cases corre- 
sponding to the exponent function F’“’ with r < 2. 

In order to prove this result, we need an extra technical assumption on 
top of assumption (A): 

Obviously, we did not aim at the greatest generality and there are 
presumably weaker conditions under which the following proof holds. We 
chose the above condition for convenience. One of its side effects is to rule 
out the lattice cases. 

THEOREM V.I. The ,follo~+Yng three properties are equivalent: 

(i) The L&v), process (A’, : t 3 0) is recurrent, 

(ii ) The exponent ,function F satisfies 

(iii) The Schriidinger operator H, + V has at least one negative bound 
state lthenever V is a nonpositive, nonidentically zero, and bounded potential 
nlith compact support. 
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Proof: The equivalence of (i) and (ii) is a classical result of the theory 
of Levy processes. See, for example, Port and Stone [25] or Carmona [9]. 
Before proving the equivalence of (ii) and (iii) we should point out that 
any bounded potential function I/ with compact support is in the Kato 
class. In fact, it is a relatively compact form perturbation of H, under 
the assumption (V.l), and consequently, the essential spectrum of the 
perturbed operator H = H, + V is still [0, Y-‘). To prove that (ii) implies 
(iii) it suffices to consider the case V= -i-l B,n,. where 

B(6)= (x=(x,. . ..) s,,); (x,1 <a,,;= 1, . . . . PI) 

for some i > 0 and some ci > 0. We use the Birman-Schwinger principle 
(see, for example, Simon [3 11) to show the existence of negative eigen- 
values of H, + V. If E < 0 and if 4 E L’ is such that 4 is continuous near the 
origin, then we have 

(4, /V/“(H,+E) ’ lVl’2d> 

for some constant c > 0. Consequently, property (ii) implies that 

lirn$f(& lV(“(H,,+E) ’ lVI”qS)=xj, 

which in turn implies the existence of bound states. Conversely, if property 
(ii) does not hold, we have that 

i‘,,, & fJ (y)2 dp, . ..dp., < rc 
i 1 I 

and, since for each E > 0 we have 

($3 W”(H,+~) ’ IvI”d> 

(V.2) 

it is possible to choose a strictly positive function 4 having one for L’-norm 
and such that its Fourier transform $ has a small enough L ‘-norm so 
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that the right-hand side of (V.2) is less than or equal to one. For such a 
function C#J one has 

limsup(~.lVI”(H,,+E) ‘/VIi2~)61. 
1. \ I) 

and this implies (using again the BirmanAchwinger principle) that the 
operator H,, + V does not have negative eigenvalues. 1 

The above result proves that the critical dimension is also two for the 
relativistic case corresponding to the exponent function F”’ but that it is 
one for the stable cases corresponding to the exponent functions F’“’ with 
SI < 2. 
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