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S P E C T R A L  P R O P E R T I E S  OF 

N E U M A N N  L A P L A C I A N  OF H O R N S  

E.B.  DAVIES AND B. SIMON 

A b s t r a c t  

We study the Neumann Laplacian of unbounded regions in ~n with cusps 
at infinity so that the corresponding Dirichlet Laplacian has compact re- 
solvent. Typical of our results is that of the region { ( x , y ) E R ~ { { x y { < l }  the 
Neumann Laplacian has absolutely continuous spectrum [0,c~) of uniform 
multiplicity four and an infinity of eigenvalues E0<Ea _< . . . .  oo  and that 
for the region {(z,y)ER ~ {}yl<_e-fxr }, it has absolutely continuous spectrum 
[1/4,oo) of uniform multiplicity 2 and an infinity of eigenvalues E0=0<E1 <: 

. . . .  oc. We use the Enss theory with a suitable asymptotic dynamics. 

1. I n t r o d u c t i o n  

Let C0211, co) denote  the twice cont inuously  differentiable funct ions of com- 

pact  suppor t  on [1, co). Let  f l  and  f2 be two funct ions in C2[1, co) with 

f -= �89 (f2 - f l )  > 0 everywhere and  let 

= Ix > 1 and f l ( x )  < y < / 2 ( x ) }  

We define H = - A  N on L2(f2), so t ha t  

< Hg, g) = f~ lug{ 2dx dy 

and Co2(D) is a quadra t ic  form core. We let h = �89 + f2) so f l  = h - y, 

f 2 = h +  f. 
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In the ensuing discussion, we put h -- 0 for simplicity, and suppose that 
I f (x) l+lf ' (x) l  ~ 0and Ifl-llf'[---+ Oasx --+ cx~. It is a result of Rellich that 
the Dirichlet Laplacian, - A  D, has compact resolvent and several authors 
have studied the asymptotics of its eigenvalues [4],[12],[14],[15],[16]. 

For many f ,  the Laplacian --A N will not have compact resolvent; for 
example if lal = ~ ,  then it is easy to see that 0 e aes~(-AN) (see [7] or 
the appendix). For general f ,  Evans and Harris [8] have given necessary 
and sufficient conditions of 0 e aes~(-AN) and for - A  N to have compact 
resolvent: 

THEOREM (Evans-Harris [8]). 
(a) 0 ~ ooss(-AN) if and only if eithe~ 

/1 (#,( )(S ) oOf(s)ds = oo or lim s)- lds  f(s)ds = (x~ (1.1) 
~--+ o~ 

(b) - A  N has compact resolvent i f  and only if 

tlim ( j ( t f ( s ) - l d s )  ( ~ ~  = 0 (1.2) 

Remarks: 1. If R 2 is replaces by R d+l with (Xl,X• E Rd+1; x• E R d and 
f} = {x [ [x• < f (x l )  ; 1 < Xl < c~}, then the above holds i f f ( s )  is 
replaced by f (s)  d and f(s) -1 by f(s)  -d. 

2. [8] deals with a variety of other  regions. 

3. If f (x)  = x -'~, then (1.1) holds and similarly if f (x)  = exp( -x  ~) 
for 0 < a < 1. On the other hand (1.2) holds for f (x)  = exp(-x~) ,  1 < a. 

A key role is played in our analysis by the function 

V(x) = ~ + ~ (1.3) 

k (x) = Is;(x)l + Is ( )l 

k~(x) = �89 (1.5) 

Why this plays the role of a Schrhdinger operator potential will become 
clear shortly. One of the main theorems in this paper is 
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T H E O R E M  1.1. Suppose that V (x ) , k l (X)  and k2(x) are all 0(Ix] -1-~) at 
infinity. Then 

(i) a ~ r  N) = [0, oo) of uniform multiplicity 

(ii) . s i n g ( - A g )  = 0 
(iii) I f  h = O, then - A  N has an infinity of  eigenvalues, En, each of finite 

multiplicity with En ~ 0o. In genera/, each eigenvalue has finite mul- 
tiplicity and they are isolated points in [0, co). 

At first sight, the embedded eigenvalues may  seem surprising but they 
are there for a simple reason. D is invariant under the symmet ry  y ~ - y  so 
- A  N is also. Its spect rum on the odd function is discrete. We conjecture 
that  on the even space where there is a.c. spectrum, there are no eigenvMues. 

EXAMPLES: Take h = 0. If f ( x )  = x - ~  then f '  ,.-, x - a - i ,  ( f , ) 2 / f  ..~ 
x -~ -2  and Y(x )  ,~ x -2 so the theorem applies for any a > 0. If f ( x )  = 
exp ( -x~) ,  then it is easy to see that  f , , ( f , ) 2 / f  = O ( e x p ( -  l x ~ ) )  so 

1 the theorem applies. If we need only look at V(x)  ,~ x 2(~-1). If a < ~, 
a > 1, V (x )  ---, oo and we will be able to show with our methods  that  - A  N 
has compact  resolvent (consistent with the theorem of Evans and Harris). 

1 V ( x )  x -'y For ~ < c~ < 1, --~ with 0 < 7 < 1 and it is likely that  one 
could modify our arguments  by using Enss theory for long range potentials 
[6],[9]. In any event our methods show that  a ( - A  N) = [0, c~) in this case. 

1 and our methods  easily imply that  the For f ( x )  = e x p ( - x ) ,  V(x)  = -~ 
conclusions of Theorem 1.1 hold if [0, co) is replaced by [1, oo). This is 
related to the Laplacian on a hyperbolic manifold with cusp, see e.g. [11]. 

The basic idea behind the proof is to look at - d 2 / d y  2 on (f l  (x), f2(x))  
with Neumann boundary  conditions. This has 0 as its lowest eigenvalue 
but the next  eigenvalue is (~r/2) 2 f ( x )  -2 which goes to infinity as x --, er 

As a result, it seems reasonable to imagine that  any non-discrete spect rum 
can only come from functions which are nearly constant in the y direction. 
Thus, it is natural  to consider the subspaces of L2(12) consisting of functions 

u(x, y) independent  of y with the Neumann form restricted to it. 

We let ~1 = L2(1,c~; 2 f d x )  the define the isometry J1 : ~ 1  --* L2(f~) 
by 

(J~u)(x, y) = u(x) 

so that  

( j ;g ) (x )  = 21 g ( x , y ) d y .  
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We then define the quadratic form Q: on C0211, e~) c_ 7/1 by 

OI(U) = 2~i ~ d~-x ~ 2fdx + c[u(1)[ 2 

where 
c = - f ' ( 1 )  . 

This form is associated with the operator H I  defined on the domain 

D1 = {UE Co2[0, cx~)I u ' ( 1 ) = -  f'(1-----~) u(1)}2f(1)  

by 

dx [ dx J 

d2u f ,  -1 du 
- dx 2 f -~x" 

We next define the operator/-/2 on 7-12 = L2(1, 00; dx) by 

H2 = W - 1 H 1 W  

where the unitary operator W from 7/2 to 7/1 is given by 

W v  = 7v 

for 7 = (2f) - : /2 in C2[1, cr One sees that 02 = W - : D :  is given by 

O 2 = { v E C 2 [ 1 , • ) ;  v ' ( 1 ) = 0 }  

and that H2 is given on De by 

' { :x )  H2v = ./-2 ( w )  

d2v 
= - d x  2 + Vv  

where 
: 

V -  2 
7 

GAFA 
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We summarize the main results of the paper in the case h = 0. In section 2, 
we will prove the basic estimate which verifies the fact that  it looks like the 
Dirichlet form. It says that  for u 6 D(H2): 

f t  du 
II II 

where the norm on the left is an L2(fl, d2x) norm and on the right 
L2(1, oo; dx) and where J2 = JaW. (1.6) is somewhat subtle in that  there 
is a careful cancellation of 0(Ix1-1) needed. 

In section 3, we use (1.6) to show that  so long as f '  and ( f , )2f-1 go 
to zero at infinity [1 - J~ J2](H + 1) -1 is compact verifying the notion that  
any essential spect rum must  come from the form H on Ran J.  Then we use 
the Enss theory in section 4 to prove Theorem 1.1. While our analysis is 
for two dimensional regions, it is easy to extend it to suitable horn shaped 
regions in R n. 

It is a pleasure to thank the organizers of the 1989 Gregynog Conference 
on Differential Equations where part  of this work was done and to thank 
Michiel van der Berg and Des. Evans for valuable conversations. 

2. T h e  T e c h n i c a l  H e a r t  o f  t h e  M a t t e r  

Our goal is to prove the estimate (1.6). We shall always assume that  V is 

bounded below. This implies that  H2 is essentially self-adjoint on D2, and 
hence by uni tary equivalence on H1 is essentially self-adjoint on D, .  

PROPOSITION 2.1. If  u 6 D1 then 

tl du I II(H+ 1)-U2(HJ1 - ] H1)ull2 -< 
2 

Proof: If g 6 C02(fl ---) then 

f f  du cOg dx 
(g, H g l u ) - -  .].]~ ~x~x  dy 

oo du f~ cOg x 

and 
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(g, ]IHlU) -- (J~g, HlU) 
~11~ du d { f ~  f2 } cu(i) f 12(1) 

= -~x dx 1 gdy fdx + 2 - ~  JA(1) g(1,y)dy. 

Therefore, 

[(g , (UJl-  J1Ul)u) [ 

f, [:2 ~g(x, f2) ~g(x, fx) :dx 
j r  I " d ' ' - } -  - -  

Ic~(1)1 ( ' ( 1 )  ig(i,~)l~y 
+ 2f(1----T ~,(1) 

_ ~ {g(x, ~) - g(x, f2(x)) }~y Z~x 
1 

+ [c~'(1)l [f2(1) lg(1,y)ldy 
2f(]) ,~'1(1) 

+ I~u(1)l ["~( ')  
2f(1) ~Z,(1)Ig(l'Y)ldY 

Og 

(~ (1 )  Ig(1,.)l~ ~ . +41u(1)1 ,s,(1 ) 

_ r ~ ' , ( ' )  Ig(1,y)ldy < c211(H + 1)1/2gll2. Now I1~11~ < II(H + 1)1/2g[1~ and . , ( , )  
Hence 

I(g,(HJ1- J1H1)u)l < { ~(I , t+  

for all g E C02(~). This implies the estimate of the proposition, since Co2(~) 
is a core of H '12. u 
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PROPOSITION 2.2. I f v  E D2 and J2 = J IW then 

II(g + 1)-1/2(Hj2 - J2H2)vll2 <- dx 2 -b [[k2v[[2 -[- C4[V(1)[ 

where kl and k2 are defined in (1.4) and (1.5), respectively. 

Proof: Since //1 is unitar i ly equivalent to /-/2 under  W, Proposi t ion 2.1 
yields 

[1( H + 1)-1 /2(HJ2_ J2H2)v[[ 2 <_ 7 - 1 k l d ( T v )  2 +c3[7(1)v(1)[  

_ kl ev k@v 
dx 2 + 12 +c lv(1)l ~ 

3. R e l a t i v e  C o m p a c t n e s s  

As our first applicat ion of Proposi t ion 2.2., we intend to prove two distinct 
but related results tha t  say tha t  continuous spec t rum is only associated to 
Ran J2. Let P = project ion on a Ran J2 and let Q = 1 - P ,  i.e. P = J 2 J ~ .  

Throughout  this section, we assume tha t  f ,  kl, k2 vanish as x --~ 0o. We 
will prove 

T H E O R E M  3.1. Q(H + 1) -1/2 is compact. 

T H E O R E M  3.2. I f  g is a continuous function on R U {0r then g(H)J2 - 
J2g(H2) is compact. 

T H E O R E M  3.3. H has compact resolvent if and only if - ~ + V(x)  has 
compact resolvent on L2(1, c~). 

Proof of Theorem 3.1: This is very close in spirit to the proof of Rellich, 
that  the Dirichlet Laplacian of such horns has compact  resolvent. It  clearly 
suffices to prove tha t  Q(H + 1) - IQ  is compact .  Let H L (resp. g +) be the 
operator on {(x,y)  e f ] l x  < L} (resp. {(x,y)  e fl I x  > L})  with an 
additional Neumann  boundary  condition at x = L. Then  

(H4-  1) -1 _< (H L + 1) -1 @ (H  + + 1) -1 
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by Dirichlet-Neuma.nn bracketing and Q = Q~ @ Q+. Each (H L -t- 1) -1 
is compact as the Neumann Laplacian of a region with piecewise smooth 
boundary (see [3], Theorem 1.7.12), so it suffices to prove that 

IIQ~+(H~ + 1)-:Qt II- '  0 

as L --~ oc. But 

Q+( H+ + 1) -1Q+ -< Q+ - ~ y 2  + 1 Q+ 

[(2) 2 ]--1 _< sup f(x)  -2 + 1 --~ 0 
x~_L 

since (~)2f(x)-2  is the lowest eigenvalue of -d2/dy 2 on RanQ +. D 

Proof of Theorem 3.2: By the Stone-Weierstrass theorem, we need only 
prove the result for g(x) = (x-t- 1) -n and then by induction, only for 
g(z) = (x -t- 1) -1, i.e. that 

(H + 1)-152 - J~(H2 + 1) -1 

is compact. 
Since V is bounded, /-/2 has the same domain as the operator H0 ----- 

d 2 --~Fx on 7-/2 subject to Neumann boundary conditions at x = 1. Also 

(H + 1)-1J2 - J2(H2 + 1) -1  

= (H + 1 ) - 1 ( j 2 H 2  - HJ2)(H2 + 1) -1 

= ( H +  1)-1/2(H + 1)-1/2(j2H2 - HJ2)(Ho + 1)-:(Ho + 1)(H2 + 1) -1 

and it suffices to prove that 

A = (H -I- 1)-:/2(J2H2 - UJ2)(Uo -t- 1) -1 

is compact. According to Proposition 2.2 

"Av"2 (- IlklJ~(Ho + l ) - lv  l2 

+ like(go + + c4l(m + 1 ) - l v ( 1 ) l  . 

Our assumptions on kl and k 2 imply that kl ~ (H0 + 1) - :  and k2 (Ho + 1)- 1 
are compact. Moreover 

(Ho + 1 ) - i v ( l ) - -  (v, w} 

where w E 7-/2. The compactness of A follows by a general argument, c 
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Proof of  Theorem 3.3: By Theorem 3.1., (H + 1) -1 is compact  if and 
only if (H  + 1 ) - I P  = (H  + 1) - l J2J~  is compact. By Theorem 3.2, this is 
compact if and only if J2(H2 + 1) - l J~  is compact. Since J2 is an isometry, 
this operator is compact if and only if (/-/2 + 1) -1 is compact. But as noted, 

d 2 /-/2 is unitarily equivalent to - d~-'~- + V(x).  [] 

COROLLARY 3.4. If  f, k and k2 vanish and V(x)  ---* oo as x --* oo, then 
- A  N has compact resolvent. 

Of course, since the theorem of Evans and Harris is necessary and 
sufficient, this is a weaker theorem but  it may be easier to check that  V(x)  -4 
oo than their condition. In particular, this easily gives the case f ( x )  = 
exp(-x~);  a > 1. 

4. The Enss Theory 

In this section, we will prove Theorem 1.1. It is a fairly straightforward 
application of the version of Enss theory [5] as expanded in [10] using the 
method of Mourre [9] for identifying incoming and outgoing subspaces with 
a simplification of Davies [2] (see also [1]). 

d 2 Let Ho be the Neumann Laplacian, -2~-~ on L2(1,00;dx) .  Let A be 
the scale transformation about 1, i.e. 

A = �89 - 1 ) p + p ( x -  1)] 

on L2(-c~,  00; dx). Interpret L2(1, 00; dz) as the functions on L2(-oo ,  c~; dz) 
even under  reflection in x = 1. A leaves that  space invariant, so it induces 
an operator we will Mso call A on L2(1, oo; dx). Because of the view of Ho 

d 2 as - ~  on L2(-oo ,  c~; dx) restricted to a subspace, we have the following 
(see e.g.[i]). 

(a) Let P• be the spectral projections for A on 4-(0, co). Let P2- be 
the spectral projections for A for 4-(4-a, oo). Then P~_ -t- p_a = 1. 

(b) Let suppg C {p2 [ a < [p[ < ~}. Then for each e > 0 and a: 

H~(x < 2 ( a - e ) t  or z > 2(;~+e)t)e-itH~ -y) 
for all N as t ~ 4-00 where we use the Enss notation ~(set) to indicate the 
characteristic function of the set. (Note: since H0 = p2, the velocity is 2p.) 

(c) For each a, s - l i m  P ~ e  - i t g ~  -~ 0 . 
t--* =l=oo 

With these preliminaries we prove Theorem 1.1 as follows: 
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Step I. s-lim (H+l)-l/2eitHJ2e-i~H~ exists. This follows by the standard 
Cook estimate from (1.6). To be explicit, we note that if 

for a vector valued function, then w is Cauchy and so lim w(s) exists. Since 

U Ran (g(/-/0)P~.) is dense we need only show for all such g and a: 
a~g 

o ~ + - 4Ho)e "Iog(Ho)P;ullc t < c o .  1)-I/e(Hj= 

This follows from Proposition 2.1 and (b) above. 

Step 2. ~ -  = s-lim e i tHJ2e- i tH~ exists. For by Theorem 3.2 
t--,q:oo 

(H + 1)-1/2J2 - J=(H2 + 1) -1/2 is compact and by the hypothesis on V, 
(//2 + 1) -1/2 - (Ho + 1) -1/2 is compact so 

s-lira e itH [(H + 1)-1/2J2 - J2(H0 + 1)-z/2]e -itH~ = O. 
t-*~:or 

Thus by Step 1, f t•  exists if u E Ran(H0 + 1) -1/2 which is dense. 

Step 3. (H + 1)-1/2(f~ • - J2)g(Ho)P• is compact. 

This follows from two notes. First, by the proof of Step 1, 

(H + 1)-l/2(eitH J2e-itH~ - J2)g(Ho)P• 

converges in operator norm as t --* co so it is sufficient that each of these 
operators is compact. Second, such operators are a finite integral of the 
form 

(H + 1)-l/2eitH(HJ2 - J2Ho)e-itH~ 

and these are compact by the estimates in Proposition 2.1. 
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Step 4. If u~ e ~ r  • with II(H+l)u ll bounded and ( H + 1 ) l / 2 u ,  -* 0 
weakly, then [[u,~[[ ~ 0. For u~ E 7-/s implies (f~*)*Un = 0 and so by Step 3 
for any g: 

P*g(go)J Un ---' O . 

Since P+ + P_ = 1, g ( H o ) J ~ u ,  ---* O. Now 

g(go)J  - J g(H)= {g(Ho)-g(H2)}J  + {g(g2)J  - J g(g)} 

the first te rm on the RHS being compact by the hypothesis on V and the 
second being compact by Theorem 3.2. Therefore J * g ( H ) u ,  ---* O. Since 
[[(H + 1)un}[ is uniformly bounded we can make [Ig(H)u,  - u.[[ uniformly 
small for all n for an appropriate choice of g. It follows that  J*un --* 0. 

Thus 

Pun  = J2J~un ---, 0 . 

By Theorem 3.1 Qun ~ 0 so u ,  --~ 0. 

Step 5. a~ing(H) = 0 and in any finite interval H has only finitely many  
eigenvalues, each of finite multiplicity. For, if not, then it is easy to construct 

an orthonormal sequence un obeying u~ e ~a~, [1( H + 1)un[[ bounded and 
(H + 1)1/2u~ --* 0 weakly. But then u ,  ~ 0 by Step 4 contradicting the 

fact that  u~ is normalized. 

Step 6. Ranf~ + = ~ r  in particular a~r has multiplicity 1. Let u E 
~/~r N (Ran f~+) • with u e D ( H ) .  Let an = e-inHu. By (c), P - ( f P ) u n  = 

P - e - i n H ~  ~ O, so as in Step 4, [[Unl[ --~ O, i.e. u = 0. 

Step 7. H actually has embedded eigenvalues if h = 0. For let R • be the 

projection onto those functions in L 2 (f]) which are even/odd under y -* - y .  

R + commutes  with H and Ran R_ C Ran Q so H t Ran R -  has compact  
resolvent by Theorem 3.2. Thus it has the infinity of eigenvalues. 

For an example like { (xy)  [(x,  y) _< 1} there are four horns so by local- 
izing our arguments,  we get absolutely continuous spectrum of multiplicity 

four. Embedding eigenvalues come from the space odd under both  x --~ - x  
and y --, - y .  

Appendix  

Here is a quick proof of the following known result (see [3], Theorem 5.2.10 
and [7]). 

THEOREM. Let  f2 C R v be open with [f~[ = c~. Then 0 E aess( - -AN).  
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Proof: Let a n  --- {x e ~ I Ilxll < n} and let 

1 

un = n -  [[xll 
0 

Ilxll _ < " -  1 
n - ~ < Ilxll _< n 
I1-11 _> n 

so an ~ ( u n , - Z ~ . n ) / ( u . , u n )  < l a n \ ~ n - l l / l ~ n - l l .  We claim that 

l iman = 0 (A.1) 

so tha t  there is a subsequence of unit  vectors w .  - u . / H u n  H with wn --* 0 
weakly (since ]~ . -1]  ---' c~ and (wn,--AaNw.) -~ 0). For if (A.1) fails, 
] f ln \ f l~_ l l / I f ln_ l  _> (1 + a )  for some a > 0 and all n large so fin _> (1 + a )  n 
violating ]f~n I -> tv nv" o 

The reader may  notice this is just  an extension of Schnol's argument 
[13],[1]. 
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