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ABSTRACT. An explicit construction of solutions of the modified Korteweg-de 
Vries equation given a solution of the (ordinary) Korteweg-de Vries equation 
is provided. Our theory is based on commutation methods (i.e., N = 1 super- 
symmetry) underlying Miura's transformation that links solutions of the two 
evolution equations. 

In connection with the extensively studied Korteweg-de Vries (KdV-) equa- 
tion 

its cousins, the modified Korteweg-de Vries (mKdV,-) equations 

have also been investigated. In fact, (1.2+) has been treated in some detail in 
the literature: See, e.g., [12, 51, 67, 68, 69, 74, 11 1] for existence and unique- 
ness questions, [58, 105, 107, 1 13, 1 141 for the derivation of the N-soliton 
solutions and [94, 1081 for the general approach to (1.2+) via inverse scattering 
techniques. The Lax pair for (1.2 f) has been given in [I071 and finally (1.2 f ) 
have been found to be subordinate to the AKNS-ZS-theory [4, 931 (cf. [34]). 
For more recent work on (1.2+) see, e.g., [11, 13, 70, 1181. 

Surprisingly enough, apart from existence and uniqueness questions of so- 
lutions of (1.2-) in [12, 51, 68, 69, 74, l l l], no detailed study of (1.2-) 
seems to have appeared until 1984 when Grosse [54] (see also [55]) derived the 
N-soliton solutions of (1.2-) . 

The present paper is devoted to a detailed investigation of real-valued solu- 
tions of the mKdV--equation (1.2-) (from now on simply denoted by mKdV). 
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Our theory is based on Miura's fundamental relation [88] 

that yields solutions $2 f4, of the KdV-equation ( I .  1) given a solution $ 
of the mKdV-equation (1.2-) . In view of the fact that mKdV has a higher 
nonlinearity than KdV and the latter has been studied so thoroughly in the 
literature, one would clearly like to invert that procedure, i.e., given a solution 
V of (1.1) one would like to construct all solutions $ of (1.2-) that are linked 
to each other via Miura's transformation 

(1.4) V = $ 
2 
- $, (resp. V = $ 2 + 4,). 

For smooth, bounded, and real-valued solutions V,  $ this has been achieved 
in [50] from a theoretical point of view (see Theorem 7.9). Our main objective 
in this paper is to illustrate this method at work, i.e., to explicitly construct 
new classes of solutions of the mKdV-equation such as soliton-like solutions, 
periodic solutions, solitons relative to periodic background solutions and to 
describe some of their properties. (Here soliton-like means solutions V($) 
of the (m)KdV-equation that approach time-independent (possibly different) 
asymptotic values V*($,) E R as x -r f c c  and periodic always refers to 
spatially periodic solutions, i.e., for some a > 0 : 

V(t,  x + a )  = V(t,  x)($(t ,  x + a )  = $(t ,  x)) 

for all ( t ,  x) E J R ~.) 
Before describing the content of this paper in more detail we would like to 

explain the main ideas of [50] in an informal manner. Consider the Schrodinger 
operators 

in L'(R), where the 5 are defined according to Miura's transformation (1.4), 
i.e., 

(In order to simplify matters, V;., 4, and its partial derivatives are assumed to 
be real-valued, smooth, and bounded.) By inspection one verifies the factoriza- 
tions 

where 

In particular, this forces Hj to be nonnegative, i.e., 
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In order to solve the Riccati-equation (1.6) for 4 if, for instance, V, is given, 
one introduces the linearization 

where yo satisfies 

(1.11) Hly/=O andhence Ay/=O 

(the latter equation being equivalent to (1.10)) in the distributional sense. Equa- 
tion (1.10) shows two things: First of all we need yo > 0 in order to get 
nonsingular 4 's. Secondly, 4 will be uniquely determined by V, only if the 
equation H, y /  = 0 has a unique (up to multiple of constants) positive solution 
y o .  Otherwise, we expect a one-parameter family of solutions 

where 

and t,u+ and y/- are linearly independent. Thus we are forced to a close ex- 
amination of the zero-energy spectral properties of H, which will lead us to 
the concept of (sub)criticality of Hl . (Roughly speaking, Hl is (sub)critical 
if the equation Hly /  = 0 has 1 (2 linearly independent) positive distributional 
solution(s).) 

So far we have ignored the t-dependence of V, and 4 .  Let us assume that 
5 satisfies the KdV-equation ( I .  1) in what follows. Then the commutation 
relation for the Lax pair (HI(t), B y  ( t)), 

where 

proves that Hl(t) is unitarily equivalent to H,(0) for all t E R and hence ( 1.9) 
holds for all t E R if it holds, e.g., at t = 0 .  Moreover, assuming that the y/, 

in (1.13) evolve according to Bvl , i.e., 

fixes the time-dependence of y/, in such a way that the Wronskian of y/, and 
y/- becomes t-independent. In particular, the KdV-flow leaves the number of 
linearly independent, positive solutions of H,(t)y/(t) = 0 invariant. In other 
words, given V,(t ,x) with KdV(V,) = 0 ,  we either get a unique solution 
$,(t, x) of (1.6) for j = 1 or we get a one-parameter family $,(t, x ) ,  a E 
[- 1, 11,of such solutions. What remains to be indicated is why, in either case, 
4, also satisfies the mKdV-equation (1.2-) if a is time-independent. This 
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can be made plausible by recalling that the mKdV-equation subordinates to the 
AKNS-ZS framework and 

represent a Lax pair for the mKdV-equation, i.e., 

But then the identity 

shows the intimate connection between the Lax pairs (1.14) and (1.18). In 
particular, this gives a hint as to why the parameter a in (1.13) should be time- 
independent, since otherwise yo in ( 1.13) would not evolve according to B,;, 
(see (1.16)). These statements will be justified in the first part of 57, where we 
shall reprove the main result of [50], viz. that the time independence of a in 
(1.13) is not only sufficient but also necessary for 4, to be a solution of the 
mKdV-equation. 

Summarizing the above, we infer that the connection between the KdV- and 
mKdV-equations, effected by the Miura transformation 

Miura 
(1.20) 	 KdV(7)  = 0 1 ) mKdV(4) = 0 ,  j = 1 ,  2 ,  

V,  =$2+(- l ) J $ x  

reflects itself in the connection between the two Lax pairs 

While the connection between BY , 3,;, and B is simple (see (1.21)), the 

connection between the Schrodinger operators Hl = A*A , Hz = AA* and the 
Dirac operator Q = (iAo* ) (being of AKNS-type) is more subtle (see 52). 

Thus a realization of the program formulated in the paragraph following (1.4) 
requires the study of different topics such as commutation methods, i.e., the con- 
nections between operators of the type A*A ,  AA* , and (: () , spectral and 
scattering theory for Schrodinger and Dirac operators, and inverse spectral and 
scattering theory for Schrodinger operators. In order to make this exposition 
reasonably self-contained we have included a concise treatment of these subjects 
in $52-6: $2 provides all the general facts on commutation methods needed in 
$57-10. While the main body of this section summarizes results from various 
sources in the literature, Theorem 2.3(ii) (although presumably known to some 
experts) apparently has not appeared in print before. 53 is devoted to a detailed 
study of spectral and scattering properties of one-dimensional Schrodinger op- 
erators. In Theorems 3.1-3.3 we generalize known results in the case where the 
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potential decays sufficiently fast as x -,kcc to the case where the potential has 
a nontrivial spatial asymptotics. This generalization is crucial in transferring 
soliton-like solutions of the KdV-equation to that of the mKdV-equation (cf. 
Remark 7.2(iii)). The remaining material in $3 summarizes some elements of 
Floquet theory for Schrodinger operators. $4, based on $$2 and 3, carries over 
the results on Schrodinger operators to that of Dirac operators of the type 

In particular, Theorems 4.2 and 4.3 and Lemma 4.5 appear to be new. $5 gives 
a short account of relative scattering to be used in $$8 and 10, where soliton 
solutions of the (m)KdV-equation relative to a trivial (i.e., constant) or periodic 
background solution of the (m)KdV-equation are shown to be characterized 
by the property of being relative reflectionless with respect to the background. 
In $6 we recall the process of adding eigenvalues into the spectral gaps of a 
background Hamiltonian since this represents a general method of constructing 
solitons relative to a nontrivial (not necessarily periodic) background. Theorem 
6.1, in the first part of $6, extends a known result where the background potential 
vanishes sufficiently fast as x -,frn ,while the second part is devoted to a study 
of the corresponding periodic problem. 

$7 is the main section and consists of three parts. In the first one we reprove 
the basic-result of [50] (in fact, we provide more details than in [50]). In 
particular, we relate the existence of nonsingular solutions $ of the mKdV- 
equation and of Miura's transformation (1.6) with j = 1 ,given a KdV-solution 
V, ,to the fact whether Hl(0) in (1.5) is nonnegative or not. Moreover, recalling 
the notion of (sub)criticality of Schrodinger operators, we show in Theorem 7.9 
that $ is uniquely determined by V, iff Hl(0) is critical. The second part of 
$7 contains the main body of our new results. Given Theorem 7.9 we describe 
in detail the construction of soliton-like solutions and their basic properties in 
Theorem 7.14 and Remarks 7.1 5-7.17. The case of periodic solutions is treated 
in Theorem 7,18 and Remark 7.19. It turns out that, given a periodic solution 
V, of the KdV-equation with Hl(0) being subcritical, only the special values 
a = k1 in (1.13) lead to periodic solutions $,, (t , x )  of the mKdV-equation. 
The final part of $7 contains hints at various possible extensions of our approach 
to a generalized mKdV-equation of the type 

and to the entire hierarchy of (m)KdV-equations. 
In the remaining $58-1 1 we transfer particular classes of solutions of the 

KdV-equation to the mKdV-equation. $8 (based on $$2-7) is devoted to the 
transfer of the class of KdV-soliton solutions to the mKdV-equation, thereby 
providing an alternative way to derive all soliton solutions of the mKdV-
equation. (Their original derivation in [54] uses inverse scattering techniques 
for Dirac systems.) In $9 (using $52-4 and 7) we consider the special example 
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of a periodic two-zone solution V, of the KdV-equation and transfer it to the 
mKdV-equation. In the course of this we also extend a well-known theorem of 
Hochstadt's [59] in connection with periodic two-zone Schrodinger operators to 
the case of Dirac operators (1.22). In $10 (relying on $$2-9) we first recall the 
construction of solitons relative to the periodic two-zone solution of the KdV- 
solution V, considered in $9 (originally this has been done in [76]) and then 
transfer this solution to the mKdV-equation. Finally, in $ 11, we indicate how 
to extend the framework of $7 to singular solutions of the (m)KdV-equation 
by dropping the condition of nonnegativity of H,(0) .  All mKdV-results in 
$$9-11 are new. In contrast to $8 which is complete, $$9- 1 1 only present the 
simplest possible nontrivial solutions of the corresponding classes involved, e.g., 
a transfer of the whole class of periodic n-zone solutions (n E N) of the KdV- 
equation to that of the mKdV-equation based on hyperelliptic function theory 
(although particularly interesting because of links to algebraic geometry) would 
necessarily catapult this paper beyond any reasonable length. Thus we confined 
ourselves in $39 and 10 to the case of elliptic functions only. A similar remark 
applies to $ 1 I. (We note, however, that a transfer of the full class of periodic n- 
zone KdV-solutions expressed in terms of Riemann's theta function associated 
with the underlying hyperelliptic curve of genus n - 1 and a transfer of a large 
class of singular KdV-solutions expressed in terms of Wronski determinants 
has been completed in the meantime and will be published elsewhere.) 

We finally remark that the methods developed in [50] and in the present paper 
are by no means restricted to the KdV- and mKdV-equations. In fact, they 
also apply in a 1 + 2-dimensional context such as the Kadomtsev-Petviashvili- 
equation and its modified analog as well as in the context of discrete nonlinear 
systems such as the Toda lattice and its modified version the Kac-van Moerbeke 
lattice (corresponding manuscripts are in preparation). 

In this section we review certain formulas based on commutation and add a 
few new results of this type in Theorem 2.3(ii). 

We introduce the following hypothesis: 

Let 4 j ,  j = 1, 2 ,  be separable, complex Hilbert spaces and A :
(H.2.1) 

B (A) c 4 ,+ 4 ,  a densely defined, closed linear operator. 

We are particularly concerned with abstract Dirac operators in 4 ,$ 4 ,  of 
the type 

and 
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Because of the identity 

where 

we shall only consider the symmetric version (2.4). We note that 

where 
2H , , m : = ~ * ~ + mO ~ D ( A * A ) ~ ~ , ,  

:=AA* + m G fj,,(2.6) Hz,, 
2 

on ~ ( A A * )  m E R ,  

H , , ~:= H, = A*A,  H ~ , ~  AA*:=H~= 

(we delete the symbol 1 in multiples of the identity operator in f j  ,, j = 1, 2 ,  
and f j  ,$ f j  from now on). 

Next we collect a few useful commutation formulas. 

Theorem 2.1 [32]. Assume hypothesis (H.2.1) and let f E (R). Then 
(i) 

where S := sgn(A) denotes the partial isometry with initial set R ~ ~ [ ( A * A ) ~ / ~ ]  
andfinal set Ran(A) in the polar decomposition of A. 

(ii) 

is the corresponding partial isometry in the polar decomposition of Q 
(iii) 

(2.11) Sf(H, = f (H2)S. 

In particular, Hl and H2 are essentially isospectral, i.e., 
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and 

(2.13) H l l y = E l y ,  E#O*H2(Aly)=E(Aly) ,  l y ~ 9 ( H , ) ,  

H 2 q = 2 p ,  B # O + H ~ ( A * ~ ) = E ( A * ~ ) ,~ E D ( H ~ ) ,  
with multiplicities preserved. 

(v) 

(vi) 

(2.15) A * ~ ( H ~ ) > ~ ( H ~ ) A * ,A f ( H l ) 2 f ( H 2 ) A .  

Sketch of proof. Let T denote a densely defined, closed linear operator from 
9 (T)  C A -) A I' , where A I ,  3 'I are separable, complex Hilbert spaces. 
Then sgn(T) is defined by 

The spectral theorem for selfadjoint operators together with the following ob-
vious equalities then proves (i)-(vi): 

Q = I Q I  sgn(Q) = sgn(Q)IQl, 

m e 2 )2 f ( e 2 ) e .  
Remark 2.2. Theorem 2.1 is due to Deift [32]. The idea of proof, presented 
above, is due to Nelson (unpublished) and has been summarized in [109]. 

Theorem 2.3. Assume (H.2.1). Then 
0 )  

z2 E C\{o(H, ,,I u 4H2,,)}. 

(ii) Dejne 

then 
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(together with A = SlAl = IA*IS, A* = S*IA*l = IAIS*), shows that Q, is 
unitarily equivalent to -Qm on the subspace K e r ( ~ ) '  of 4 , @ 4 2 ,  i.e., 

Moreover, 

(2.23) 

and Q is unitarily equivalent to -Q, i.e., 

(2.24) g3Qa3= -Q. 

Proof. (i) is most easily verified by multiplying with (Q, - z) from the left 
and right respectively. (ii) is obvious from the fact that S*Sis the projection 
onto Ker(A) and SS* is the projection onto Ker(A*). 
Remark 2.4. (i) By identity (2.3), these results extend to Q,, ,m2in a straight-
forward manner. 

(ii) Since by (2.22), 

we infer that A*AIKer(,)~ and AA*JKer(,.)~ are unitarily equivalent, i.e., 

A*A = S*AA*S on Ker(A)',
(2.26) 

AA* = SA'AS* on Ker(A*)'. 

Thus we recover Theorem 3 of [32]. 
The above assertions may be supplemented by the following results. 

Theorem 2.5 [109]. Assume (H.2.1). 
(i) There exists a unitary operator Urn on K e r ( ~ ) '  such that 

2 -112 112aj,* := 2-lI2{l i m ( H , + m  ) } , j =  1 ,  2 ,  m EW. 
(ii) There exists a unitary operator Wm on K e r ( ~ ) '  such that 
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In this section we study Schrodinger operators Hl = A*A , H2= AA* ob-
tained from a concrete realization of A in L2 (w) , formally given by +Q(x), 
where 4 satisfies one of the following hypotheses: 

(H.3.1) 4 , 4' E L" (R) real-valued, 

(H.3.2) 4 ,  4' E Lm(R) real-valued, for some a > 0 : $(x+ a)  = $(x) ,  x E 
R .  

The factorization of 2nd-order Sturm-Liouville operators has a long history: 
It dates back at least to Jacobi [63], respectively Darboux 1291. Other important 
contributions are [19, 20, 28, 991 (see also the references therein) and espe- 
cially [32]. Quite recently these ideas became popular again in connection with 
supersymmetric quantum mechanics [8, 16, 17, 24, 49, 64, 91, 104, 1091 (see 
also the references cited therein). 

In both cases (H.3.1) and (H.3.2) A is defined in L ~ ( I W )by 

and hence 

Next we briefly summarize spectral and scattering theory for systems gov- 
erned by (H.3.1). (For more details see, e.g., 116, 23, 27, 31, 33, 49, 961.) Let 
f ,,+(k, ,x) , defined by 
(3.3) 

= e+ik*x -lirn - - (k,dx ' k i l  sin[k+ (x xf)][? (x') V,]f,, , , x') , 

Imk,>O, 
2 

j = l , 2 ,(3.4) k : = ( z - ~ + ) ~ ~ ,  z , V+ :=4+ ,  

be the Jost solutions of Hj , i.e., 

(3.5) H j f , , . ( k , , x ) = z f , , . ( k , , x ) ,  z ~ @ . , j = 1 , 2 ,  

in the distributional sense. Clearly 

(3.6) w ( f , , , ( - k , ) , f , , . ( k F ) ) = ~ 2 i k , ,  z > V , , j = l , 2 ,  

where W(F , G)(x) := F(x)G'(x)- F'(x)G(x) denotes the Wronskian of F 
and G . Spectral properties of H, are reviewed in 

mailto:z~@.,j=1,2
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Theorem 3.1. Assume (H.3.1). Then 

Moreover, the H j  , j = 1 , 2 ,  have simple spectrum in (4: , 4:) (zf 4: < 4:. 
otherwise delete this assertion) and spectral multiplicity two in (m: ,  m). In 
addition, the Hj  , j = 1 , 2 ,  have finitely many simple eigenvalues I j , l  = $*2 

-

~2
J > * ,1 

in [O , 4:) determined by 

If 4: > 0 ,  the (simple) eigenvalues of H ,  and H2 coincide in ( 0 ,  4:) . There 
are no eigenvalues embedded into the essential spectrum and there are no thresh- 
old eigenvalues, i.e., 

2 112If W ( J  ,- ( 0 ), J :  +(i($: - $-) ))  = 0 ,  then Hj  has a threshold resonance 
whose wave functzon t,uj (suitably normalized) satisfies 

Next we describe the unitary on-shell scattering matrix S,(A) associated with 
Hj  . 
Theorem 3.2. Assume (H.3.1). Then if 

( i )  I > 4: :Sj (A)  in c2is given by 

where the transmission and reflection coeficients from the left and right are given 
by 

( i i )  $: < A < $: : 

(3.13) 	 = - W ( J ,  - ( k - ) ,  J , + ( k + ) ) / W ( J , - ( k - )  > J , + ( k + ) ) ,  
j =  1 , 2 .  
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Unitarity of S,(A) now trivially follows from (3.6)and the identity 


w ( F 5 G )  ( x )  W ( f ,  g ) ( x )  = W ( F , g )  ( x ) W  ( f , G )  ( x )  
(3.14) 
- W ( F ,  f ) ( x ) W ( g ,  G ) ( x ) .  

In particular, 

So far we have treated S l (A)  and S,( I )  separately. However, $2 suggests 
that actually there should be a close connection between them. First of all we 
infer that 

are correctly normalized Jost solutions of Hl and H2 . Using the elementary 
identity 

(3.17) W ( A f( 2 )  A g ( z ) )= z W ( f ( 2 ), g ( z ) )  2 E @ ,  

where f ( z,x ) ,g ( z , x )  are any distributional solutions of 

(3.18) ( A * A V ( z ) ) ( x )= ( H I  V ( z ) ) ( x )  = z V ( z , x )  z E c, 
we obtain 

Theorem 3.3. Assume (H.3.1). Then i f  
(i) A > 4: : 


Tl(A)= ( ik- + $-)(ik+ + $+I-'~ ~ ( 2 1 ,  

1 - 1  1(3.19) R 1 ( A ) =  ( i k - + 4 - ) ( - i k - + $ - )  R 2 ( 4 ,  

- 1  r
~ ; ( I ) = ( - i k + + 4 + ) ( i k + + 4 + )  R 2 ( 4 .  

(ii) 4: < I < 4: : 

(3.20) S l ( I )= ( ik- + 4-)( - ik- + 4 - ) - l ~ , ( I ) .  

Remark 3.4. We also note that the norming constants cj ,,, , associated with 

nonzero eigenvalues A,, = $*2 
- K,, 

2 
+, of H, , j = 1 , 2 ,  are connected with 

each other as follows. Let 

(3.21) I C , , * ~ ~ := l l & , * , l ~ ~ ~ l , J = 1, 2 ,  1 = 1 ,  2 ,  ... , 
where 

H j f , , * , / = ' j , i f , , + , i ~  f , , * , /  E H ~ ( ' ) ?  
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Then 

-1 112 
= * 1 , * , 1 *  1 , * , I Ic2,*,Jl' 1 = 1 ,  2 ,  . . .  . 

Remark 3.5. As discussed in [49], the hypothesis (H.3.1) in Theorems 3.1-3.3 
can be considerably weakened in the sense that for most of the results stated 
above one only needs the zeroth or first moments of I$(x) - $*I, ~$'(x)lto be 
finite. 

Now we briefly turn to systems governed by (H.3.2). Since now q ( x )  = 

$ 2 ( ~ )+ (-l)j$'(x) are periodic, Floquet theory (see, e.g. [30, 38, 62, 79, 85, 
86, 95, 110, 1121) applies. To fix the notation, we briefly introduce normalized 
Floquet solutions [43, 451: 

where the Floquet solutions y / i , ,  (k ,x) are defined as follows. Let 

in the distributional sense with 

and define the discriminant Fj by 

By taking into account that Hl and H2 are essentially isospectral, one derives 
that 

O1(z,X I ,  v l ( z ,  X I ,  

(3.29) O2(z,x) = ~ { z - ~ $ ( o ) e ~ ( z ,x) + [ l  - z - l $ ( ~ ) ~ l q , ( z ,x ) } ,  

r 2 ( z ,X)  = A { - - Z - ' ~ ~ ( Z ,X)+ Z - ~ $ ( O ) P ~ ( Z ,x)}, z @\{o}, 
satisfy the boundary conditions (3.27). Thus we actually infer 

Now the yj,,  are defined by 

(3.31) ~ , , * ( k ,x )  := e j (z (k ) ,x )  + mj,*(z(k))qj (z(k) ,x ) ,  j = 1 ,  2 ,  

where 

(3.32) mJ , *. (z)  := {q;(z, a )  - Bj(z, a )  r ~ \ / F ( z ) ~- l}/2qj(z,  a ) ,  
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z E @\{A, E ll n E N }  , \ ~ F ( A ) '- 1 > 0 for A < inf[o(H,)], j = 1 ,  2 ,  with 
A,, n E N ,given by 

(3.33) F,(A,) = 0 ,  n E N ,  

and the Floquet parameter k defined by 

In addition one has 
*ikx 

(3.35) f , , , ( k , x ) = e  	 p, , . (k ,x) ,  p j , . ( k , x + a ) = p j , . ( k , x ) ,  
j =  1 , 2 ,  

W ( f ,,.(-k) 9 f ,  ..(k)) = ka i s in (ka) lF , ( z (k ) )  

(3.38) 	 = FaJ- / F , ( z ( k ) ) ,  

z E@\{A,I n E N } ,  j = 1 ,  2. 

Theorem 3.6. Assume (H.3.2). Then the spectra of H ,  and H2 coincide. They 
are purely absolutely continuous and of multiplicity two. Moreover, 

Remark 3.7. ( i )The fact that Fl ( z )  = F2(z )  is not surprising when taking into 
account that [95, p. 3841 

F,(z) - 2 
= det[(ho- z l ) - ' (h ,  - z ) ],

(3.41) Fo(z l )- 2 

where 
(3.42) 
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are the reduced operators in L2((0, a)) with periodic boundary conditions, 

the corresponding unperturbed discriminant, and det (.) denotes the Fredholm 
determinant. Thus 

(3.44) F,(2) - 2 = det[(h, - 2)-'(h, - z)] = I ,  z E ~ \ o ( h , ) ,
F,(z) - 2 

by applying commutation to h, and h2 . More generally, applying the Hada- 
mard factorization theorem to Fl(.) , one can prove that Fl(.) is an invariant 
for all periodic potentials (with period a > 0 ) in the isospectral manifold of 
V, (see, e.g., [21]). 

(ii) Not only the effective masses (i.e., d'k/d~'j,=,~ , n E A )  of V, and V, 
coincide (cf. [103]) but also the Floquet parameters and the dispersion laws 
associated with H, and H2 are identical in spite of the fact that 5 # V, 
(excluding the trivial case 4 = const). 

For further applications of commutation in the periodic case see $9. 

We end this section with a simple observation: 


Remark 3.8. Let 4 ,  4' E Lm(W) be real-valued, A = & + 4 on H' (w) . Then 
Hl = A*A and H2 = AA* cannot simultaneously have zero as an eigenvalue. 
Indeed, if 

then 

in the distributional sense and the assumption w;' E L2(W) (together with the 
fact that 0 must be a nondegenerate eigenvalue of HI)  leads to the contradiction 

Given the explicit realizations of A in L2(W) of the foregoing section, we 
now study the associated Dirac operator 

in L ~ ( w )8 c2. 
Since Theorems 2.3 and 2.5 directly apply to (4.l), we do not need to repeat 

them here. 
First we consider systems satisfying (H.3.1). Combining Theorem 3.1 and 

the results of $2 then yields the following theorem. 
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Theorem 4.1. Assume (H.3.1). Then 

2 112 2 2 112 
and Q, has spectral multiplicity one in (-(4: + m ) , -($- + m ) ) 
2 112 2 112 
((4: + m ) , (4: + rn ) ) (8$2 < 4:. otherwise delete this assertior 

2 112 2 112 
and spectral multiplicity two in ( -m,  -($: + rn ) ) u ((4: + m ) , m) 
2 112 
In addition Q,,.. has finitely many simple eigenvalues in (-($: + rn ) 

2 112 
(4: + m ) ) (assuming 4- # 0 or m # 0 )  symmetrically placed w.r.t. zer 
with the possible exception at & m  ( i f  both 4- # 0 ,  m # 0 ) .  There are n 
eigenvalues embedded in the essential spectrum and there are no threshold boun 
states, i.e., 

2 2 112 2 112 

(4.3) op(Qm)n { ( -m,-(4- + m ) 1u [(B? + m ) , m)} = 0. 

Next we turn to the on-shell scattering matrix associated with Q, . In vie\ 
of Theorem 2.5(i) and ( 3 . 9 ,  the Jost solutions of Q, are given by 

In analogy to Theorem 3.2, the unitary on-shell scattering matrix S ( E )  corre 
sponding to Q, then reads 

Theorem 4.2. Assume (H.3.1). Then if 
(i) El  > (4: + rn2)'I2: S ( E )  in C2is given by 

where 
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Here 

and W ( 0 ,  Y )  denotes the determinant of a ,Y E c2. 
Taking into account the identity 

(4.10) 

W ( Y - ( E ,  ok-1, Y + ( E ,  olk+)) = m ) , 
W ( f l  , - ( o k - ) ,  f ,  , + ( o ' k + ) ) l ( l ~ l +  

and similarly for E < -($? + m2) ' I2, we finally obtain 

Theorem 4.3. Assume (H.3.1). Then 

Next we briefly discuss systems satisfying (H.3.2). Theorems 2.5(i) and 3.6 
imply 

Theorem 4.4. Assume (H.3.2). Then the spectrum of Q, is purely absolutely 
continuous, symmetric with respect to the origin, and of multiplicity two. More- 
over, 

with E n ,  n E N o ,  given by (3.39), and 

We also state 

Lemma 4.5. Assume (H.3.2). Let F Q m ( Z ) ,  Z E @ ,  be the discriminant of Q, . 
Then ( c j  (3.30)) 

(4.14) F Q m ( Z ) = ~ ( z 2 - m 2 ) ,  Z E @ .  


Proof. Similar to (4.4)and (4.9)we get a fundamental matrix a, for Q, 
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with 8, , q j ,  j = 1 ,  2 ,  defined in (3 .27)and 

Using (3 .30) ,we obtain 

Analytic continuation w.r.t. E of both sides in (4 .17)then yields (4 .14) .  

For further results in the periodic case see Theorem 9.3.  

In this section we consider relative scattering, i.e., scattering for the pair 
( H ,  + W ,H,)  with H, , j = 1 , 2 , satisfying (H.3 .1 )or (H.3 .2 )and W satis-
fying hypothesis 

(H.5 .1 )  W E L ~ ( R )nL~( R; ( 1  + x 2 )d x )  real-valued. 

By (H.5 .1 ) ,  W is a relatively compact perturbation of Hj and hence 

is well defined. Let 6,,( p ,  , x )  denote the perturbed Jost solutions of 4 
defined by 

(5 .2 )  
f,,*(P* 9 x )  = f , , * ( P , ,  x )  

(5 .4 )  
k ,  in case (H.3 .1 ) ,

p* := 
k in case (H.3 .2 ) .  

We also define 

F W ( P , )  := w(J.,+(-P+)5 4 , F ( ~ F ) )  
( 5 . 5 )  = W ( f , , . ( - P , ) ,  4 , , ( ~ , ) )

~ 2 i k ,  in case (H.3 .1 ) ,  
= { hi s i n ( k a ) / F Z ( z ( k ) )in case (H.3 .2 ) .  

Concerning spectral properties of 4 we recall 
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Theorem 5.1. Assume (H.5.1) and either (H.3.1) or (H.3.2). Then 

and the multiplicity of ae,(gj) coincides with that of oess(H,), j = 1 , 2. i n  
addition, the (necessarily simple) eigenvalues of I?, are determined by 

Moreover, there are no eigenvalues embedded in the essential spectrum and there 
are no threshold eigenvalues, i.e., 

-Next we turn to the relative on-shell scattering matrix S,, ,,[(A) w.r.t. the pair 

(H , ,  H,) ,  j = 1 ,  2. 

Theorem 5.2. Assume (H.3.1) and (H.5.1). Let $,(A) ,i > 4: . denote the on- 

shell scattering matrix associated with fi, . Then $ ( A )  is given by (3.1 1)-(3.13) 
with /, ,,(ak,) replaced by 6,,(ak,) , a = +1 , j = 1 , 2 ,  and 

2 
(5.9) sj,,,(a=3,(as,(a-', A > $ - ,  j = i , 2 .  


Proof. For simplicity we assume that 4, = 4- = 0. To fix notations, let 

A ,  B , C be selfadjoint operators in a separable, complex Hilbert space fj and 

suppose ( B- zO)-l - ( A- zO)-l E 23 ( A ) , ( C  - I,)-' - ( A- zO)-l E 23 I ( A ) 

for some z ,  E C\R . (Here 23 (.) denotes the set of trace class operators.) 
Then the wave operators 

exist (Pac(A)is the projection onto the absolutely continuous subspace of A )  
and the scattering operator 

is unitary in Pac(A)A.In view of the applications below, assume L2 ( ( 0  ,m);C 2 )  
to be the spectral representation and U: : Pac(A)A L 2 ( ( 0 ,m); C2)  (con-i 

structed from the generalized eigenfunctions of A )  the spectral transformations 
of APac(A), i.e., 

Since S ( B ,  A) commutes with APac(A),we get for a.e. k E ( 0 ,  m), 

where S ( B  ,A ,  k )  , k > 0 ,  is unitary in C 2 .  Using the chain rule 
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and 

(5.15) A ) * ~ , ( B ,A) = Pac(A), a , (B ,  A) = B)* ,  

one obtains 

(5.16) S ( C ,  B) = Q+(B,  A)S(C, A)S(B, A ) * ~ + ( B ,A)*. 

Finally, taking into account 

(5.17) Q,(B, A) = (u ; )*u~ ,  (u;)*u: = Pac(B), u;(u;)* = 1, 
equation (5.16) implies 

(5.18) U ~ S ( C ,B ) ( u ~ ) *= [u:s(c, A)(u,~)*][u:s(B, A)(U;)*]*. 

Together with (5.13) this yields (5.9) by identifying C = fi, , B = H, , A = 

-d2/dx2,  D (A) = H ~ ( w ). The general case 4, # 0 ,  4- # 0 can be treated in 
a similar manner by introducing two comparison dynamics A, as t --, fcc in 
(5.10) (see, e.g., [96]). 

Similarly one gets (see also [44, 461) 

Theorem 5.3. Assume (H.3.2) and (H.5.1). Then 

2 E o(H,)", j = 1 ,  2. 

(Here M" denotes the interior of a subset M c R .) I.e., formally, Sj ( l )  = 1 in 
the case of (H.3.2). 

Relative scattering theory in connection with the Korteweg-deVries equation 
has also been studied in [89]. 

6. ADDINGEIGENVALUES 

As will become clear in $10, the notion of an N-soliton solution of the 
KdV-equation relative to a nontrivial background KdV-solution is intimately 
connected with the process of adding N-eigenvalues, say {E l, . .. , E N }  to 
the (background) Hamiltonian H, = -d2/dx2 + 5 in (3.2), where o(Hj) n 
{El, ... , E N }  = 0.Moreover, if H, denotes the new Schrodinger operator 
obtained by this process, then one needs the remaining spectral properties of 
HJ and li, to coincide in the sense that 

(6.1) o(&)\ {El  , . .  , E N }= o(H,), oess(fi,) = oess(H,) 
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and similarly for the absolutely continuous spectrum and the spectral multiplic- 
ity respectively. 

In this section we shall consider two cases relevant in $58 and 10: First the 
case where $: = in (H.3.1) and then the periodic case governed by (H.3.2). 
(Throughout this section j will be fixed to be either 1 or 2.) 

Combining $3 with Theorems 3.6 and 3.7 of [33] one gets 
2 $;=:$+=Theorem 6.1. Assume (H.3.1) with 0 5 $! . Let A,, ,  < A,, < 

2$,= 

of Hj and let ri',,, < R j , 2  < . . .  < it.
j ,NJ  

- , . . .  , a .j ,NJ  -- be arbitrary 

positive numbers with K , , ~# it,,, , 1= 1, . . . , N, , m = 1, . . . , N, . Then 

(where W denotes the Wronskian determinant [33]), with 

-
m =  1 ,  . . .  , N,,-

suppons N, bound states 1. - < . . . < A,,  , ,1. = $2 - yJ > NJ j , m  j,m, m = 1 ,03 

E, , with norming constants 

transmission coeficient 

and reflection coeficients -
(6.6) a ; . ' r (a  = ( - I )~J-"J,(k- (A) - i q ,  (k-k - ( ~ )- i*, (A)(A)+ Z Z , , ~R) , 

1=1 k-(A) + i ~ , , /  m= 1 

Remark 6.2. If K,,, = h;,,, for some L ,  M ,  1 5 L 5 N,, 1 5 M 5 fi,, 
(6.3) must be replaced by 

. . < A,, , A,,, 
 2 
- K,, , j = 1, 2 ,  1 = 1, . . . , N, , denote the eigenvalues 
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Here f ,,*( k - -L) are the Jost solutions after having removed the lowest lying 
L bound statis from 5, i.e., 

and 

with 

and 

Remark 6.3. If 5 has no bound states, i.e., Nj  = 0 ,  (6.2) reduces to th 
formula given by [33] 

with -
(6.14) a , , m = ( - l ) m + l f . ,+( i 2 , , m ) + a j , m f , , - ( i 2 j , m ) ,  m = 1 ,  ... ,N j .I 

For V, I 0 (6.13) is equivalent to the fij-soliton formula obtained from th 
Marchenko equation, i.e., 

(see [48, 57, 71, 80, 106, 115]), where 
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The norming constants 2, ,,,, are then related to a,,, via 

For the connection between the Marchenko procedure and commutation 
methods see, e.g., [24]. 

At the end of this section we briefly consider reflectionless scattering relative 
to a finite-zone periodic background potential V; fulfilling (H.3.2). Thereby 

we are looking for potentials W,,,giving rise to 4bound states at energies 

A,,[
 $! O(Hj), l =  1,  ... , fi,, 

and zero relative reflection coefficients R, 1 ,,,,(A) = R;, ,,(A) = 0 ,  I t o(H,) . 
Assuming the unperturbed potential 6 to provide finitely many energy bands 

a,, k = 1, . . . , N ,  the set of bound states {Aj,,l 1 = 1, . . . , fi,} decomposes 

into subsets {Aj, ,1 1 = N, ,,-,+ 1, ... , Nj ,,-, } , (N, ,-, = 0) of N, ,,-, bound 
states respectively, sitting in the (k - 1)th gap (k = 1, . . . ,N) . Applying the 
Marchenko method [80] we have to solve the integral equation 

with kernel -
n'i 

(6.20) Q, ,+(x ,  X I )  = E 2 ; , + , / 4 , + ( k j , p  x)&,+(k, , l ,  x'), 
/ = I  

where f , ,  ,are normalized Floquet solutions belonging to H, (see (3.24)), the 
quasi-momenta kj ,, are related to A,, via (3.34), and Zj ,  ,,, are the norming 
constants corresponding to the lth bound state A,, . For a separable kernel like 
(6.20) an ansatz of the form 

reduces (6.19) to a set of algebraic equations 
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with 

Since for (a, , . . . ,a,) E IRN\{O) 

C,,,(x) is positive definite. Therefore (6.22) can be inverted to give 

f , , * ( k j , l ,  ~ ) f , , * ( k j , ~ ,  XI). 

The potentials Wj ,,are now recovered from K, ,,via 

d
(6.26) y , * ( x )= F ~ - K .  J ,  , (x ,  x ) ,  x E R.d x  

Inserting (6.25) into (6.26) we finally obtain 

(6.27) I?, +(XI  = -2-
d2 

ln{det[l + C,, ,(x)]) , x E R ,
dx2  

for potentials relative reflectionless w.r.t. a finite-zone periodic background. 
Note that in general W, ,+ # W. 

1 , -
(cf. 10). 

Using commutation methods, we now take a closer look at the Miura transfor- 
mation which links solutions of the mKdV- and KdV-equations. In particular, 
we provide an explicit construction of mKdV-solutions given a corresponding 
KdV-solution. 

We introduce hypothesis 

Given (H.7. I), we are interested in studying real-valued solutions of the KdV- 
equation 

and of the mKdV-equation 

(7.2) mKdV(4) :=4, - 64Lq5x+ dxXx= 0 

for ( t ,x) E R ~ .  
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Remark 7.1. In the following we simply assume the existence of smooth solu- 
tions of (7.1) and (7.2). The corresponding initial value problems have been 
studied, e.g., in [12, 25, 26, 51, 66, 68, 69, 74, 80, 87, 101, 11 1] (and references 
therein). 

Introducing the Miura transformation [88] 
2(7.3) ~ ( t , x ) = 4 ( t , x ) ' + ( - l ) ' 4 , ( t , x ) ,  ( t , x ) ~ ~ , j = l , 2 ,  

a simple calculation shows that 

(7.4) KdV(V,) = 124 + (-l)'ax] r n ~ d v ( m ) ,  j = 1, 2. 

Remark 7.2. 
(i) Note that (up to smoothness properties) T ( t  , x) for fixed t E R corre-

sponds to the potential V, of $3 under hypothesis (H.3.1), resp. (H.3.2), i.e., 
V,(t, x) and V2(t,x) are related to each other by commutation! This fact 
seems to have been exploited first by Deift [32] and Adler and Moser [6]. In 
particular, in [6] it is shown that Miura's transformation (7.3) induces a rela- 
tion analogous to (7.4) between all higher order KdV- and mKdV-equations 
(see the end of this section). Further references exploiting commutation are, 
e.g., [7, 12, 13, 42, 65, 75, 82, 83, 102, 1181. 

(ii) In contrast to KdV , the transformation 4 + -4 yields again a solution 
of the mKdV-equation (7.2). This transformation corresponds to interchanging 
Vl and 1/2 (cf. (7.3)) in the KdV-equation (7.1). 

(iii) It has been shown in [3] that rapidly decaying solutions V(t, x) as 
1x1-,cc of (7.1) in general cannot be obtained from rapidly decaying solutions 
4 of (7.2) via Miura's transformation (7.3). This explains the necessity of 
studying solutions 4 of (7.2) with nontrivial spatial asymptotics (see also [48]). 

(iv) It is obvious from (7.4) that, whenever 4 $ 0 satisfies (H.7.1) and (7.2), 
both Vl and V, satisfy (7.1) and (H.7.1) and at least one of Vl or V, is not 
identically zero. On the other hand, if 'V, or 1/2 solve (7. l ) ,  we cannot trivially 
reverse that procedure and construct a solution 4 of (7.2) since 24 7 ax on 
C" (IR2) has the nontrivial kernel 

One of the striking features of V(t, x) , resp. 4 ( t ,  x) , satisfying (7.1), 
resp. (7.2), is that they induce isospectral deformations of the potential in the 
Schrodinger, resp. Dirac, operator [77]: 

Theorem 7.3. (i) Assume V satisfies (H.7.1) and y ( t  , E Lm(IR), t E R .  Ifa )  

in addition V(t ,x) solves (7.1), then the Schrodinger operator H(t)  in L2(R), 

(7.6) ~ ( t )  
2 + v( t  , .) , = H'(R), t E R ,= -a, o ( ~ ( t ) )  

is unitarily equivalent to H(0) for all t E R ,  i.e., there exists a family of unitary 
operators U(t) , t E R ,  U(0) = 1 in L2(R) such that 

(7.7) u ( t ) - l ~ ( t ) u ( t )= H(o),  t E R. 
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(ii) Assume 4 satisfies (H.7.1), dXxE Lm(R2) ,and $,(t,  a ) ,  dtX(t ,a )  E 

Lm(R), t E R. If in addition # ( t ,  x )  solves (7.2), then the Dirac operator 
~ , ( t )in L'(R) B C' . 

(7.9) ~ ( t ) = a , + m ( t , . ) ,  D ( A ( ~ ) ) = H ' ( R ) ,  ~ E R ,  

is unitarily equivalent to Q, (0) for all t E R ,  i.e., there exists a family of unitary 
operators Wm(1), t E R , W, (0) = 1 in L2(R)B C' such that 

(7.10) ~ , ( t ) - ' ~ , ( t ) ~ , ( t )= Q,(o), (m , t) E g2 .  

Proof. The Lax pair 

L(t) = H ( t ) ,
(7.11) 3 

B(t)  = -48, + 6 v ( t ,  .)a, +3Vx(t, a ) ,  D(B(t))= H)(R), t E R ,  

together with 

is well known to prove assertion (7.7) (cf., e.g., [39, 77, 78, 80, 931, and the 
references therein). In order to prove (7.lo), one could similarly construct a 
Lax pair (see, e.g., [107]), however, because of (7.4) and Theorem 2.5(i), (7.10) 
follows from (7.7). 

Remark 7.2(iv) (based on (7.4)) shows how to obtain solutions of the KdV-
equation (7.1) given solutions of the mKdV-equation (7.2). In the following 
we concentrate on the reversed procedure, i.e., how to construct solutions 3 ,  
resp. 4 ,  of (7.1), resp. (7.2),given, e.g., a solution 5 of (7.1), such that (H.7.1) 
and (7.3) are satisfied. After reviewing the results of [50] (see, in particular, 
Theorem 7.9) we shall apply them in the cases of soliton-like and periodic 
solutions of the (m)KdV-equation. 

Assume Vl satisfies (H.7.1) and the KdV-equation (7.1) and introduce 

(7.13) 2 
HI(t) = -8, + 5(t , .) , D (H,(t))= H'(R), t E R. 

By Theorem 7.3, 

(7.14) @ , := inf [a(H,(t))] 

is t-independent. As will become clear in the course of this section, equation 
(7.3),being a Riccati-type equation for 4 given V ,  ,will have nonsingular solu-

tions 4 only if the associated Schrodinger operators Hj(t) = -a:+ V,(t , .) , j = 
1, 2 ,  are nonnegative. Thus we assume from now on (cf. also the discussion 
following (7.76)-(7.82)) that 

(7.15) @ , L O .  
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An important role in our construction is played by positive, distributional solu-
tions y ,  of 

(i.e., y ,  ( t, .) , yl  ,,(t , .) E AC,,,(R) , t E R )  . These positive solutions may 
be classified into principal I,?, ,,( t  , x )  > 0 and nonprincipal 9, ,,( t  , x )  > 0 
solutions of (7.16) at x = frn ,being defined by [56] 

where t is held fixed at the moment. If @, , ,(t , x )  > 0 is a nonprincipal 
solution of (7.16) at x = frn then 

is principal at x = foc. 
Remark 7.4. Fix t E R and assume H,( t )  2 0 .  In the terminology of [ loo]  
(cf. also [90]),H ,  ( t )  is critical iff W(I,?,,- ( t ), I,?, ,+ ( t ) )= 0 and hence H,  ( t )  is 
subcritical iff W(I,?,,- ( t ), I,?, ,+( t ) )# 0 . Or, equivalently, H, ( t )  is subcritical 
iff there exist two linearly independent, positive, distributional zero-energy so-
lutions of H,  ( t )  and hence H,  ( t )  is critical iff it has a unique (up to multiples 
of constants) positive, distributional zero-energy solution. 

We also recall 

Lemma 7.5. Assume Vl satisfies (H.7.1). Let 0 < y l  E c m ( R 2 )be a distribu-
tional solution of H ,  ( t )y ,  ( t )= 0 ,  t E R ,  and define 

Then 4 satisfies (H.7.1) and a:$ E L m ( R 2 ),and Y ,  = 4' +mX satisfies (H.7.1). 

Proof. As shown in Corollary X1.6.5 of [56], Y ,  E L"(R2) yields 

Since Y,  = 4' - mX we infer 4, E Lm(R2). The rest is trivial. 

Next we study the time dependence of solutions of (7.16) in more detail. 

Theorem 7.6. Assume V, satisfies (H.7.1) and the KdV-equation (7.1). Let 
y ,  ,,E C" ( R )  be real-valued, distributional solutions of H, ( 0 )y ,  ,,= 0 .  Then 
H, ( t )y 1,,( t )= 0 ,  t E R ,has unique real-valued, distributional solutions y ,  ,,E 
C" ( R 2 )  that evolve according to U ,( t )  in (7.1I), (7.12) (with H ( t )  = H,  ( t ) ), 
i,e., 
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or, equivalently, using w, , ,,, = Vly / ,  , , 

(7.21b) 
' h , * , t ( t ,x )  = 2V,( t ,  x ) ~ , , * , ~ ( t ,x )  

- v l , x ( t ,x ) w , , + ( t ,x ) ,  ( t ,X )  E B ~ ,  

with 

( 7 . 2 1 ~ )  ~ ~ , * ( O , x ) = y / ~ , * ( x ) ,x E B .  

In particular, the Wronskian 

(7.22) W ( Y I , - ( ~ ) >Y 1 , + ( 0 )= W ( y 1 , -3 Y l , + )  

is independent of ( t  , x )  E B 2 .  

Proof. Consider the Volterra-integral equation 

Then, iterating (7.23),one obtains y / ,  E c m ( B 2 )  and H,( t )y / , ( t )= 0 in  the 
distributional sense. Moreover, 

(7.24) V ~ , t x x- V ~ v ~ , t= < , t v ~ .  
Next, define 

Then (7.1) implies 

(7.26) yxxa y y =  5 , t ~ l, 

Since 

r 1 , , ( t r0 )  = e ( t ) ,  ~ ~ , , , ( t ,0 )  = d ( t ) ,  

(7.28) Y ( t ,0 )  = 2 5  ( t, O)d(t)- 5 ,,( t ,  O)c( t ) ,  

we get 
(7.29) 

w, ,,(t 9 x )  = Y ( t 9 x )  

i f f  
(7.30) 
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Finally (7.22) follows by a simple calculation using H,  ( t )y1,,(t) = 0 and 
(7.21). 

Unless otherwise stated, from now on the time-dependence of distributional 
solutions y / ,  ( t  , x )  of Hl ( t )lyl ( t )  = 0 is always chosen according to (7.21 )  
(occasionally we also use the notation y / ,  ( t, x )  = (Ul( t )y, (O) ) (x )to stress that 
fact). Next we recall 

Lemma 7.7 [78].Assume Vl satisfies (H.7.1) and the KdV-equation (7.1). Let 
y, E cp( R 2 )  be a distributional solution of HI( t )li/, ( t )= 0 , t E R , evolving in 
time according to (7.21). If y, ( t  , x ( t ) )= 0 ,  t E R ,  then x ( t )  solves 

(7.31) X ( t ) = - 2 T ( t , x ) ,  ~ E R .  

Conversely, i f  ly,( to, x,) = 0 ,  solve 

(7.32) k ( t ) = - 2 V l ( t , x ) ,  t ~ R , x ( t , ) = x , ,  

to get yl( t  , x ( t ) )= 0 ,  t E R .  In particular, i f  tp,( 0 ,  x )  > 0 ,  x E R ,  then 

(7.33) Y ' , ( ~ , x ) > o ,  ( ~ , x ) E R ~ .  

Proof. Equation (7.31) is obvious from dty = 0 .  Conversely, if x ( t ), t E R ,  is 
the unique solution of (7.32) (which exists by standard considerations if, e.g., 
V, E C' ( R 2 ), 5 , Vl, E L ~ ( B ' ) )then 

(7.34) dY'1 = Y'l, ,dt+ Y',,,dx = -5,,Y',dt 

yields tp,( t  , x ( t ) )= 0 since y ~ ,( t o ,x,) = 0 .  Finally, if l y l ( O ,  x )  > 0 ,  x E R , 
2 assume that y,( t , ,  x,) = 0 for some ( t o ,x,) E R . Then, propagating y / ,  

from to to 0 in time, ty,( 0 ,x ( 0 ) )  would be zero as shown above. 

Given these results we now may strengthen Remark 7.4. 

Lemma 7.8. Assume 5 satisfies (H.7.1) and the KdV-equation (7.1). Then 
HI( t )  is subcritical (resp. critical) for all t E R i f  H ,  ( 0 )  is subcritical (resp. crit-
ical). 

Proof. HI( 0 )  is subcritical iff there exist solutions 

(7.35) l y l , * ( O ,  x )  > 0 ,  x E R ,  

H,(O)Y',,*(O)=0, W ( l y 1 , - ( O ) , Y ' , , + ( O ) ) # 0 .  
By Theorem 7.6 and Lemma 7.7, 

(7.36) Y', ,*(t 9 x )  := (U,(t)Y',,*(O))(x)> 0 

and 

(7.37) W ( Y ' , , ~ ( t ) , y / , , + ( t ) ) = W ( Y ' , , ~ ( O ) ~ Y ' , , + ( O ) ) # O ~t E R ,  

i.e., HI( t )  is subcritical for all t E R. 
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Our main result finally reads [50] 

Theorem 7.9. Assume satisfies (H.7.1) and the KdV-equation (7.1). Let 0 < 
YI , %  E cm(IR2) be positive, distributional solutions of H,(t)(u, (t) = 0 ,  t E B.  
evolving in time according to (7.21). Define 

(7.40) V2,,(t, x )  := $,(t, x)
2 + $,,,(t, x )  , (t ,x) E B2 ,  

where a:R -t [-1 , 11, a E Cm(IR). Then 4, and I.;,, satisfy (H,7.1). In 
addition, 

(7.41) mKdV(4,) = 0 ,  KdV(V2,.) = 0 if& = 0 or W ( y l , - , y l , + )  = 0. 
Proof. A lengthy, though straightforward computation yields 

where $ := -p, ,,/ y, and y, E cm(lR2) is any positive, distributional solu- 
tion of Hl ( t )y l ( t )= 0 not necessarily evolving in time according to (7.21). 
Specializing to y,  = y1 ,and taking into account (7.2 1) for y, , ,finally leads 
to 
(7.43) 

mKdv(m,) = - ~ ; i , & w ( ~ , , - ,  y1 ,+)12, 

Remark 7.10. If H, (0) is critical, we necessarily have W(y , ,- , y, ,+) = 0 by 
Remark 7.4 and hence $, is actually independent of a . If H, (0) is subcritical, 
then Theorem 7.9 guarantees a one-parameter family of solutions 4, , a E 
[- 1, 1], of the mKdV-equation (7.2) (choose yl,,such that W(y , ,  - , y, ,+) 
# 0 ) .  Moreover, the explicit construction (7.39) yields all smooth solutions 
$ of mKdV($) = 0 related to V, via V, = $2 - $. (This is obvious in 
the critical case since the positive solution of Hl( t )yl(t) = 0 is unique up to 
multiples of constants. In the subcritical case choose again ,, y, such that 
W (W, ,- , v, , +) # 0 and observe that 4, = -W, ,,,,I W, ,, , a E [- 1, 11, is 
the general solution of the Riccati-equation $, = $2 - Y,  on B .) Finally we 
remark that in the case where HI is critical, y ,  (t) need not necessarily satisfy 
(7.21) since another (time-dependent) multiple of it (which drops out in the 
definition of $ )  will satisfy (7.21) by Theorem 7.6. 

Remark 7.11. The "if' pan in Theorem 7.9 is known and follows, e.g., from 
prolongation methods developed in [I171 (see also [47, 98, 1 191 and the refer- 
ences therein). In general, these techniques do not distinguish between singular 
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and nonsingular solutions 4 of the mKdV-equation. It is the "only if" part 
in Theorem 7.9 that yields a classification into singular and nonsingular solu-
tions 4 (depending on whether Hl(0) is nonnegative or not) and a uniqueness 
or nonuniqueness result for 4 in Miura's transformation (7.3) depending on 
whether Hl(0) is critical or subcritical. A different approach to this problem 
can be found in $38 of [12]. There the authors use the fact that the scatter-
ing data for an nth order ordinary differential operator can also be viewed as 
scattering data of a certain first order system. When specializing to Schrodinger 
operators (i.e., n = 2 )  and solving an associated matrix factorization prob-
lem they are able to treat the Cauchy problem for solutions of the KdV- and 
mKdV-equations related to each other via Miura's transformation. Their ap-
proach assumes rapidly decreasing solutions of the KdV-equation at &cx, . 
Remark 7.12. (i) Given 4, according to (7.39), Hl(t) is recovered from 4, 
via 

2
H,(t)  = -a, + V,(t, -1 = ~ , ( t ) ' ~ , ( t ) ,  9 (H1( t ) )= f f 2 ( ~ ) ,  

(7.44) ~ , ( t )= a, + rn,(t, -1, D(A,(~))= H'(R),  
2

V , ( t , x ) = 4 , ( t , x )  - 4 , , , ( t , x ) ,  ( t , x ) € w 2 .  
Similarly, H2,,(t) is recovered from 4, via 

(7.45) 
H2,,(t) =A,(t)A,(t)* = -a: + V,,,(t, - ) ,  9(H2,,( t))  = H ~ ( R ) ,  

2 
v , , , ( t ) = 4 , ( t , x )  + 4 , , , ( t , x ) ,  ( t , x ) € a 2 .  

(ii) If one starts with H2(t) instead of Hl( t ), then 4, is defined by 

(7.46) 2 , u , x / 2 , , ( t , x ) € w 2 ,  

where 

and 0 < v2,* E cm(IR2)are positive, distributional solutions of H2(t)v2(t)= 0 
evolving in time according to (7.21) (with V, replaced by V ,). 

In the case where both V, and V ,  are given and linked to 4 via Miura's 
transformation (7.3), one reconstructs 4 as follows: 

Lemma 7.13. Assume that 5,j = 1 , 2 ,  satisfj (H.7.1) and Miura's transfor-

mation (7.3)for some 4 c"(IR2) . Then 4 satisfies (H.7.1) and 
(7.48) 

4 ( t ,  X)= {[V,,,(t, X)+ V,,,(f, x)l/2[V,(t, x )  - V,(f,x)11, (1, x )  E IR2. 
Moreover, if V, and V,  satisfy the KdV-equation (7.1), then 4 satisfies the 
mKdV-equation (7.2). 
Proof. Equation (7.48) follows from 

(7.49) 2
2 4 , = V , - V , ,  24 = V , + V , ,  444,=v,, ,+V,, , .  

The rest is obvious from (7.4). 
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Next we illustrate the content of Theorem 7.9 in two important special cases, 
viz., soliton-like and periodic solutions V (resp. ) of the (m)KdV-equation 
For the soliton-like case we introduce hypothesis 
(H.7.2) 

(i) V E C" (12) real-valued, 8: V E L" (12), n = 0 ,  1 , limx+,, V (I ,  x )  = 

V, E R ,  0 < V- j V+, i J d m d x ( l  +x2) lv( t ,  x )  - V,I < m ,  t E 1. 

(ii) q5 E C"(12) real-valued, 8: , n 0 ,  1 , limx_,, d( t ,  x )  =E L" (12)= 

4, E P, 0 < 4: 5 d: ,hJt"dx(l  + x2) ld( t ,x )  - $,I < m ,  
J R d x ( l + x 2 ) l d x ( t , x ) j  < m ,  t ~ l .  

(Here V, , 4, are t-independent constants.) 
For the periodic case we introduce 

(H.7.3) V , q5 E c"(R~) real-valued, 

d ( t , x + a ) = d ( t , x ) ,  ( t , x ) € 1 2  


We first study systems governed by (H.7.2). Assume (cf. (7.15)) 


'2 , = 0 (i.e., H,(t), t E R , is critical) . 

In this case (since V, > 0) 


has a unique solution I,, E C" (12)up to multiples of constants (this follows, 
e.g., from nonoscillation theorems [37]) which, without loss of generality (cf. 
the end of Remark 7.10), may be assumed to evolve according to (7.21). Then 
one has 

and thus, according to (7.39), defines 

(7.52) ~ ~ ( ~ ~ x ) ~ = - v ~ , ~ , ~ ( ~ ~ x ) / Y ~ , ~ ( ~ , x ) ,( t , x ) € 1 2 .  

Next suppose that 

'2, > 0 (i.e., H,(t) ,  t E l,issubcritical). 


In this case we consider 


(7.53) H,(t)v, ,*(t)  = o ,  o <  v, ,*( t ,  .) EL;~(W), t E R ,  

where again v, ,* evolve in time according to (7.2 1) and hence 
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and define y,  ,,and 4, as in (7.38) and (7.39), i.e., 

Then we have 

Theorem 7.14. Assume that Vl satisfies (H.7.2(i)). Then 4, , defined in (7.52), 
resp. (7.55), satisfies (H.7.2(ii)) and I/,,, = $,2 + a E [ - I ,  11, satisfies 
(H.7.2(i)). Moreover, 

and 

$ 0d(H2,0(t)) ,  $,,- e 0 <4,,+,  

(7.57) 	 o$ad (Hl ( t ) ) ,  oEad(H2,0( t ) ) ,  $ o , + < o < 4 0 , - ,  

0 $ {=,(H,(t)) u 0,(H2,,(t))) ' sgn($,,-) = sgn(4,,+) , 
t E R , a E [ - l ,  11. 

Proof. Let o = 0 ,  B , = 0. Then standard Volterra-integral equation tech- 
niques yield (cf., e.g., [49]) 

and 

where g,(t , .) E ~ ' ( ( 0 ,i c c ) ), t E R. Thus 

*oo 

~ X ( ~ + I X I ~ ) I O ~ ( ~ , X ) ~ - V , I < ~ ,  

by (H.7.2(i)) and (7.59). Consequently, also 
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Similarly, 

The case e l  > 0 follows similarly. (7.57) is discussed, e.g., in [16, 491. 

Remark 7.15. A comparison of (7.56) and (7.57) together with Remark 3.8 
shows that, whenever sgn(4,, -)  # sgn(4, ,+) , then e l  = 0 or C = 0 and 
hence either Hl is critical and H2,,is subcritical or vice versa. In particular, 
H2,,is critical if @ , > 0 ,  a E (- 1, 1). Only in the case where sgn($,, -) = 
sgn(4,, +) one has e , = e 2> 0 and thus both Hl and H2,,are subcritical 
iff o = + 1 .  

Remark 7.16. In order to avoid too many case distinctions in the definition of 
4, we have restricted ourselves to the case 0 < V- 5 V+. Clearly V- = 0 (i.e., 
ap(Hl(t)) = 0, o(Hl(t)) = a,,(H, ( t ) )  = [0, m), t E R) could be discussed 
along exactly the same lines by considering zero-energy (i.e., threshold) wave 
functions of H, (t) behaving asymptotically like c + d x  as 1x1 -,cc (see, e.g., 
[14; 15, 721). 

Remark 7.17. If 5, j = 1, 2 ,  in Lemma 7.13 actually satisfy (H.7.2(i)) then 
q5 satisfies (H.7.2(ii)) and we get 

in addition to (7.48). 
Next we turn to systems satisfying (H.7.3). Again we first treat the case 

'2, = O  (i.e., H , ( t ) ,  t E R ,  iscritical). 

We consider 

and suppose that (Y, ,,evolves in time according to (7.21). By Floquet theory 
(take k = 0 in (3.35)), (Y, ,, is periodic in x , i.e., 

and we define according to (7.39) 

(7.66) 40( t ,X) := -Yl ,O,x( t ,X ) / W , , ~ ( ~ ,XI ,  ( I ,  X )  E It2 
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In the case 
C ,> 0 (i.e., H,  ( t ), t E R ,  is subcritical) 

we consider 
(7.67) 

Hl ( t )cyl ,* ( t )= 0 (distributional sense) , 

O< cy,,*(t, -1 E L ; ~ ( R ) ,t E R ,  
where 

(7.68) cyl , * ( t ,x)x;merxx+~(eFKX),  I E R ,  

(cf. (3.34))and cy, ,* satisfy (7.21). In accordance with (7.39) we then define 

(7.70) 4 + l ( t 3X )  := -W1,* ,x ( t ,x ) / v ~ , * ( ~ ,X I ,  ( t , X I  E R2. 

We have 

Theorem 7.18. Assume that V, satisfies (H.7.3). Thert 4, , defined in (7.66), 
resp. (7.70),and 6,, = q5: + bU, x  , o = 0 ,  +1 , both satisfj (H.7.3) In partic-
ular, 

(7.7 1 )  
o ( H , ( t ) )= o(H2,.(t)) = a(H,(O))  

o p ( H j ( t ) )= 0 ,  j = 1 ,  2 ,  t E R ,  G = 0 ,  + I .  

Proof. Because of (7.64), (7.65), (7.67),and (7.68),we have (cf. (3.35)) 

(7.72) c y l , , ( t , x ) L ~ ( t ) > O ,  ~ E R ,x ~ [ O , a ] ,o = O , & l .  

Using again standard Volterra-integral equations for cy, ,,one establishes the 
corresponding differentiability properties of cy, ,,, cy, , , and hence that of 
q5,. 

Remark 7.19. Clearly 4,( t ,  x )  ,defined according to (7.39),is not periodic in x 
for o E (- 1 , 1 )  in the subcritical case. Thus we confined ourselves to o = *1 
in (7.70). 

Remark 7.20. In the case where C , = @ > 0 we have 

H, = ~ ( t ) * ~ ( t )= @ ( t )  + C ,  , i l , ( t )= A^( t )* i ( t ) ,(7.73) 
i ( t )= a x  +$,( t ,  .), a ( a j t ) )= H ~ ( R ) ,  o = * I ,t E P, 

where 4u satisfies (H.7.2(ii))or (H.7.3) and 

In particular, if C; satisfy (H.7.2(i)),then 0 E o P ( k l( t ) )  and 

(7.75) $6+-- x+*mlim $ , ( ~ , X ) = + ( V , - C , )  112 

(Similarly, 4, -,-4,if H,( t )  +H2(t) .)  
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Next we recall a few useful formulas. Define 

( ~ , X ) E R ' , @ ~ E I W , ~ = ~ , ~ ;  

then 

(7.77) K d V ( u j )= [24+ (-l)'a,l[4, - 6(4' -@0)4,+ $,,,I, J = 1 , 2. 

Next let 

(7.78) y = x - 6 @ , t ,  u ( t , x ) : = w ( t , y ) - O 0 ,  ( t , x ) c I R 2 ;  

then 

(7.79) U ,  - 6uux + u,,, = wl- 6wwy + w,,,. 

(This simple fact reproduces the results in [ lo] . )Similarly, let 

then 

Equations (7.76)-(7.81) show that using the methods of this section one can 
construct solutions to the generalized mKdV-equation 

This has been studied in [119](some special solutions of (7.82)have been con- 
sidered in [47]) .Alternatively one could use the generalized Miura transforma- 
tion (7.76)together with the Galilei transformation ( t , x )-, ( t, y = x - 60,t)  
in 7 in order to treat general Hamiltonians H J ( t ) bounded from below by 

@ , E R ,  H J ( t ) =  -8, 2 + y ( t , .) >ao ,j =  1 ,  2. 
Finally, we briefly indicate the generalization to higher-order (m)KdV-equa- 

tions. These equations are recursively defined by 

where 
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Here, c, are chosen to be the integration constants in Xn , n E No. Explicitly 
we have, e.g., 

etc. Thus, 

etc. (usually one chooses cj = d j  = 0, j E N). We end up with 

Remark 7.2 1. As proven in [6], (7.4) extends to the whole (m)KdVn-hierarchy 
introduced above, i.e., 

where 5 , j = 1 , 2 ,  and r$ are related by Miura's transformation (7.3). Check- 
ing the proof of our main Theorem 7.9 shows that it works as well in the present 
situation, i.e., Theorem 7.9 extends to the entire (m)KdV,-hierarchy, n E No 
(in particular, (7.43) holds with mKdV replaced by mKdV, , n E N ) assuming 
axrn? E L ~ ( R ~ ) ,0 5 n l <  2 n - 3 ,  n 2 2 .  
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In this section we rederive the N-soliton solutions of the mKdV-equation 
(originally obtained by Grosse [54, 551) given the corresponding soliton so- 
lutions of the KdV-equation. In contrast to [54, 551 we do not use inverse 
scattering techniques for the Dirac operator. 

Assume that Vl(t, x) is an N-soliton solution of the KdV-equation, i.e., 
that according to Remark 6.3 (and (7.78), (7.79)) 

(8.1) V, ( I ,  x) = Vm - 26': ln{det[l + C, ,*(t , x)]} , (t ,x) E e2, 

(8.4) 
*4K,?t , t e e ,  1 = 1 ,  ... , N ,  

(8.6) oP(Hl(t)) ={A,,, := Vm - K ,  
2 11 = 1 ,  ... , N ) ,  

(8.8) l * l = I , * , 1 1 1 1= 1 ,  ... 9 N. 

The assumption that H, (0) is critical, i.e., 

(8.9) E l  = inf [o(Hl (0))] = 0 ,  

then yields 

(8.10) vm= K;, A l , l  = 0. 

Next we turn to the construction of H2(t) .  First we note that 

H,(t)  = AO(t)'AO(t), t E e ,
(8.11) 

Ao( t )=ax+$o( t , . ) ,  D ( A o ( t ) ) = ~ ' ( e ) ,  t e e ,  
and (cf. Lemma 7.14), since e l  = 0 ,  

(8.12) $o,i  = lim m0(t, x) = *vobi2 = *xl.
x'f m 

Since K,  > 0 by hypothesis, 

(8.13) 0 l cp(AO(t)), 0 d o , ( ~ ~ ( t ) * ) ,  t l 1 .  
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Thus commutation implies for H2,,(t) = Ao(t)A0(t)*, 

W e  also recall that 

(8.15 )  %,,(Hj, (,,(t)) = a,,(Hj, ( 0 ) ( t ) )  = [Vm,m), t E R ,  j = 1 , 2. 

Moreover, since all eigenvalues o f  Hj ,(o)( t ), j = 1 , 2 , are simple, we obtain 
from (3.23), 

(8.16) c 2 , * , 0 , , ( 0 ) = [ ( h - , - ~ i ) / ( ~ 1 + ~ , ) ] 1 ' 2 ~ 1 , + , 1 ( 0 ) ,l = 2 , . . . , N .  

Thus V2,,(t,  x )  is an ( N  - 1)-soliton solution o f  the KdV-equation, 

where 
N 

C2,+,0(t3X )  = [ ~ 2 , + , 0 , i , m ( t >  N L 2 ,~ ) I i , m = 2 ,  

It remains to compute $,(t,  X )  . 
Theorem 8.1. Assume e l = 0 and let 

( ~ , X ) E I R ~ ,j = 1 , 2  

(cJ: (8.1) and (8.17)), be an N-soliton, resp. ( N  - 1)-soliton, solution for the 
KdV-equation (7 .I) ,  N E W . Let V, , I/,,,, and 4, be connected by the Miura 
transformation (7.3). Then 

(8.20) $,(t,  x )  = *K, + axln{det[l+ C ,  ,.(t, x ) l l  det[l + C2, .,(,,(t, x ) l } ,  

$o,* = f K 1  

is an (2N - 1)-soliton solution for the mKdV-equation (7.2). Moreover, up to 
an overall sign, the solutions (8.20) represent all reflectionless potentials of the 
associated Dirac operator Q( t )  , t E R ,  under the assumption that Q(0)  has a 

zero-eigenvalue, i.e., 0 E a,(Q(O)) . 

Proof. Clearly (7.56), (7.63), and (8.10) imply (8.20). The fact that the $,(t, x )  

in (8.20) are reflectionless potentials o f  Q,(t) , t E R , is a consequence o f  (4.1 1 )  

and $6. Since 40 , f= f~~Z O ,  
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implying (cf. (7.57)) 

Conversely, if 0 E a,(Q(O)) and, e.g., do,- < 0 < +,,+ , then (8.22) holds and 
by (4.1 l ) ,  7,(,)(t, x) must be reflectionless potentials for H j ,,o,(t),j = 1,2 ,  
of the type (8.19). 

Remark 8.2. The symmetry d ( t ,  x) -t -+(t, x )  of the mKdV-equation (7.2) 
is connected with the interchange A(t) -t ~ ( t ) *,or, equivalently, with H,(t) --+ 

H2(t). This explains the open overall sign in the last part of Theorem 8.1. 
It remains to treat the case where 0 @ o(Q(t)) , t E R ,  i.e., instead of as-

sumption (8.9) we now assume that H, (0) is subcritical, and, hence, 

Then (8.1)-(8.8) and (8.1I), (8.12) still hold whereas (8.10) turns into 

(8.24) 
2 2

V m = A 1 , , + ~ ,= C , + K , .  

Combining Remarks 7.15 and 8.2, we may restrict ourselves to o = f 1  in 
(7.55) and thus (cf. (7.56)) 

implies 

and also the validity of (8.15). It remains to compute the norming constants. 
We get 

and thus V, ,,(t ,x) is the N-soliton potential 

where 
(8.29) 

N 
C ~ , i , a ( t ~ ~ ) = [ ~ 2 , + , , ~ , m ( t , ~ ) l ~ , ~ = l ,N E N ,  

Finally we compute 4, again. 
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Theorem 8.3. Assume @ , > 0 and let 

( t ,x )  E iR2, j = 1 , 2 ,  a = f 1 (cJ (8.1)and (8.28)),be N-soliton solutions of 
the KdV-equation (7.1), N E N . Let Vl , b,,, and q5,, a = f1 , be connected 
by the Miura transformation (7.3). Then 

a = f l ,  ( ~ , x ) E ~ R ~ ,  
112$,,* = av- , a = f1 

is a 2N-soliton solution of the mKdV-equation (7.2). Moreover, up to an over-
all sign, the solutions (8.31) represent all reflectionless potentials of the asso-
ciated Dirac operator Q ( t ), t E iR, under the assumption that Q(0)  has no 
zero-eigenvalue, i.e., 0 $ a,(Q(O)) . 
Proof. Similar to  that o f  Theorem 8.1. 

Example 8.4. N = 1 . 
( i )  t ,= i n f  [ o ( H ,( 0 ) ) ]= 0. 

( i i )  t , = i n f  [ a ( ~ ,( 0 ) ) ]> 0. 
(8.33) 

6( t, X )  = (el+ K: )  - 2k; C O S ~ - ~ ( K , X+ (2k: + 6kl@ , ) t ) ,  
2 2 

V w = @ l + K , '  C1,*, ,(0)  = 2 q ,  
2

b , , ( t ,  x )  = (el+ k l )- ~ K : c o s ~ - ~ ( K , x+ ( 2 ~ :+ 6 k l @ , ) t+ a t  in y , ) ,  

9. T H ETWO-ZONE MODEL 

In this section we investigate the simplest (nontrivial)finite zone model and 
illustrate the results o f  $7. As a by-product we obtain a generalization o f  a 



506 F. GESZTESY, W. SCHWEIGER, AND B. SIMON 

well-known result of Hochstadt's [59]in Theorem 9.3. Let 

where v ( 2 ):= v ( z;o ; w') denotes the Weierstrass v -function [ 5 ]with real 
half-period w > 0 and purely imaginary half-period w' (Imof> 0 ). As is 
well known [21 ,  35, 36, 40, 6 1 ,  78, 84, 92, 931, V, satisfies the KdV-equation 
(7.11, i.e., 

(9.2) KdV(V,) = 0 .  
The corresponding periodic Schrodinger operator 

2 
(9.3) ~ , ( t ) = - a x + v , ( t , . ) ,  a ( ~ , ( t ) ) = ~ ' ( w ) ,  t  ~ a 

(with period a = 2w ), has the absolutely continuous band spectrum [76, 931 

~ ( H l ( t ) ) = [ 0 , E 1 ] ~ [ ~ 2 , ~ ) ,t E R ,  

(9.4) El  = v ( w )- + w' ) ,  E2 = Nu)- v ( w f ) ,  

o,(H,(t))= a,,(H,(t))= 0, t E R. 

The associated normalized Floquet solutions read [76] 
(9.5) 

fo r1  E [E,, cm),-ib E [-iw' ,  0 ) ,  

where the Floquet parameter k and the energy 1 in terms of the parameter b 
are given by 

Here b runs counterclockwise through the perimeter of the fundamental quarter 
rectangle with vertices 0 ,  o , w+o', of,and [ ( z ):= [ ( z; o , of)and a ( z ):= 
a ( z; o , of)are the Weierstrass [-and a-functions respectively [ 5 ] .  

At zero-energy we have 

H,(t)ly,,,(t)= 0 ,  

. e  - t [ x + 6 p ( w ) t l ~ ( w ) + i ( w ' ) w )  , ( t , x ) E R 2 ,  
and thus (cf. (7.66)and Theorem 7.9) we get 
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Theorem 9.1. Let 

(9.8) y ( t , x )  = 2 ! ? ? ( x + 6 ( 4 ( w ) t + w f ) +  V ( w ) ,  ( t ,  x )  € I R 2 ,  

be a two-zone solution of the KdV-equation (7.1) with e l  = 0 .  Let 6 ,h,,, 
and 4, be connected by Miura S transformation (7.3). Then 

= [ [ ( x+ 6V(w) t+ of)+ [ ( o )- [ ( x+ 6 V ( o ) t+ o + of ) ] ,  

( t ,  x )  E I R 2 ,  

satisfies the mKdV-equation (7.2), i.e., 

and 

satisfies the KdV-equation (7 .I), i.e., 

(9.12) 	 KdV(%,,) = 0. 

The fact that % , ,  is just a translate o f  5 , i.e., 

(9.13) V 2 , 0 ( t , x )= y ( t , x + o ) ,  ( t , x )E R ' ,  

is no accident (see [116]). In fact one has 

Theorem 9.2 [40, 52, 591. Let V E L : ~ ~ ( I R )be real-valued and periodic with 
period 2 0  > 0 and define the form sum H = - d 2 / d x 2 + v  in L ~ ( I R ) .  Then 

( i )H has spectrum 

(9.14) a ( H ) = [ E 0 , m ) ,  E , E R ,  if V = E o a . e .  

( i i)H has spectrum 

where 

(9.16) ~ E R ,  E o = C - ' $ ( a ) ,  E , = c - v ( w + w f ) ,  E , = c - p ( w f ) .  
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By commutation (cf. Theorem 4.4) this immediately yields 

Theorem 9.3. Let $ E AC,,,(R) 
= m E  

be real-valued and periodic with period 2w > 0 
!:), ( zanddefinein L'(R), A = d / d x + $ ,  O ( A )  = H I @ ) .  Let Q, 

R ,  be the corresponding Dirac operator in ~ ~ ( 1 ~ 1 ~ .  Then 
(i) Q, has spectrum 

(-m, -lm2 + $i11121~
2 2112 

(9.17) 	 o(Qm)= [lm + $ 0  $0 E R ,  
if $ = &$o. 

(ii) Q, has spectrum 

o(Q,) = ( -m,  -1m2 + E211"]u [-lm2 + E , " ~ ,-1, 2 + ~ ~ l ~ 

(9.18) 	 U [1m2+ E O 1 l 2 ,m 2  + ~ , l " ]  u [lm2+ E21i2,m), 

0 2  Eo< El < E 2 ,  

where 
a € R ,  & = & l ,  Eo=!J?(bo)-p(o),

(9.19) 
El = Q(bO)- + 4 ,  E2= r33(b0)- ?(wl). 

Interestingly enough, the potential $ in (9.18) appears in a recently discov- 
ered new class of integrable systems [97] (see also [18]) being generalizations 
of the Calogero-Moser systems. Periodic, finite-zone Dirac operators have also 
been studied in [60]. 

Remark 9.4. Quite generally, one can ask which differential equations do the 
travelling wave solutions of the KdV-equation, respectively mKdV-equation, 
y ( x  - v t ) ,  j = 1 ,  2 ,  resp. $(x- v t ) ,  ( t ,  x ,  v) E R3 , connected via Miura's 
transformation (7.3), solve. The answer is given by 

where 

(9.22) c 2 
= 4b - 2va,  d = -a/2. 


The sign ambiguity of c in (9.22) has to do with the symmetry $ -, -4 of 

the mKdV-equation and a ,  b , v need to satisfy additional constraints (e.g., 

4b - 2va 2 0 to guarantee real-valued solutions). The explicit example (9.8), 

(9.9), (9.12) leads to 

u = -2(E1 + E2)= -6p(w),  
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Here we continue the study of the two-zone model of $9and construct solitons 
relative to this background. These KdV-solutions are then transferred to the 
mKdV-case. Let 

2(10.2) ~ , ( t ) = - a , + q ( t , - ) ,  a ( ~ , ( t ) ) = ~ ' ( a ) ,  ~ E R .  

Then [76, 931 

(10.3) KdV(6)  = 0 

and 

o (H ,  ( t ) )  = [E,,Ell U [E,, m ) ,  t E R , 

(10.4) Eo = -P(u) - ( v / 6 ) ,  El = -P (o  + of)- ( v / 6 ) ,  

E2 = -'J?(of) - ( v / 6 ) ,  op (Hl ( t ) )= q , (H1( t ) )= 0 ,  t E R. 

We aim to construct reflectionless potentials W,,+ , resp. W,,- (i.e., solitons), 
relative to the background 5 that vanish as x -,+m, resp. as x -, -m . 
Applying the Marchenko method [80]this is accomplished as follows (see $6): 
Assuming 

(10.5) v L - 6 P ( o )  

in order to guarantee 

(10.6) Hl ( t )  L 0 ,  


we suppose Wl,+ , resp. Wl,- , to support N bound states at energies 


where il := I ( b l ) , 1 = 1 ,  . . . , N ,  and 

(otherwise (10.8) is empty), 

(10.9) 
 El < ,, < E2 
 (i.e. ~ ( o ' )  < q ( w+ o f ) ) ,< P(b,) 

m = N , + l ,  ... , N .  

We also introduce bo E ( 0 ,o) such that 

(10.10) IE(b,) = - !?3 (b,) - ( ~ 1 6 )= 0. 

Clearly 

(10.11 )  P ( b l ) < _  P ( b o ) ,  I =  1 ,  , N.  
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In order to compute Wl ,* one then solves the Marchenko equation 

with the ansatz 

(t ,X , X I )  E W3, 

i 

(10.14) 
o ( x  - vt + o1f b) ~[ [ (b ) (x -v t )+ ( (wl )b ]

f i , * ( t ,  k ,  x) = 
o ( x  - vt + o l ) o ( f  b) 

e 

((w)+ !J?(b)]-'I2, A E ( -00,  A(b)), 
[ -o- ' ( (a)  - !J?(b)]-'I2, A E (A(b), co), (t , x )  E W2 

(cf. Remark 10.2 for a discussion of b ), 

2 2 ?4'P1(b,)t,(10.16) zl ,*, l( t)  =21,*,1(0) t E W , 1 = 1 ,  ... , N .  

This yields 

where 

( t , x )  EW2, 

(10.19) 

, , , k ,x = A ,( t  , k x) , t E W (distributional sense) , 

fi1,*(t)fl,*,1(t)= ~ l , I f l , * , l ( t ) >  

f l , * , / ( t ,  := f l , * ( t ,  k / ,  -1 E H2(W), 


I * , = l l f , * , /I 1= 1, ,N. 


Here 
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with 

W,,*(t, x )  = ~ 2 8 ~ K , , . ( t ,x ,  x )  
(10.21) 	 2 

= -2ax1n{det[l +el,*(t , x)]} , ( I ,  x )  E Ill2, 

(10.22) 
N 

l * = , * , , m l l , m  , N E  N, 


t1,*,1,m(t9 = f t l ,*,I( t) t l ,*, ,( t)  


o (x  - vt + w' fbl fb,)o(x - vt + o')o(bl)o(b,) 
' o(x  - vt + w' fb,)o(x - vt + w' fb,)a(b, + b,) ' 

2I , m = l  ,... , N ,  ( t , x ) ~ R .  

Finally, we note that 
-

(10.23) K ~ v ( & , * )= 0 ,  V,,* = V, + W,,,. 

In order to shorten the discussion in the following, we only discuss the special 
case 

(10.24) N =  1 ,  0<1,,,< E,, v < -67J(w) 

in some detail. Clearly (1 0.17) and (1 0.18) imply 

(10.25) 

In particular, 

and thus 

(10.27) * t l x = O(e 
- Im k, 1x1

) t E R .  
1x1'~ 
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Taking into account 

X 

= A,*([ ,  k ,  x)f , ,*(t ,  k , ,  x) 
a ( x  - vt + w' fb fb , )a (x  - vt + wl)a(b)a(b,)  
a(x- vt + o' fb)a (x  - vt + o' fb,)a(b + b,) ' 

we get in general 

Similarly, 

Remark 10.1. We emphasize the fact that W, , + # W, , - and that [76] 

but 

Thus W, ,,(t, x) are not decaying as x -, FCC(as has also been observed in 
[41]) and hence W, , *(t) is no relatively compact perturbation of HI(t), t E R . 
However, since, up to exponentially decreasing terms, V, (t  , x)+ W, , * (t , x )  is 
just a transiation (x  + x f2b,) of V,(t , x )  as x + FCC, the band spectrum 
of H,(t)  stays invariant under addition of W, ,,(t) , i.e., 
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Remark 10.2. The special case where blo = 6 for some lo E { I ,  . . . , N) in 
1 2w(10.21) with p (b) = ( 2 ~ ) -So d x  9(x + a') (i.e., (b -a')E (0 ,  a))needs 

a straightforward limiting argument since 

(10.33) Fz(Al)= 0 ,  I,, := - (b) - ( ~ 1 6 )E (El , E2) 

(cf. (3.33)), and hence f, ,* ( t ,  k(b) ,x) blows up at b = 6 .  
The results discussed so far are due to [76] (see also [73]). Next we transfer 

them to the mKdV-case. For simplicity we restrict ourselves to a treatment of 
fil,+(0) only. We first discuss the case where 4,+(O) is critical, i.e., where 

Then we define 

(cf. (10.28)), with $+(t ,  x )  given by (cf. (9.9)) 
(10.36) 

$+(t ,  x )  = -4 ,+, , ( t ,  ko, x)l&, + ( L  ko 9 X) 


1 pl(x- vt + a')-pl(bo) 
-

2 ~ ( x- vt + a')- P(bo) 


Thus 

since ko = k, by assumption. Similarly, in the case where H~,+(0) is subcriti- 
cal, i.e., where 
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we define 

(10.39) 

$*(t$  x )  := -x , , x ( t , ko, x ) l r l ,  * ( t ,  ko ,  X )  

2 
= - { f 1 , * ( t 9ko9 x ) k ? l , * , l ( t )  

f 02 

d ~ ' [ / ' , ~ ( ~ ~ k o . x ) f l , ~ ( ~ ~ ~ l . ~ ' ) - f l , f ( ~ . k l . ~ ) f l , ~ ( t . k O . ~ ' ) ]  


-f1,*,.(t9 k l ,  x ) / ' , * ( t ,  ko, x1)lf1,*(f3 k1 ,x ' )  

r [ I  * E l ,  *, (1)' l*d x l f l ,* ( I ,X I  , x')'] I 

~ l , * , l ( t ) ' f I , f ( t 3 k l 3 x ) ' ,  ( t , x ) E ~ '  

(cf. (10.28)). Thus 

Theorem 7.9 now implies 

Theorem 10.3. Let $,, a = 0 ,  f1 ,  be defined by (10.35), resp. (10.39). Then 

(10.41) K ~ v ( & , , )  0 ,  = 0 ,  a = 0 ,  * l ,  = m ~ d ~ ( 4 , )  

where 
2

(10.42) & , , ( t , x ) : = ~ , ( t , ~ ) ~ + $ , , ~ ( t , x ) ,o = O , * l ,  ( t , x ) ~ B .  

Remark 10.4. For a = 0 one can actually show that 

(10.43) & , O ( t , ~ ) =  ( t , x ) € g 2? ( t , x + b o ) ,  

(cf. also (9.13)). 

In this section we indicate how to transfer singular solutions of the KdV- 
equation to singular solutions of the mKdV-equation using the methods devel- 
oped in $7. We also derive rational solutions of the KdV- and mKdV-equations 
starting from a pure soliton solution and performing a long-wavelength limit. 

We first introduce hypothesis 
(H. l l . l )  Let xo E Cm(B) and Xo := {( t ,  xo(t)) E IR2 1 t E B}. 
(i) V E C ~ ( B ~ \ X , )real-valued, limX+,, V(t , x) = Vm , 0 < Vw (inde-

pendent of t ). For each t E B 
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for all sufficiently small E > 0 .  Furthermore, there exists an open superset U of 
Xo in a2and a real-valued function u E CW(U), a:v E L"(u) , n = 0 ,  1 , 
such that V(t , x) = 2 [x - xo(t)]-2 + v (t , x )  , (t , x) E U\Xo , i3,u (t , x0(t))= 

0 ,  t E R , a n d  ~ V E L ~ ( B ' \ U ) ,  n = O ,  1. 
(ii) $ E c"(w~\x,) real-valued, lim,-,_ $(t , X )  = $, 4: = 4: <0, ( $, 


independent of t ). For each, t E W ~ x - x o ( , ) , l ,dx(1 + x2)1$(t, x) - $,I < m 
for all sufficiently small e > 0 .  Furthermore, there is an open superset U of 
Xo in a2and a real-valued function q E CW(U), a,"q E L" (U) , n = 0 ,  1 , 
such that $(t , x )  = f [x - xo(t)]-I + q( t , x) , (t , x) E U\XO, q(t  , xo(t))= 

0 ,  t ~ B , a n d  a:$~ L " ( W 2 \ ~ ) ,  n = 0 ,  1. 

Remark 1 1.1. The behavior of V (resp. $ ) near the singularity xo(t) results 
from the requirement that the Laurent expansion of V (resp. $ )  is compat- 
ible with the time evolution described by the KdV-equation (resp. mKdV-
equation). 

Theorem 11.2. Let V, denote a solution of KdV which satisfies (H.7.2(i)) with 
V,+ = I/,- = V" > 0 .  Assume e l  = inf[a(Hl)]> 0 and define 

where f,,,(t , x ,  k-) are Jost solutions corresponding to V, and P = K.  
for some to E a ,  g, ( to,  x) provides precisely one simple zero at x = xo(to), 

then 

(11.2) mo(t,X )  := -g,,,(t, x)/g,( t ,  x ) ,  ( t ,  X )  E a 2 \ x o ,  

is a singular solution of the mKdV-equation satisfying (H. 1 1.1 (ii)), and 

is a singular solution of the KdV-equation satisfying (H.1 1.1 (i)). In both cases 
the path of the singularity xo(t) is given by the equation 

(11.4) g,(t, xO(t)) = 0 ,  t E EL 

Proof. First we note that 

(cf. (7.1 1) for the definition of Bl ( t))  . Therefore 

is a distributional solution of HI(t)y/, (t) = 0 evolving in time according to 
(7.21). From the assumption that g,(to, x) provides precisely one zero at 
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x = xo(to) we conclude, using Lemma 7.7, that g,(t ,x )  , t E B , provides 
precisely one zero at x = xo(t) satisfying (7.32). Due to this fact we may write 

(11.7) v/,(t, X)  = (X - xO(t))x(f , (X - xO(t))), (f  , X) E R2. 

Inserting (11.7) into (7.21b) and using (7.32) we derive 

(11.8) X, (t , (X - x0(t)))= -?, J t ,  X)X (t , (X - x0(t))), 
and thus 

x (1, (X - x0(t)))= x (to' (X - x0(t0))) 
(11.9) .exp [- 1;V,, x ( i ,x)dtt , ( t ,  x) E B2.I 
Since x (t , (x - xo(t))) # 0 ,  ( t  ,x) E R2, the zero remains simple for arbi-
trary t . Using y/, ,,, = V,v/, , it is easily shown that V, (resp. I$o ) satisfies 
(H.11.1(i)) (resp. (H.11.1(ii))). Either by direct calculation, using (11.5), or 
by a generalization of Theorem 7.9, one finally proves that KdV(V,) = 0 and 
rnKdV(q5,) = 0 .  

In the following lemma we will exhibit a rich class of potentials V, with 
g,(to , .) providing precisely one simple zero: 

Lemma 11.3. Assume V, satisfies (H.7.2(i)) with V+ = V- = Vm > 0 and 
either V,(to,x) > Vm ,x E B ,  or V, supports precisely N discrete eigenvalues 
I, < A,-, < ... < A, , N E N. Then for 0 < A, < Vm the function g,(to , -) 
defined in (11.1) with P = <, y > 0 ,  has precisely one simple zero. 

Proof. In what follows we will neglect the argument to. From the integral 
equation 

f o o  

f , ,*(x ,  iP) = e  ' B x  + $ dy sinh(P(y -x)) [V,(Y) - Voo]f,,*(Y 7 iP ) ,  

x E R ,  

we infer in case V,(x)> Vm ,x E B ,  that f,,,+(x, iP)(fi ,-(x , iP)) are posi-
tive, strictly monotonically decreasing (increasing) functions, continuously dif-
ferentiable w.r.t. x E R . In case 5 supports N bound states A ,  , ... , A,, 
N 2 1 , let us start with V,(x; -1) (cf. Theorem 6.5) providing ( N- 1) bound 
states A,, ... ,A,-, . Let fl  ,,(x, k- ; -1) denote the corresponding Jost so-

2lutions. Adding the Nth bound state V_ - K~~ = A N  to obtain V, the Jost 
solutions corresponding to V, may be written as 
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with 

(11.12) go(x,  k-) = f l , + ( x ,k-;  -1) + a f i , - ( x ,  k-;  -11, X E R ,  

and a > 0 suitably chosen [33]. For /? > K, and y > 0 we thus obtain 
(11.13) 

1 1 
gy(x)= f l , + ( x ,iP) - y f , , _ ( x ,  iP) = --

K, + P g o ( ~3 i ~ , )  
W ( ~ , ( X ,i ~ , ) ,A ,+(& i P ;  -1) + yfi , - (x ,  i P ;  -1)) 

Again we observe that the right-hand side is the difference of a positive, strictly 
monotonically decreasing and a positive, strictly monotonically increasing func-
tion, which in addition is continuously differentiable w.r.t. x E R. Simplicity 
of the zero of gy is easily verified in both cases. 

Lemma 11.4. Assume that V, is an N-soliton solution of the KdV-equation, i.e., 
that, according to (6.29), (6.30), 
(11.14) 

with 

(11.15) a j ( t ,  X)= (-l)Jile-K~x+ a j  e-4~~1(2Kj-3~~)e ,K,X 

and K = Jv_ - Ij, a j, j = 1 ,  ... , N ,  positive constants. Then the singular
J 

solutions of the KdV- and mKdV-equations obtained in Theorem 11.1 are given 
by 

(t ,x) E RL\xo ,  
and 
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respectively, where a,,, is defined by (11.15) with K,,, = P = and 
a,,, = - y  . 5 is an N-soliton plus one pole solution of the KdV-equation, 4, 
is a 2N-soliton plus one pole solution of the mKdV-equation. 

Proof. The lemma is proved by using ( 11.2), ( 11.3), and (cf. [33]) 

W(a , ,  ... , a,, r S p x )
/ ~ , * ( t ,x ,  i a )  = ( ~ 1 ) "

l J ~ = , ( ~ + k , ) ~ ( a , ,... , a,)'
(11.18) 

( t ,  x) E R2. 

Remark 11.5. We note that the only difference between the N-soliton +1-pole 
solution (11.16) and an ( N +  1)-soliton solution (cf. (11.14))consists in the fact 
that a,,, is negative in the first case, whereas it is positive in the second. By 
means of relation (6.33) the constants ai  are connected with the norming con-
stants c:, . Thus, formally, adding a pole to a solution of KdV corresponds 

to introducing a "bound state" with negative norming constant c:,,+, in the 
associated isospectral Schrodinger operator. A more detailed account on the 
isospectral problem in connection with singular solutions of the KdV-equation 
may be found in [9]. 

Example 11.6. (i) 1-pole solution of the KdV- and mKdV-equations, P > 
0 ,  a,  = -1: 

(ii) 1-soliton plus 1-pole solution of the KdV-equation P > K > 0 ,  a ,  = 
-a2 = 1 : 



519 COMMUTATION METHODS APPLIED TO THE mKdV-EQUATION 

(iii) 2-soliton plus 1-pole solution of the mKdV-equation, P > K > 0 ,  a, = 

(1, X) E IR2\x0, xo(-) as given in (11.20). 

Remark 1 1.7. The singular solutions in (1 1.19) formally may be recovered from 
the one-soliton solutions of (8.32) by choosing the phase q, = f ln(c:, +,,/ 2 ~ , )  
to be q, = in12 instead of q, = 0 .  Similarly the singular solutions (1 1.20) and 
(11.21) formally could have been obtained from two- or three-soliton solutions, 
respectively, by appropriately choosing the phase constants. In general, the 
fact that one can recover singular solutions from regular ones relies on the 
observation that the norming constants cj, ,merely enter as parameters, which 
essentially determine the phase of the jth soliton (see, e.g., [2]). 

Exploiting this observation, we finally sketch a derivation of rational solutions 
of the KdV- and mKdV-equations. The simplest one is easily obtained from 
( 1 1.19) by performing the "long-wave" limit P -,0 . 
Example 11.8. Rational (stationary) solutions of the KdV- and mKdV-equa- 
tions: 

q ( t ,  x )  = 0 ,  ( t ,  x )  E I W ~ ,  

1 
$o(t, x) = --x '  ( t ,  x )  E B 2 \ x o ,  Xo = B x {O}. 

In order to demonstrate how more general rational solutions of the KdV- and 
mKdV-equations may be obtained from the corresponding soliton solutions it 
suffices here to consider the two-soliton solution of the KdV-equation which we 
write in the form 

(11.23) Y , ( t , x ) = ~ : - 2 ~ { l n [ W ( a , ( t , x ) , a 2 ( t , x ) ) ] } ,( ~ , x ) E R ~ ,  

with K~ > K,  > 0 .  Here a j ,  j = 1 ,  2 ,  are defined via (11.15) with Vw = K~
2 

and a j  are related to the norming constants c j , + ,  j = 1, 2 ,  via (6.33). The 
potential V,,,then is given by (see Theorem 8.1) 

(11.24) V,,O(f,X) = k2 
2 
- 2 4  {ln[a,(t, x)]} , ( t ,  x) E I R ~ ,  

and furthermore (cf. (7.63)) 

(11.25) $,(t, x) = 8, {ln [W(a,(t ,  x ) ,  a,([, x ) ) / a , ( t ,  x)]} , (1, x) E B2. 
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Now taking a = ( - 1  j = 1 ,  2 ,  and performing the "long-wave" limit 
K~ , K~ + 0 one obtains 

Example 11.9. 

2 2
%(t ,  X) = -26; ln(x) = 1, ( t ,  x) E R2\{R x {O}},

X 

Whereas these rational solutions of the KdV-equation are well known [ l ,  2, 
6, 22, 42, 53, 811 the corresponding solutions of the mKdV-equation seem to 
be new (although one could easily derive them from the results in [6]). 
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