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A SHORT PROOF OF ZHELUDEV'S THEOREM 

F. GESZTESY AND B. SIMON 

ABSTRACT.We give a short proof of Zheludev's theorem that states the exis- 
tence of precisely one eigenvalue in sufficiently distant spectral gaps of a Hill 
operator subject to certain short-range perturbations. As a by-product we si- 
multaneously recover Rofe-Beketov's result about the finiteness of the number 
of eigenvalues in essential spectral gaps of the perturbed Hill operator. Our 
methods are operator theoretic in nature and extend to other one-dimensional 
systems such as perturbed periodic Dirac operators and weakly perturbed sec- 
ond order finite difference operators. We employ the trick of using a selfadjoint 
Birman-Schwinger operator (even in cases where the perturbation changes sign), 
a method that has already been successfully applied in different contexts and ap- 
pears to have further potential in the study of point spectra in essential spectral 
gaps. 

Our main hypothesis reads: 
(I) Let V E L:,,(R) be real-valued and of period a > 0 ,  and suppose W E 

(R, (1 + 1x1)dx)  to be real-valued, W # 0 on a set of positive Lebesgue 
measure. 

Given V , one defines the Hill operator Ho in L2(R) as the form sum of 
the Laplacian in L2(R) , 

and the operator of multiplication by V , 

(To be more precise, since V is not assumed to be continuous, we should define 
Ho as a direct integral over reduced operators on L~([O, a]) ,see [12,5XIII. 161.) 
Similarly, the perturbed Hill operator Hg is defined as the form sum in L ~ ( R )  

Standard spectral theory [2, 10, 1 1, 121 then yields that 
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The spectral gaps of Ho (the essential spectral gaps of Hg ) are denoted by 

Moreover one has 

and all eigenvalues of H, are simple. (Here o(-)  , oat(.) , os,(.) , and g(.)de-
note the spectrum, absolutely continuous spectrum, singularly continuous spec- 
trum, and point spectrum (the set of eigenvalues) respectively.) Following the 
usual terminology we call p, an open spectral gap whenever p, # 0. 

The purpose of this paper is to give a short proof of the following theorem 
that summarizes results of Firsova, Rofe-Beketov, and Zheludev: 

Theorem 1 [3, 4, 6, 13, 14, 17, 181. Assume Hypothesis (I). Then 
(i) Hg hasjnitely many eigenvalues in each open gap p, , n 2 0 .  

(ii) Hg has at most two eigenvalues in every open gap p, for n large enough. 
(iii) If J, d x  W(x) # 0 ,  Hg , g > 0 has precisely one eigenvalue in every 

open spectral gap p, for n suficiently large. 

Remark 2. Parts (i) and (ii) are due to Rofe-Beketov [13]. Part (iii), under 
the additional conditions sgn( W) = constant, W E L1(R; (1 + x2)  dx)  , V 
piecewise continuous and W bounded is due to Zheludev [17]. In [18] the 
condition sgn(W) = constant has been replaced by J,dx W(x) # 0 but it 
has been left open as to whether there are one or two eigenvalues in sufficiently 
distant spectral gaps pn . The present version of (iii) was first proved by Firsova 
[3, 41 (see also [6]) and Rofe-Beketov [14] on the basis of ODE methods. The 
case of a perturbed Hill operator on the halfline (0,  m) has also been studied 
in [8]. 

Before we give a short proof of Theorem 1 based on operator theoretic meth- 
ods we need to prepare various well-known results on Hill operators and estab- 
lish some further notation. 

The Green's function Go(z, x ,  x') (the integral kernel of the resolvent 
(Ho- z)-' ) reads 

Go(z, x ,  x') = W(v+(z ,.,xo) , w-(z, .,x0))r1 
v-(z ,  x7 xo)v+(z, XI, xo), x I x l ,  

(8) 
w + ( z ~X ,XO)V/-(Z>XI, XO), 2 XI, 

x o €[0, a],  Z E ~ 

Here W (f ,  g )  denotes the Wronskian of f and g , 

and ty* are the Floquet solutions of Ho defined by 
(10) 

v*(z,x7xo):=c(z7x7xo)+4*(z7xo)s(z,x,xo),  Z E ~ ,X E R 7  
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& ( z ,  x0) := {A(z)+ [ A ( z ) ~- 1 1 ' / ~  

(11) 	 -C(Z ,xo+ a ,  xo))s(z, xo+ a ,  XO)-' , 
~ € 3 ,  

where A denotes the discriminant (Floquet determinant) of Ho, 

(12) A(z) := [c(z,xo + a ,  xo) + s l (z ,  xo + a ,  x0)]/2, z E @ , 
and s , c is a fundamental system of distributional solutions of H0f = zf , 
z E @ ,with 

s ( z ~ x o , x o ) = ~ ~s / ( z ~ x o , x o ) = ~ ,
(13) 

c(z ,  xo, xo)= 1 ,  c l (z ,  xo ,  xo) = 0 ,  z E @ .  

Moreover, t,u+ are meromorphic functions on the two-sheeted Riemann sur- 
face 9 of [A(z )~  - obtained by joining the upper and lower rims of two 
copies of the cut plane @\a(Ho) (or @\[p(H) n R] , p(.) the resolvent set) in 
the usual (crosswise) way. 9 is assumed to be compactified if only finitely 
many spectral gaps of Ho are open, otherwise 9 is noncompact. Since we 
do not need this Riemann surface explicitly in the following considerations we 
assume that a suitable choice of cuts has been made and omit further details. 

We note that s , c ,  and A are entire with respect to z E @ , and A and 
Go are independent of the chosen reference point xo E [0, a] .  Especially, by 
considering a particular open gap p, = (E2,-' ,E2n), n 2 1, one can always 
choose xo in such a way that the zeros of s(z  ,xo+a, xo) (there is precisely one 
simple zero in each z,n 2 1, they constitute the Dirichlet eigenvalues of Ho 
restricted to (xo,xo +a))  are not at a,, = {E2,-' , E2,) . (This fact is relevant 
in (1 1) and will be needed later on in (20).) From now on, when considering 
a particular gap p, , we always assume that p, is open, i. e., p, # a .  For 
simplicity we shall also assume that Eo 2 1 and for notational convenience 
we introduce E-' = 1 (in order not to distinguish n = 0 and n 2 1 in the 
following). 

We also note that 

and 

(15) - ~ [ A ( z ) ~ - x ,  x) = s ( z ,  x + a ,  x ) ,  x E R1 ] ' / 2 ~ o ( z ,  	 z E @ ,  

Moreover, restricting z to the upper sheet 3+of 9 from now on, the 
Floquet solutions t,u* have the particular structure 

t,u*(z , x , xo) = eFn(z)(x-xo)p+(a(z),x ,xo),
(16) 

~ + ( f f ( ~ ) , ~ + a , x ~ ) = ~ ~ ( a ( z ) , x , x ~ ) ,Z E ~ + , X E R ,  
where a ( z )  is given by 

a ( z )  := a-' ln{A(z) + [ A ( z ) ~- 1 1 ' / ~ ) ,  z E 9 + ,
(17) 

cosh[a(z)a] = A(z) , sinh[a(z)a]= [ A ( z ) ~- 1 1 ' / ~ ,  

and the branch of [A(z)~  - 1]'12 on 9+is chosen such that 

(18) v+(z,  .,xo) E ~ ~ ( 0 ,  z E 9 + \ a ( H 0 ) .km), 
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a (resp. a - ni ) is positive on open gaps p2, (resp. p2n+l ), n E No , and 
monotonic near Eo, E 4 n - l  , E 4 n  (resp. E4n-3 , E 4 n - 2  ), n E N . 

We also note the asymptotic relations 

and [181 

and similarly for the odd open gaps pzn+l , n E N o .  (In order to avoid that 
s(E,(,), xo + a ,  xo)= 0 in (20), we tacitly made use of the fact that we may 
choose xo = xo(n) appropriately without affect A and the Green's function Go 
in (8). Such a choice will always be assumed in the following.) 

Given these preliminaries we can split the Green's function Go into two 
parts as follows. For simplicity we only consider even open gaps pzn , n E No, 
in details. The analysis for odd gaps pzn+l , n E No, is completely analogous. 

for A E [E4n-En ,E4n] (A E [E4n- , E4n-1  +en]) with en > 0 sufficiently small, 
n E N o .  One has the bound [13, 171 

with C independent of n E No . Since Zheludev [17, 181 relies on the estimate 
(23), he is forced to assume W E L1 (R; (1 + x2)dx )  in order to make the 
integral kernel I w(x)( 'I2 RO(A, x , x') 1 w (XI )  1 'I2 to be the integral kernel of a 
bounded (in fact Hilbert-Schmidt) operator in L2(R). In order to avoid this 
limitation we shall employ instead a device from [l]  and use a different splitting 
of Go : 
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where Gf, xo(z ,x , x') denotes the integral kernel of the resolvent of the Dirich- 
let operator HoqXo obtained from Ho by imposing an additional Dirichlet 
boundary condition at xo . Explicitly we have 
(25) 

A €% ,  nENo,  
and, similar to (3.7) in [I] ,  

( ~ ( ~ ~ ( 2 ,x ,  x')(I ~ 1 ~ 2 n - I( - 1 1 2 1 ~ < ~  I CIE2n-I 1 - ~ / 2 ~ x ~ ~ / 2 ~ x ~ ~ ~ ~ 2 ,
(26) 

A E z,n E NO, a(A)2 0 small enough, 

where C is independent of n and 
x ~ x o - < x ' o r x ' I x ~ < x ,  

(27) Ix<I:= min(1x -xo(, (x'-xo() otherwise. 


In order to derive (26) one separately considers the four regions x I x' 5 xo , 

x' I x I xo , xo I x' I x , xo 5 x I x' (the cases x I xo I x' , x' 5 xo 5 x 
being trivial) and uses the mean value theorem to bound 

Ip+(a(A)> Y ,xo) -P-(@), Y 9 xo)l I D4A)lY - xol ,
(28) A E %, a(A)2 0 small enough, 

with D independent of n E No. 
Finally, we introduce Birman-Schwinger type operators and related quanti- 

ties. We distinguish three cases and again study even (open) gaps p2, , n E No 
for simplicity. 

(a) W 5 0 .  We factorize 

and define the Birman-Schwinger kernel by 

Then the selfadjoint Birman-Schwinger kernel satisfies k (A) E B2( L ~  (.)(R)) (B2 
the set of Hilbert-Schmidt operators) and due to (24)-(26) 

where P(A), A E z,is a positive rank one projection, M(A) E B 2 ( ~ 2 ( R ) ) ,  
A E z,is selfadjoint, and 

with C independent of n . (One can show that a(A) = d4, IA - E4, 
E4n (4n- 1) (4n-1) 

(4"- 1) 

for some constants dqn > 0 .) 
(4n-I) 

(b) W 2 0 .  Introducing the factorization 
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one defines 

Then k(A) E LZ2(L2(TW)) and (31) and (32) (with y + - y  ) hold again. 
(c) W = W+- W- , W+ > 0 on sets of positive Lebesgue measure. If 

necessary, we modify W* such that 

Following a device of Simon [16] we define the selfadjoint Birman-Schwinger 
kernel by 

The fact that ~ ( 2 )  is selfadjoint (as opposed to the usual choice 

even though W changes sign, will be of crucial importance below. (This trick 
has also been employed successfully in [7].) 

Given all these preliminaries we now turn to the 

Proof of Theorem 1. It suffices to treat the even open gaps pzn, n E No. 
( A )  W 5 0 .  Since 

all eigenvalues of k(A) are monotonically decreasing with respect to A E p2,. 
Moreover, by the Birman-Schwinger principle [12], H, = Ho- gl Wl has an 
eigenvalue E* E p, iff k(E*) has an eigenvalue -1 of the same multiplicity. 
Since E* is necessarily simple, no eigenvalues of k(A) can cross in p, . Because 
of (31), k(A) has precisely one eigenvalue decreasing from +cc at E4,-1 to 
o(E~;!:) near E4, and one eigenvalue branch decreasing from o(E&!:) near 

to -cc at E4, (assuming n large enough such that E4,-i >> 1 ). 
The remaining eigenvalues of k(A) in p2, are of order o(E&!:) for n large 
enough. Thus choosing n sufficiently large, precisely one eigenvalue of K(A) 
(the one diverging to -cc ) will cross -1 . Since k(A) is compact, only finitely 
many eigenvalues of k(A) cross -1 in each gap p, . This proves (i) and (iii) 
for W I 0 .  

Since W 2 0 can be dealt with analogously, the only difference being that 
now gk(l)2 0 on p, and hence the eigenvalues of %(A) are monotonically 
increasing (accounting for no eigenvalue crossing of the line -1 on po since 
k(A) 2 0 on po ), we immediately turn to the general case. 

(B) sgn(W )# constant. 
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Throughout the rest of the proof we assume that A E P2, with n large enough 
unless otherwise stated. We start with the elementary identity 

-
where E;, denotes the unique eigenvalue of Ho- g  W- in pzn determined in 
Part A. We note that 

(39) R- ( A )  - ~ ( A ) ~ F -- gM_ ( A ) , A E pzn,= ( A )  

where the selfadjoint rank-one operator F- ( A ) , A E pz,,has the integral kernel 

and ( A )  E 93'2 ( L2  ( R ) )  , A E z , is selfadjoint with integral kernel 

(42) G - ( x ) G ~ ~ ~ ( A , x , x ~ ) G - ( x ~ ) ,LEG.  
Next we introduce the orthogonal projection 

(43) Q - ( A ) : = l - P - ( A ) ,  A E ~ , 

and insert (39)into (38).Assuming en > 0 sufficiently small, a straightforward 

computation (inverting 1+rank one + perturbation) then yields for the behavior 

of i-( A )  near the band edges E4n- 1 , E4n , 


(44) 

i - ( A )  = - p-(A) + [ 1  - ~ Q - ( A ) % - ( A ) Q - ( A ) ] - ~ 
- 1  + 0 ( y ( A ) - l )  

A E [E4n-1 , E4n-1 + en]U [E4n- e n ,  E4nI, 

with respect to the decomposition L2(R)= @ Q- (A)L2(R) F- ( A )L ~ ( R )  . (Here 
the symbol O(y(A)-l) denotes a compact operator with norm bounded by 
CIy(A)1 - I  .) In particular, 

(45) I - = ( 1 )  7 A E [E4n-1, E4n-1 + En] U [E4n- e n ,  E4nl 
for en > 0 sufficiently small. Noticing that 

(46) ( A )  = ( + / ) ( A ) ( + / ) ,  A E pz,\{E*},  

we infer for the behavior of K(A)  near the band edges E4n-1, E4n that 
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Here F(A) has the integral kernel 

and by using a geometric series expansion one checks that Z(A) indeed extends 
to a L82(L2(~))-operator E [E4n-1, E4n-1 + En]U [E4, - En, E4,] withfor A 
E, > 0 sufficiently small. Moreover, 

It remains to study k(i)near EL . By (38) we have 

where we used the spectral representation for k-(A), 

with pl(ll)g the unique eigenvalue branch of k-(A) diverging to -m as ll 1. 
E4, ,Pl(A)  the associated rank one projection onto the corresponding eigenspace, 
and 

by (32). By (46), (50) yields an analogous formula for k ( l l ) ,  A E p2,\{E;,). 
Given these results one can now finish the proof (similar to Part A). Since 

all eigenvalues of k(11) are monotonically increasing with respect to A E p, . 
By the Birman-Schwinger principle, Hg = Ho igW has an eigenvalue E* E p, 
iff K(E*) has an eigenvalue -1 with multiplicities preserved. Since Hg has 
only simple eigenvalues, again no eigenvalue crossing of K(A) occurs in p, . 
Due to (47), (49), (50), and its analog for g(A),  k(A)has precisely one eigen- 
value branch ul(ll) in (E;, , E4,) that is monotonically increasing from -m 

at E;, to O(1) near E4, , all other eigenvalues of k(A)in (E;,, E4,) being 
O(E,!;) . Similarly, there is precisely one monotonically increasing eigenvalue 

branch *(A) of k(A)in (E4n-1, E;,) that is o(E~~'!:)near E4n-1and +m 
at E;, ,and precisely one eigenvalue branch y (A) that is O(1) near E4,-i and 
o(E~,!:) near E;, , all other eigenvalues of ~ ( 2 )  being o(E~,!:) throughout 
(E4n-1, E;,). The O(1) branches near E4, are of course due to P(A) in 

(4,-1) 

(47) (see also (48)). Given n sufficiently large we thus have the following dis- 
tinctions: 

(a) If 	 j, d x  W(x) > 0 ,  then (20), (25), and (48) imply that only u3(A) 
crosses -1 . 
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(b) If J, dxW(x) < 0 ,  then (20), (25), and (48) imply that only vl(A) 
crosses -1. 

(c) If JRdx W(x) = 0 ,  then vl (A) , u3(A) may or may not cross -1 and 
we have either 0, 1, or 2 eigenvalues in pzn . 

Since K(A) is compact, only finitely many eigenvalues can cross -1 in each 
gap pn . This completes the proof of Theorem 1. 

Since one can replace the phrase "for n large enough" by " g > 0 sufficiently 
small" in every step of the above proof, Theorem 1 can also be viewed as a 
"weak-coupling" result in the following sense: 

Theorem 3. Assume Hypothesis ( I ) .  Then 
(i) Hg has at most two eigenvalues in every open gap p, , n E No for g > 0 

sujiciently small. 
(ii) Abbreviate 

and assume that g > 0 is small enough. Then H, has no eigenvalues in 
pn = (&,-I , EZn), n E N i f  I(E2n-1)< 0 and I(E2,) > 0 ,  Hg has precisely 
one eigenvalue in pn if I(E2,-,) < 0 and I(E2,) < 0 or I(E2n-1) > 0 and 
I(E2,) > 0 ,  and Hg has two eigenvalues in pn if I(E2n-1)> 0 and I(E2,) < 0 .  
Moreover, Hg has no eigenvalues in po = (-x,Eo) if I(Eo)> 0 and precisely 
one eigenvalue in po if I(Eo)5 0 .  
Proof. By the paragraph preceding Theorem 3 we only need to demonstrate 
the last assertion in the case I(Eo) = 0 .  For that purpose we first prove that 
Ro(Eo,x , x') (see (22) and (24)) is conditionally positive definite, i. e., 

(We also note that Ro(Eo,x ,x') = G ~ , , ( E ~ ,x ,x') .) In order to prove (55) 
we invoke the eigenfunction expansion associated with Ho . Let 

f (.) = s - lim (211)-'I2
R+m 1 d ~ f * ( ~ ) ~ i ( ~7 01, 

(54) 
I S l l R  

j;(.)= s - lim (211)-
R-m 

l D  J ~ Y / ( Y ) Y + ( . ,Y ) ,  f E L ~ ( w ), 
I v l l R  

where 
-112 

(57) 

w*(z(P)x , xo), 

(58) yk ( -P ,  X )  = YF(P,  x )  = Y*(P, x ) ,  P E R ,  

and 

( 5 9 )  cosh[P(z)a]= A(z) , sinh[P(z)a]= [ A ( z ) ~- 1l1I2 
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with P(z)  an appropriate analytic continuation of arc ~inh{[A(z)~ - 11'1~) to 
the Riemann surface 9 (see, e.g., [5] for more details). If f E L1(R) then 
the integral for in (56) becomes an ordinary Lebesgue integral over R since 
Y+(P,  x )  is uniformly bounded in x E R . (If V = 0 then Y+(P,  X) = ef i p x  .) 
We also note that 

for some > 0 .  Next we define 

and compute for A < Eo, 

where we used (22) together with I(Eo) = 0 in the first equality and 

(in the distributional sense) and the real-valuedness of w in the second equality. 
Since p(a(Eo) ,x ,xo) is uniformly bounded in x E R we have 

and hence 

d x  dx'w(x)Ro(Eo, x ,x1)w(x') 

(65) 
= LdPl~+(P)12 [z (P )-Eel> 0 

by (23) and the monotone convergence theorem. This proves (55). It remains to 
go through the proof of Theorem 1 step-by-step. In fact, let E,' be the unique -
eigenvalue of Ho'gW- in po = (-cc, Eo) determined by Part A of the proof 
of Theorem 1. Since (53) remains valid for n = 0 ,  and 

-
(66) (Ho'g W- - A)-' 2 0 for A E (-cc, E,') , 

we have 

Thus no eigenvalue branch of K(A) can cross -1 for A < EG . In the interval 
(E; ,Eo) there is precisely one eigenvalue branch vl (A) that is monotonically 
increasing from -m at E,' to O(1) near Eo, all other eigenvalues of k(A) 
being O(g) throughout [E,' ,Eo]. In order to prove that vl (A) actually crosses 



A SHORT PROOF OF ZHELUDEV'S THEOREM 339 

-1 for g > 0 small enough we next consider K ( E ~ )= n - limn,, ~ ( 2 ) .In 
analogy to (44) one proves 

where O(g2) denotes a compact operator with norm bounded by c g 2 .  This 
yields 

where P ( E ~ )is an orthogonal projection with integral kernel (see (22), (25) 
and (48)) 
(70) 

since I(Eo)= 0 ,  and , Q- have been introduced in (42), (43). A simple 
computation then yields 

By (55) this indeed proves that vl(2) crosses -1 for g > 0 sufficiently 
small. 

Remark 4. To the best of our knowledge the fact that Ro(Eo,x ,  xl) is condi-
tionally positive definite (in the sense of (55))and that for g > 0 small enough 
H, has precisely one eigenvalue in po = ( -m,  Eo) if I(Eo)= 0 appears to 
be new. It generalizes a corresponding result of [15] (extended in [9]) in the 
special case where V -= 0 .  

Evidently, our strategy of using a selfadjoint Birman-Schwinger kernel, even 
if sgn(W) # constant, extends to perturbed one-dimensional periodic Dirac 
operators and weakly perturbed second-order finite difference operators. 

Finally, we remark that Theorem 1, in particular, implies that N-soliton 
solutions of the Korteweg-de Vries equation relative to a periodic background 
solution (i.e., relative reflectionless solutions) will in general not decay as x + 

+cc and x -,-m since by definition they are associated with the insertion of 
N eigenvalues in the spectral gaps of the period background Hamiltonian. 

F. Gesztesy would like to acknowledge an illuminating discussion with M. 
Klaus. 
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